Trends in the Application of “Omics” to Ecotoxicology and Stress Ecology
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Walker, C.H.; Sibly, R.M.; Hopkin, S.P.; Peakall, D.B. Principles of Ecotoxicology, 4th ed.; CRC Press: Boca Raton, FL, USA, 2012; ISBN 978-1-4398-6266-7. [Google Scholar]
- Van Straalen, N.M. Ecotoxicology Becomes Stress Ecology. Environ. Sci. Technol. 2003, 37, 324A–330A. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heugens, E.H.; Hendriks, A.J.; Dekker, T.; van Straalen, N.M.; Admiraal, W. A Review of the Effects of Multiple Stressors on Aquatic Organisms and Analysis of Uncertainty Factors for Use in Risk Assessment. Crit. Rev. Toxicol. 2001, 31, 247–284. [Google Scholar] [CrossRef]
- Hayward, S.A. Application of Functional ‘Omics’ in Environmental Stress Physiology: Insights, Limitations, and Future Challenges. Curr. Opin. Insect Sci. 2014, 4, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Bludau, I.; Aebersold, R. Proteomic and Interactomic Insights into the Molecular Basis of Cell Functional Diversity. Nat. Rev. Mol. Cell Biol. 2020, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Barabási, A.-L.; Oltvai, Z.N. Network Biology: Understanding the Cell’s Functional Organization. Nat. Rev. Genet. 2004, 5, 101–113. [Google Scholar] [CrossRef]
- Bruggeman, F.J.; Westerhoff, H.V. The Nature of Systems Biology. Trends Microbiol. 2007, 15, 45–50. [Google Scholar] [CrossRef]
- Côté, I.M.; Darling, E.S.; Brown, C.J. Interactions among Ecosystem Stressors and Their Importance in Conservation. Proc. R. Soc. B Biol. Sci. 2016, 283, 20152592. [Google Scholar] [CrossRef]
- Sturla, S.J.; Boobis, A.R.; FitzGerald, R.E.; Hoeng, J.; Kavlock, R.J.; Schirmer, K.; Whelan, M.; Wilks, M.F.; Peitsch, M.C. Systems Toxicology: From Basic Research to Risk Assessment. Chem. Res. Toxicol. 2014, 27, 314–329. [Google Scholar] [CrossRef]
- Ankley, G.T.; Daston, G.P.; Degitz, S.J.; Denslow, N.D.; Hoke, R.A.; Kennedy, S.W.; Miracle, A.L.; Perkins, E.J.; Snape, J.; Tillitt, D.E.; et al. Toxicogenomics in Regulatory Ecotoxicology. Environ. Sci. Technol. 2006, 40, 4055–4065. [Google Scholar] [CrossRef] [Green Version]
- Leung, K.M. Joining the Dots between Omics and Environmental Management. Integr. Environ. Assess. Manag. 2018, 14, 169–173. [Google Scholar] [CrossRef]
- Kleensang, A.; Maertens, A.; Rosenberg, M.; Fitzpatrick, S.; Lamb, J.; Auerbach, S.; Brennan, R.; Crofton, K.M.; Gordon, B.; Fornace, A.J.; et al. Pathways of Toxicity. ALTEX 2014, 31, 53–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brockmeier, E.K.; Hodges, G.; Hutchinson, T.H.; Butler, E.; Hecker, M.; Tollefsen, K.E.; Garcia-Reyero, N.; Kille, P.; Becker, D.; Chipman, K.; et al. The Role of Omics in the Application of Adverse Outcome Pathways for Chemical Risk Assessment. Toxicol. Sci. 2017, 158, 252–262. [Google Scholar] [CrossRef]
- Sauer, U.G.; Deferme, L.; Gribaldo, L.; Hackermüller, J.; Tralau, T.; van Ravenzwaay, B.; Yauk, C.; Poole, A.; Tong, W.; Gant, T.W. The Challenge of the Application of ’omics Technologies in Chemicals Risk Assessment: Background and Outlook. Regul. Toxicol. Pharmacol. 2017, 91, S14–S26. [Google Scholar] [CrossRef]
