Relevance of Copy Number Variation at Chromosome X in Male Fetuses Inherited from the Mother May Be Ascertained by Including Male Relatives from the Maternal Lineage in Addition to Trio Analyses
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. DNA Extraction
2.3. Chromosome Microarray Analysis (CMA)
3. Results
3.1. Family 1
3.2. Family 2
3.3. Family 3
3.4. Family 4
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wapner, R.J.; Martin, C.L.; Levy, B.; Ballif, B.C.; Eng, C.M.; Zachary, J.M.; Savage, M.; Platt, L.D.; Saltzman, D.; Grobman, W.A.; et al. Chromosomal microarray versus karyotyping for prenatal diagnosis. N. Engl. J. Med. 2012, 367, 2175–2184. [Google Scholar] [CrossRef] [PubMed]
- Redon, R.; Ishikawa, S.; Fitch, K.R.; Feuk, L.; Perry, G.H.; Andrews, T.D.; Fiegler, H.; Shapero, M.H.; Carson, A.R.; Chen, W.; et al. Global variation in copy number in the human genome. Nature 2006, 444, 444–454. [Google Scholar] [CrossRef] [PubMed]
- Zarrei, M.; MacDonald, J.R.; Merico, D.; Scherer, S.W. A copy number variation map of the human genome. Nat. Rev. Genet. 2015, 16, 172–183. [Google Scholar] [CrossRef] [PubMed]
- Nowakowska, B. Clinical interpretation of copy number variants in the human genome. J. Appl. Genet. 2017, 58, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Amos-Landgraf, J.M.; Cottle, A.; Plenge, R.M.; Friez, M.; Schwartz, C.E.; Longshore, J.; Willard, H.F. X chromosome-inactivation patterns of 1,005 phenotypically unaffected females. Am. J. Hum. Genet. 2006, 79, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Isrie, M.; Froyen, G.; Devriendt, K.; De Ravel, T.; Fryns, J.P.; Vermeesch, J.R.; Van Esch, H. Sporadic male patients with intellectual disability: Contribution of X-chromosome copy number variants. Eur. J. Med. Genet. 2012, 55, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Willemsen, M.H.; De Leeuw, N.; De Brouwer, A.P.; Pfundt, R.; Hehir-Kwa, J.Y.; Yntema, H.G.; Nillesen, W.M.; De Vries, B.B.; Van Bokhoven, H.; Kleefstra, T. Interpretation of clinical relevance of X-chromosome copy number variations identified in a large cohort of individuals with cognitive disorders and/or congenital anomalies. Eur. J. Med. Genet. 2012, 55, 586–598. [Google Scholar] [CrossRef] [PubMed]
- Esplin, E.D.; Li, B.; Slavotinek, A.; Novelli, A.; Battaglia, A.; Clark, R.; Curry, C.; Hudgins, L. Nine patients with Xp22.31 microduplication, cognitive deficits, seizures, and talipes anomalies. Am. J. Med. Genet. A 2014, 164, 2097–2103. [Google Scholar] [CrossRef] [PubMed]
- Faletra, F.; D’Adamo, A.P.; Santa Rocca, M.; Carrozzi, M.; Perrone, M.D.; Pecile, V.; Gasparini, P. Does the 1.5 Mb microduplication in chromosome band Xp22.31 have a pathogenetic role? New contribution and a review of the literature. Am. J. Med. Genet. A 2012, 158, 461–464. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Shen, Y.; Kohler, U.; Sharkey, F.H.; Menon, D.; Coulleaux, L.; Malan, V.; Rio, M.; McMullan, D.J.; Cox, H.; et al. Interstitial microduplication of Xp22.31: Causative of intellectual disability or benign copy number variant? Eur. J. Med. Genet. 2010, 53, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Vandewalle, J.; Van Esch, H.; Govaerts, K.; Verbeeck, J.; Zweier, C.; Madrigal, I.; Mila, M.; Pijkels, E.; Fernandez, I.; Kohlhase, J.; et al. Dosage-dependent severity of the phenotype in patients with mental retardation due to a recurrent copy-number gain at Xq28 mediated by an unusual recombination. Am. J. Hum. Genet. 2009, 85, 809–822. [Google Scholar] [CrossRef] [PubMed]
- Iafrate, A.J.; Feuk, L.; Rivera, M.N.; Listewnik, M.L.; Donahoe, P.K.; Qi, Y.; Scherer, S.W.; Lee, C. Detection of large-scale variation in the human genome. Nat. Genet. 2004, 36, 949–951. [Google Scholar] [CrossRef] [PubMed]