- Feswick, A.; Munkittrick, K.R.; Martyniuk, C.J. Estrogen-Responsive Gene Networks in the Teleost Liver: What Are the Key Molecular Indicators? Environ. Toxicol. Pharmacol. 2017, 56, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Fent, K.; Sumpter, J.P. Progress and Promises in Toxicogenomics in Aquatic Toxicology: Is Technical Innovation Driving Scientific Innovation? Aquat. Toxicol. 2011, 105, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Ankley, G.T.; Bencic, D.C.; Breen, M.S.; Collette, T.W.; Conolly, R.B.; Denslow, N.D.; Edwards, S.W.; Ekman, D.R.; Garcia-Reyero, N.; Jensen, K.M.; et al. Endocrine Disrupting Chemicals in Fish: Developing Exposure Indicators and Predictive Models of Effects Based on Mechanism of Action. Aquat. Toxicol. 2009, 92, 168–178. [Google Scholar] [CrossRef]
- Artigas, J.; Arts, G.; Babut, M.; Caracciolo, A.B.; Charles, S.; Chaumot, A.; Combourieu, B.; Dahllöf, I.; Despréaux, D.; Ferrari, B.; et al. Towards a Renewed Research Agenda in Ecotoxicology. Environ. Pollut. 2012, 160, 201–206. [Google Scholar] [CrossRef]
- Mora, C.; Tittensor, D.P.; Adl, S.; Simpson, A.G.B.; Worm, B. How Many Species Are There on Earth and in the Ocean? PLOS Biology 2011, 9, e1001127. [Google Scholar] [CrossRef] [Green Version]
- Siepel, A.; Bejerano, G.; Pedersen, J.S.; Hinrichs, A.S.; Hou, M.; Rosenbloom, K.; Clawson, H.; Spieth, J.; Hillier, L.W.; Richards, S.; et al. Evolutionarily Conserved Elements in Vertebrate, Insect, Worm, and Yeast Genomes. Genome. Res. 2005, 15, 1034–1050. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.; Gao, F.; Lin, Y. Evolutionary Conservation Analysis between the Essential and Nonessential Genes in Bacterial Genomes. Sci. Rep. 2015, 5, 13210. [Google Scholar] [CrossRef] [Green Version]
- Kunin, V.; Ahren, D.; Goldovsky, L.; Janssen, P.; Ouzounis, C.A. Measuring Genome Conservation across Taxa: Divided Strains and United Kingdoms. Nucleic Acids Res. 2005, 33, 616–621. [Google Scholar] [CrossRef] [PubMed]
- Genomic Approaches for Cross-Species Extrapolation in Toxicology; Benson, W.H.; Giulio, R.T.D. (Eds.) CRC Press: Boca Raton, FL, USA, 2006; ISBN 978-0-429-14213-0. [Google Scholar]
- Waters, M.D.; Fostel, J.M. Toxicogenomics and Systems Toxicology: Aims and Prospects. Nat. Rev. Genet. 2004, 5, 936–948. [Google Scholar] [CrossRef]
- Martyniuk, C.J. Are We Closer to the Vision? A Proposed Framework for Incorporating Omics into Environmental Assessments. Environ. Toxicol. Pharmacol. 2018, 59, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Ravindran, S.P.; Lüneburg, J.; Gottschlich, L.; Tams, V.; Cordellier, M. Daphnia s Tressor Database: Taking Advantage of a Decade of Daphnia ‘-Omics’ Data for Gene Annotation. Sci. Rep. 2019, 9, 11135. [Google Scholar] [CrossRef] [Green Version]
- Vandegehuchte, M.B.; Janssen, C.R. Epigenetics in an Ecotoxicological Context. Mutat. Res. Genet. Toxicol. Environ. Mutagenesis 2014, 764–765, 36–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rey, O.; Eizaguirre, C.; Angers, B.; Baltazar-Soares, M.; Sagonas, K.; Prunier, J.G.; Blanchet, S. Linking Epigenetics and Biological Conservation: Towards a Conservation Epigenetics Perspective. Funct. Ecol. 2020, 34, 414–427. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Huang, Q. Environmental Pollutants Exposure and Male Reproductive Toxicity: The Role of Epigenetic Modifications. Toxicology 2021, 456, 152780. [Google Scholar] [CrossRef] [PubMed]
- Vandegehuchte, M.B.; Janssen, C.R. Epigenetics and Its Implications for Ecotoxicology. Ecotoxicology 2011, 20, 607–624. [Google Scholar] [CrossRef] [PubMed]
- Šrut, M. Ecotoxicological Epigenetics in Invertebrates: Emerging Tool for the Evaluation of Present and Past Pollution Burden. Chemosphere 2021, 282, 131026. [Google Scholar] [CrossRef]
- Chatterjee, N.; Gim, J.; Choi, J. Epigenetic Profiling to Environmental Stressors in Model and Non-Model Organisms: Ecotoxicology Perspective. Environ. Health Toxicol. 2018, 33, e2018015. [Google Scholar] [CrossRef]
- Jamla, M.; Khare, T.; Joshi, S.; Patil, S.; Penna, S.; Kumar, V. Omics Approaches for Understanding Heavy Metal Responses and Tolerance in Plants. Curr. Plant Biol. 2021, 27, 100213. [Google Scholar] [CrossRef]
- Bickham, J.W. The Four Cornerstones of Evolutionary Toxicology. Ecotoxicology 2011, 20, 497–502. [Google Scholar] [CrossRef] [PubMed]
- Oziolor, E.M.; Matson, C.W. Evolutionary Toxicology: Population Adaptation in Response to Anthropogenic Pollution. In Extremophile Fishes: Ecology, Evolution, and Physiology of Teleosts in Extreme Environments; Riesch, R., Tobler, M., Plath, M., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 247–277. ISBN 978-3-319-13362-1. [Google Scholar]
- Oziolor, E.M.; Bickham, J.W.; Matson, C.W. Evolutionary Toxicology in an Omics World. Evol. Appl. 2017, 10, 752–761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oziolor, E.O.; De Schamphelaere, K.; Matson, C.W. Evolutionary Toxicology: Meta-Analysis of Evolutionary Events in Response to Chemical Stressors. Ecotoxicology 2016, 25, 1858–1866. [Google Scholar] [CrossRef] [PubMed]
- Oziolor, E.M.; DeSchamphelaere, K.; Lyon, D.; Nacci, D.; Poynton, H. Evolutionary Toxicology-An Informational Tool for Chemical Regulation? Environ. Toxicol. Chem. 2020, 39, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Brady, S.P.; Monosson, E.; Matson, C.W.; Bickham, J.W. Evolutionary Toxicology: Toward a Unified Understanding of Life’s Response to Toxic Chemicals. Evol. Appl. 2017, 10, 745–751. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Martyniuk, C.J.; Simmons, D.B.D. Are We Forgetting the “Proteomics” in Multi-Omics Ecotoxicology? Comp. Biochem. Physiol. D-Genom. Proteom. 2020, 36, 100751. [Google Scholar] [CrossRef]
- Ablain, J.; Zon, L.I. Of Fish and Men: Using Zebrafish to Fight Human Diseases. Trends Cell Biol. 2013, 23, 584–586. [Google Scholar] [CrossRef]
- Harris, K.D.M.; Bartlett, N.J.; Lloyd, V.K. Daphnia as an Emerging Epigenetic Model Organism. Genet. Res. Int. 2012, 2012, 147892. [Google Scholar] [CrossRef] [Green Version]