- Sebat, J.; Lakshmi, B.; Troge, J.; Alexander, J.; Young, J.; Lundin, P.; Maner, S.; Massa, H.; Walker, M.; Chi, M.; et al. Large-scale copy number polymorphism in the human genome. Science 2004, 305, 525–528. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Preumont, A.; Rzem, R.; Vertommen, D.; Van Schaftingen, E. HDHD1, which is often deleted in X-linked ichthyosis, encodes a pseudouridine-5’-phosphatase. Biochem. J. 2010, 431, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Pavone, P.; Corsello, G.; Marino, S.; Ruggieri, M.; Falsaperla, R. Microcephaly/Trigonocephaly, Intellectual Disability, Autism Spectrum Disorder, and Atypical Dysmorphic Features in a Boy with Xp22.31 Duplication. Mol. Syndromol. 2019, 9, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Brinciotti, M.; Fioriello, F.; Mittica, A.; Bernardini, L.; Goldoni, M.; Matricardi, M. Epilepsy phenotype in patients with Xp22.31 microduplication. Epilepsy Behav. Case Rep. 2019, 11, 31–34. [Google Scholar] [CrossRef] [PubMed]
- Van Esch, H. MECP2 Duplication Syndrome. In GeneReviews; Adam, M.P., Ardinger, H.H., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Stephens, K., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993–2020. [Google Scholar]
- El-Hattab, A.W.; Schaaf, C.P.; Cheung, S.W. Xq28 Duplication Syndrome, Int22h1/Int22h2 Mediated. In GeneReviews; Adam, M.P., Ardinger, H.H., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Stephens, K., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993–2020. [Google Scholar]
- Fusco, F.; D’Urso, M.; Miano, M.G.; Ursini, M.V. The LCR at the IKBKG locus is prone to recombine. Am. J. Hum. Genet. 2010, 86, 650–652. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Qiao, Y.; Bagheri, H.; Tang, F.; Badduke, C.; Martell, S.; Lewis, S.M.E.; Robinson, W.; Connolly, M.B.; Arbour, L.; Rajcan-Separovic, E. Exome sequencing identified a de novo mutation of PURA gene in a patient with familial Xp22.31 microduplication. Eur. J. Med. Genet. 2019, 62, 103–108. [Google Scholar] [CrossRef] [PubMed]




| Family | Fetus 1 | X-CNV | Size (kb) | Genes Included | Inheritance | Healthy Male Relatives (Maternal Lineage) with the X-CNV 1 |
|---|---|---|---|---|---|---|
| 1 | F1-III-1 | 1. arr[GRCh37] 16p13.3(215724_231196)×1 2. arr[GRCh37] Xp22.31(6552712_7033316)×2 | 1. 15 2. 481 | 1. HBQ1, HBA1, HBA2 2. HDHD1/PUDP | 1. Paternal 2. Maternal | F1-I-1 |
| 2 | F2-III-2 | arr[GRCh37] Xp22.31(6705268_7218859)×2 | 514 | HDHD1/PUDP, STS | Maternal | F2-I-1 |
| 3 | F3-III-2 | arr[GRCh37] Xp22.31(6552712_8115153)×2 | 1562 | HDHD1/PUDP, STS, VCX, PNPLA4, MIR651 | Maternal | F3-I-3 |
| 4 | F4-III-6 | arr[GRCh37] Xq28(153505485_153822717)×2 | 317 | TEX28, TKTL1, FLNA, EMD, RPL10, SNORA70, DNASE1L1, TAZ, ATP6AP1, GDI1, FAM50A, PLXNA3, LAGE3, UBL4A, SLC10A3, FAM3A, G6PD, IKBKG, NCRNA00204B, NCRNA00204, CTAG1B, CTAG1A | Maternal | F4-I-1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Wu, W.-J.; Lee, M.-H.; Ku, T.-H.; Ma, G.-C. Relevance of Copy Number Variation at Chromosome X in Male Fetuses Inherited from the Mother May Be Ascertained by Including Male Relatives from the Maternal Lineage in Addition to Trio Analyses. Genes 2020, 11, 979. https://doi.org/10.3390/genes11090979
Chen M, Wu W-J, Lee M-H, Ku T-H, Ma G-C. Relevance of Copy Number Variation at Chromosome X in Male Fetuses Inherited from the Mother May Be Ascertained by Including Male Relatives from the Maternal Lineage in Addition to Trio Analyses. Genes. 2020; 11(9):979. https://doi.org/10.3390/genes11090979
Chicago/Turabian StyleChen, Ming, Wan-Ju Wu, Mei-Hui Lee, Tien-Hsiung Ku, and Gwo-Chin Ma. 2020. "Relevance of Copy Number Variation at Chromosome X in Male Fetuses Inherited from the Mother May Be Ascertained by Including Male Relatives from the Maternal Lineage in Addition to Trio Analyses" Genes 11, no. 9: 979. https://doi.org/10.3390/genes11090979
APA StyleChen, M., Wu, W.-J., Lee, M.-H., Ku, T.-H., & Ma, G.-C. (2020). Relevance of Copy Number Variation at Chromosome X in Male Fetuses Inherited from the Mother May Be Ascertained by Including Male Relatives from the Maternal Lineage in Addition to Trio Analyses. Genes, 11(9), 979. https://doi.org/10.3390/genes11090979