- Seda, J.; Petrusek, A. Daphnia as a Model Organism in Limnology and Aquatic Biology: Introductory Remarks. J. Limnol. 2011, 70, 337–344. [Google Scholar] [CrossRef] [Green Version]
- Caputo, D.R.; Robson, S.C.; Werner, I.; Ford, A.T. Complete Transcriptome Assembly and Annotation of a Critically Important Amphipod Species in Freshwater Ecotoxicological Risk Assessment: Gammarus Fossarum. Environ. Int. 2020, 137, 105319. [Google Scholar] [CrossRef] [PubMed]
- Cogne, Y.; Degli-Esposti, D.; Pible, O.; Gouveia, D.; François, A.; Bouchez, O.; Eché, C.; Ford, A.; Geffard, O.; Armengaud, J.; et al. De Novo Transcriptomes of 14 Gammarid Individuals for Proteogenomic Analysis of Seven Taxonomic Groups. Sci. Data 2019, 6, 184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, B.-Y.; Choi, B.-S.; Kim, M.-S.; Park, J.C.; Jeong, C.-B.; Han, J.; Lee, J.-S. The Genome of the Freshwater Water Flea Daphnia Magna: A Potential Use for Freshwater Molecular Ecotoxicology. Aquat. Toxicol. 2019, 210, 69–84. [Google Scholar] [CrossRef]
- Colbourne, J.K.; Pfrender, M.E.; Gilbert, D.; Thomas, W.K.; Tucker, A.; Oakley, T.H.; Tokishita, S.; Aerts, A.; Arnold, G.J.; Basu, M.K.; et al. The Ecoresponsive Genome of Daphnia Pulex. Science 2011, 331, 555–561. [Google Scholar] [CrossRef] [Green Version]
- May, P.; Wienkoop, S.; Kempa, S.; Usadel, B.; Christian, N.; Rupprecht, J.; Weiss, J.; Recuenco-Munoz, L.; Ebenhöh, O.; Weckwerth, W.; et al. Metabolomics- and Proteomics-Assisted Genome Annotation and Analysis of the Draft Metabolic Network of Chlamydomonas Reinhardtii. Genetics 2008, 179, 157–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrager, J.; Hauser, C.; Chang, C.-W.; Harris, E.H.; Davies, J.; McDermott, J.; Tamse, R.; Zhang, Z.; Grossman, A.R. Chlamydomonas Reinhardtii Genome Project. A Guide to the Generation and Use of the CDNA Information. Plant Physiol. 2003, 131, 401–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dziedzic, K.E.; Elder, H.; Tavalire, H.; Meyer, E. Heritable Variation in Bleaching Responses and Its Functional Genomic Basis in Reef-Building Corals (Orbicella Faveolata). Mol. Ecol. 2019, 28, 2238–2253. [Google Scholar] [CrossRef]
- Snelling, J.; Dziedzic, K.; Guermond, S.; Meyer, E. Development of an Integrated Genomic Map for a Threatened Caribbean Coral (Orbicella Faveolata). bioRxiv 2017, 183467. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.A.; Walz, M.E.; Weil, E.; Tonellato, P.; Smith, M.C. RNA-Seq of the Caribbean Reef-Building Coral Orbicella Faveolata (Scleractinia-Merulinidae) under Bleaching and Disease Stress Expands Models of Coral Innate Immunity. PeerJ 2016, 4, e1616. [Google Scholar] [CrossRef] [Green Version]
- Brandl, J.; Andersen, M.R. Aspergilli: Models for Systems Biology in Filamentous Fungi. Curr. Opin. Syst. Biol. 2017, 6, 67–73. [Google Scholar] [CrossRef]
- Boontawon, T.; Nakazawa, T.; Inoue, C.; Osakabe, K.; Kawauchi, M.; Sakamoto, M.; Honda, Y. Efficient Genome Editing with CRISPR/Cas9 in Pleurotus Ostreatus. AMB Express 2021, 11, 30. [Google Scholar] [CrossRef] [PubMed]
- Canzler, S.; Schor, J.; Busch, W.; Schubert, K.; Rolle-Kampczyk, U.E.; Seitz, H.; Kamp, H.; von Bergen, M.; Buesen, R.; Hackermüller, J. Prospects and Challenges of Multi-Omics Data Integration in Toxicology. Arch. Toxicol. 2020, 94, 371–388. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, T.S. The Promises and the Challenges of Integrating Multi-Omics and Systems Biology in Comparative Stress Biology. Integr. Comp. Biol. 2020, 60, 89–97. [Google Scholar] [CrossRef] [PubMed]
- O’Neil, S.T.; Dzurisin, J.D.K.; Williams, C.M.; Lobo, N.F.; Higgins, J.K.; Deines, J.M.; Carmichael, R.D.; Zeng, E.; Tan, J.C.; Wu, G.C.; et al. Gene Expression in Closely Related Species Mirrors Local Adaptation: Consequences for Responses to a Warming World. Mol. Ecol. 2014, 23, 2686–2698. [Google Scholar] [CrossRef] [PubMed]
- Ebner, J.N.; Ritz, D.; von Fumetti, S. Abiotic and Past Climatic Conditions Drive Protein Abundance Variation among Natural Populations of the Caddisfly Crunoecia Irrorata. Sci. Rep. 2020, 10, 15538. [Google Scholar] [CrossRef] [PubMed]
- Simmons, D.B.D.; Benskin, J.P.; Cosgrove, J.R.; Duncker, B.P.; Ekman, D.R.; Martyniuk, C.J.; Sherry, J.P. Omics for Aquatic Ecotoxicology: Control of Extraneous Variability to Enhance the Analysis of Environmental Effects. Environ. Toxicol. Chem. 2015, 34, 1693–1704. [Google Scholar] [CrossRef] [Green Version]
- Feder, M.E.; Walser, J.C. The Biological Limitations of Transcriptomics in Elucidating Stress and Stress Responses. J. Evol. Biol. 2005, 18, 901–910. [Google Scholar]
- Madeira, C.; Costa, P.M. Proteomics in systems toxicology. In Advances in Protein Chemistry and Structural Biology; Academic Press: Cambridge, MA, USA, 2021. [Google Scholar]
- Liang, X.; Martyniuk, C.J.; Simmons, D.B.D. Current Topics in Omics, Ecotoxicology, and Environmental Science. Comp. Biochem. Physiol. Part D Genom. Proteom. 2021, 38, 100782. [Google Scholar] [CrossRef]
- Hall, D.R.; Peng, H. Characterizing Physical Protein Targets of Chemical Contaminants with Chemical Proteomics: Is It Time to Fill a Crucial Environmental Toxicology Knowledge Gap? Comp. Biochem. Physiol. Part D Genom. Proteom. 2020, 34, 100655. [Google Scholar] [CrossRef]
- Evans, T.G. Considerations for the Use of Transcriptomics in Identifying the ‘Genes That Matter’ for Environmental Adaptation. J. Exp. Biol. 2015, 218, 1925–1935. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Reyero, N.; Habib, T.; Pirooznia, M.; Gust, K.A.; Gong, P.; Warner, C.; Wilbanks, M.; Perkins, E. Conserved Toxic Responses across Divergent Phylogenetic Lineages: A Meta-Analysis of the Neurotoxic Effects of RDX among Multiple Species Using Toxicogenomics. Ecotoxicology 2011, 20, 580. [Google Scholar] [CrossRef]
- Lu, Y.; Huggins, P.; Bar-Joseph, Z. Cross Species Analysis of Microarray Expression Data. Bioinformatics 2009, 25, 1476–1483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharan, R.; Suthram, S.; Kelley, R.M.; Kuhn, T.; McCuine, S.; Uetz, P.; Sittler, T.; Karp, R.M.; Ideker, T. Conserved Patterns of Protein Interaction in Multiple Species. Proc. Natl. Acad. Sci. USA 2005, 102, 1974–1979. [Google Scholar] [CrossRef] [Green Version]
- Hoeng, J.; Talikka, M.; Martin, F.; Sewer, A.; Yang, X.; Iskandar, A.; Schlage, W.K.; Peitsch, M.C. Case Study: The Role of Mechanistic Network Models in Systems Toxicology. Drug Discov. Today 2014, 19, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Rugard, M.; Coumoul, X.; Carvaillo, J.-C.; Barouki, R.; Audouze, K. Deciphering Adverse Outcome Pathway Network Linked to Bisphenol F Using Text Mining and Systems Toxicology Approaches. Toxicol. Sci. 2020, 173, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Hartung, T.; FitzGerald, R.E.; Jennings, P.; Mirams, G.R.; Peitsch, M.C.; Rostami-Hodjegan, A.; Shah, I.; Wilks, M.F.; Sturla, S.J. Systems Toxicology: Real World Applications and Opportunities. Chem. Res. Toxicol. 2017, 30, 870–882. [Google Scholar] [CrossRef] [PubMed]
- Ives, C.; Campia, I.; Wang, R.-L.; Wittwehr, C.; Edwards, S. Creating a Structured Adverse Outcome Pathway Knowledgebase via Ontology-Based Annotations. Appl. Vitr. Toxicol. 2017, 3, 298–311. [Google Scholar] [CrossRef]
- Shi, J.; Walker, M.G. Gene Set Enrichment Analysis (GSEA) for Interpreting Gene Expression Profiles. Curr. Bioinform. 2007, 2, 133–137. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene Set Enrichment Analysis: A Knowledge-Based Approach for Interpreting Genome-Wide Expression Profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef] [Green Version]
- Narad, P.; Chaurasia, A.; Wadhwab, G.; Upadhyayaa, K.C. Net2Align: An Algorithm For Pairwise Global Alignment of Biological Networks. Bioinformation 2016, 12, 408–411. [Google Scholar] [CrossRef] [Green Version]
- Koutrouli, M.; Karatzas, E.; Paez-Espino, D.; Pavlopoulos, G.A. A Guide to Conquer the Biological Network Era Using Graph Theory. Front. Bioeng. Biotechnol. 2020, 8, 34. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.-L.; Edwards, S.; Ives, C. Ontology-Based Semantic Mapping of Chemical Toxicities. Toxicology 2019, 412, 89–100. [Google Scholar] [CrossRef]
- Wang, R.-L. Semantic Characterization of Adverse Outcome Pathways. Aquat. Toxicol. 2020, 222, 105478. [Google Scholar] [CrossRef] [PubMed]
- Kelder, T.; van Iersel, M.P.; Hanspers, K.; Kutmon, M.; Conklin, B.R.; Evelo, C.T.; Pico, A.R. WikiPathways: Building Research Communities on Biological Pathways. Nucleic Acids Res. 2012, 40, D1301–1307. [Google Scholar] [CrossRef] [Green Version]
- Ruepp, A.; Zollner, A.; Maier, D.; Albermann, K.; Hani, J.; Mokrejs, M.; Tetko, I.; Güldener, U.; Mannhaupt, G.; Münsterkötter, M.; et al. The FunCat, a Functional Annotation Scheme for Systematic Classification of Proteins from Whole Genomes. Nucleic Acids Res. 2004, 32, 5539–5545. [Google Scholar] [CrossRef]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene Ontology: Tool for the Unification of Biology. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef] [Green Version]
- El-Gebali, S.; Mistry, J.; Bateman, A.; Eddy, S.R.; Luciani, A.; Potter, S.C.; Qureshi, M.; Richardson, L.J.; Salazar, G.A.; Smart, A.; et al. The Pfam Protein Families Database in 2019. Nucleic Acids Res. 2019, 47, D427–D432. [Google Scholar] [CrossRef]
- Finn, R.D.; Mistry, J.; Tate, J.; Coggill, P.; Heger, A.; Pollington, J.E.; Gavin, O.L.; Gunasekaran, P.; Ceric, G.; Forslund, K.; et al. The Pfam Protein Families Database. Nucleic Acids Res. 2010, 38, D211–222. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Kitano, H. Systems Biology: A Brief Overview. Science 2002, 295, 1662–1664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuang, H.-Y.; Hofree, M.; Ideker, T. A Decade of Systems Biology. Annu. Rev. Cell Dev. Biol. 2010, 26, 721–744. [Google Scholar] [CrossRef] [PubMed]
- Ideker, T.; Galitski, T.; Hood, L. A New Approach to Decoding Life: Systems Biology. Annu. Rev. Genom. Hum. Genet. 2001, 2, 343–372. [Google Scholar] [CrossRef]
- Wolkenhauer, O.; Mesarović, M. Feedback Dynamics and Cell Function: Why Systems Biology Is Called Systems Biology. Mol. BioSystems 2005, 1, 14–16. [Google Scholar] [CrossRef] [PubMed]
- Benfey, P.N.; Mitchell-Olds, T. From Genotype to Phenotype: Systems Biology Meets Natural Variation. Science 2008, 320, 495–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pain, G.; Hickey, G.; Mondou, M.; Crump, D.; Hecker, M.; Basu, N.; Maguire, S. Drivers of and Obstacles to the Adoption of Toxicogenomics for Chemical Risk Assessment: Insights from Social Science Perspectives. Environ. Health Perspect. 2020, 128, 105002. [Google Scholar] [CrossRef]
- Buesen, R.; Chorley, B.N.; da Silva Lima, B.; Daston, G.; Deferme, L.; Ebbels, T.; Gant, T.W.; Goetz, A.; Greally, J.; Gribaldo, L.; et al. Applying ’omics Technologies in Chemicals Risk Assessment: Report of an ECETOC Workshop. Regul. Toxicol. Pharmacol. 2017, 91, S3–S13. [Google Scholar] [CrossRef]
- Hendrickx, D.M.; Aerts, H.J.W.L.; Caiment, F.; Clark, D.; Ebbels, T.M.D.; Evelo, C.T.; Gmuender, H.; Hebels, D.G.A.J.; Herwig, R.; Hescheler, J.; et al. DiXa: A Data Infrastructure for Chemical Safety Assessment. Bioinformatics 2015, 31, 1505–1507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canzler, S.; Hackermüller, J.; Schor, J. MOD-Finder: Identify Multi-Omics Data Sets Related to Defined Chemical Exposure. arXiv 2019, arXiv:1907.06346. [Google Scholar]
- Darde, T.A.; Gaudriault, P.; Beranger, R.; Lancien, C.; Caillarec-Joly, A.; Sallou, O.; Bonvallot, N.; Chevrier, C.; Mazaud-Guittot, S.; Jégou, B.; et al. TOXsIgN: A Cross-Species Repository for Toxicogenomic Signatures. Bioinformatics 2018, 34, 2116–2122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waters, M.; Stasiewicz, S.; Merrick, B.A.; Tomer, K.; Bushel, P.; Paules, R.; Stegman, N.; Nehls, G.; Yost, K.J.; Johnson, C.H.; et al. CEBS--Chemical Effects in Biological Systems: A Public Data Repository Integrating Study Design and Toxicity Data with Microarray and Proteomics Data. Nucleic Acids Res. 2008, 36, D892–900. [Google Scholar] [CrossRef]
- Lea, I.A.; Gong, H.; Paleja, A.; Rashid, A.; Fostel, J. CEBS: A Comprehensive Annotated Database of Toxicological Data. Nucleic Acids Res. 2017, 45, D964–D971. [Google Scholar] [CrossRef] [Green Version]
- Davis, A.P.; Murphy, C.G.; Johnson, R.; Lay, J.M.; Lennon-Hopkins, K.; Saraceni-Richards, C.; Sciaky, D.; King, B.L.; Rosenstein, M.C.; Wiegers, T.C.; et al. The Comparative Toxicogenomics Database: Update 2013. Nucleic Acids Res. 2013, 41, D1104–D1114. [Google Scholar] [CrossRef] [Green Version]
- Fan, G.; Song, Y.; Yang, L.; Huang, X.; Zhang, S.; Zhang, M.; Yang, X.; Chang, Y.; Zhang, H.; Li, Y.; et al. Initial Data Release and Announcement of the 10,000 Fish Genomes Project (Fish10K). GigaScience 2020, 9. [Google Scholar] [CrossRef]
- i5K Consortium The I5K Initiative: Advancing Arthropod Genomics for Knowledge, Human Health, Agriculture, and the Environment. J. Hered. 2013, 104, 595–600. [CrossRef] [PubMed]
- Lewin, H.A.; Robinson, G.E.; Kress, W.J.; Baker, W.J.; Coddington, J.; Crandall, K.A.; Durbin, R.; Edwards, S.V.; Forest, F.; Gilbert, M.T.P.; et al. Earth BioGenome Project: Sequencing Life for the Future of Life. Proc. Natl. Acad. Sci. USA 2018, 115, 4325–4333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hahn, M.E.; Sadler, K.C. Casting a Wide Net: Use of Diverse Model Organisms to Advance Toxicology. Dis. Models Mech. 2020, 13. [Google Scholar] [CrossRef] [Green Version]
- Robinson, G.E.; Hackett, K.J.; Purcell-Miramontes, M.; Brown, S.J.; Evans, J.D.; Goldsmith, M.R.; Lawson, D.; Okamuro, J.; Robertson, H.M.; Schneider, D.J. Creating a Buzz About Insect Genomes. Science 2011, 331, 1386. [Google Scholar] [CrossRef] [PubMed]
- Williams, T.D.; Turan, N.; Diab, A.M.; Wu, H.; Mackenzie, C.; Bartie, K.L.; Hrydziuszko, O.; Lyons, B.P.; Stentiford, G.D.; Herbert, J.M.; et al. Towards a System Level Understanding of Non-Model Organisms Sampled from the Environment: A Network Biology Approach. PLOS Comput. Biol. 2011, 7, e1002126. [Google Scholar] [CrossRef] [PubMed]
- Ekblom, R.; Galindo, J. Applications of next Generation Sequencing in Molecular Ecology of Non-Model Organisms. Heredity 2011, 107, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armengaud, J.; Trapp, J.; Pible, O.; Geffard, O.; Chaumot, A.; Hartmann, E.M. Non-Model Organisms, a Species Endangered by Proteogenomics. J. Proteom. 2014, 105, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Forbes, V.E.; Palmqvist, A.; Bach, L. The Use and Misuse of Biomarkers in Ecotoxicology. Environ. Toxicol. Chem. 2006, 25, 272–280. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ebner, J.N. Trends in the Application of “Omics” to Ecotoxicology and Stress Ecology. Genes 2021, 12, 1481. https://doi.org/10.3390/genes12101481
Ebner JN. Trends in the Application of “Omics” to Ecotoxicology and Stress Ecology. Genes. 2021; 12(10):1481. https://doi.org/10.3390/genes12101481
Chicago/Turabian StyleEbner, Joshua Niklas. 2021. "Trends in the Application of “Omics” to Ecotoxicology and Stress Ecology" Genes 12, no. 10: 1481. https://doi.org/10.3390/genes12101481
APA StyleEbner, J. N. (2021). Trends in the Application of “Omics” to Ecotoxicology and Stress Ecology. Genes, 12(10), 1481. https://doi.org/10.3390/genes12101481