Characterizing Gene Copy Number of Heat Shock Protein Gene Families in the Emerald Rockcod, Trematomus bernacchii
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Fish
2.2. DNA Extraction & QC
2.3. Cloning and qPCR Primer Design
2.4. Preparation of Standard Plasmids for Quantitative PCR
2.5. Conducting Copy Number Determination using Quantitative PCR
2.6. Copy Number Calculations and Determination
2.7. Statistical Analysis
2.8. Data Availability
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Livermore, R.; Nankivell, A.; Eagles, G.; Morris, P. Paleogene opening of Drake Passage. Earth Planet. Sci. Lett. 2005, 236, 459–470. [Google Scholar] [CrossRef] [Green Version]
- Siegert, M.; Barrett, P.; DeConto, R.; Dunbar, R.; Cofaigh, C.Ó.; Passchier, S.; Naish, T. Recent advances in understanding Antarctic climate evolution. Antarct. Sci. 2008, 20, 313–325. [Google Scholar] [CrossRef] [Green Version]
- Eastman, J.T. Antarctic Fish Biology: Evolution in a Unique Environment; Academic Press: New York, NY, USA, 2013. [Google Scholar]
- David, B.; Saucède, T. Adaptation of organisms. In The Southern Ocean; Elsevier BV: Amsterdam, The Netherlands, 2015; pp. 71–92. [Google Scholar]
- Eastman, J.T. The nature of the diversity of Antarctic fishes. Polar Boil. 2004, 28, 93–107. [Google Scholar] [CrossRef]
- Near, T.J.; Dornburg, A.; Kuhn, K.L.; Eastman, J.T.; Pennington, J.N.; Patarnello, T.; Zane, L.; Fernández, D.A.; Jones, C.D. Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes. Proc. Natl. Acad. Sci. USA 2012, 109, 3434–3439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heard, S.B.; Hauser, D.L. Key evolutionary innovations and their ecological mechanisms. Hist. Boil. 1995, 10, 151–173. [Google Scholar] [CrossRef]
- Schluter, D. The Ecology of Adaptive Radiation; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Yoder, J.B.; Clancey, E.; Roches, S.D.; Eastman, J.M.; Gentry, L.; Godsoe, W.; Hagey, T.J.; Jochimsen, D.; Oswald, B.P.; Robertson, J.; et al. Ecological opportunity and the origin of adaptive radiations. J. Evol. Boil. 2010, 23, 1581–1596. [Google Scholar] [CrossRef] [PubMed]
- Kondrashov, A.S. Direct estimates of human per nucleotide mutation rates at 20 loci causing mendelian diseases. Hum. Mutat. 2002, 21, 12–27. [Google Scholar] [CrossRef]
- Kondrashov, F.A.; Kondrashov, A.S. Role of selection in fixation of gene duplications. J. Theor. Boil. 2006, 239, 141–151. [Google Scholar] [CrossRef]
- Cascella, K.; Jollivet, D.; Papot, C.; Léger, N.; Corre, E.; Ravaux, J.; Clark, M.; Toullec, J.-Y. Diversification, evolution and sub-functionalization of 70kDa heat-shock proteins in two sister species of Antarctic Krill: Differences in thermal habitats, responses and implications under climate change. PLoS ONE 2015, 10, e0121642. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Devries, A.L.; Cheng, C.-H.C. Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish. Proc. Natl. Acad. Sci. USA 1997, 94, 3811–3816. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Cheng, C.-H.C.; Zhang, J.; Cao, L.; Chen, L.; Zhou, L.; Jin, Y.; Ye, H.; Deng, C.; Dai, Z.; et al. Transcriptomic and genomic evolution under constant cold in Antarctic notothenioid fish. Proc. Natl. Acad. Sci. USA 2008, 105, 12944–12949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morimoto, R.I. Regulation of the heat shock transcriptional response: Cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 1998, 12, 3788–3796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feder, M.E.; Hofmann, G.E. Heat-Shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology. Annu. Rev. Physiol. 1999, 61, 243–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Åkerfelt, M.; Morimoto, R.I.; Sistonen, L. Heat shock factors: Integrators of cell stress, development and lifespan. Nat. Rev. Mol. Cell Boil. 2010, 11, 545–555. [Google Scholar] [CrossRef]
- Hofmann, G.E.; Buckley, B.A.; Airaksinen, S.; Keen, J.E.; Somero, G.N. Heat-shock protein expression is absent in the antarctic fish Trematomus bernacchii (family Nototheniidae). J. Exp. Boil. 2000, 203, 2331–2339. [Google Scholar]
- Hofmann, G.E.; Lund, S.G.; Place, S.P.; Whitmer, A.C. Some like it hot, some like it cold: The heat shock response is found in New Zealand but not Antarctic notothenioid fishes. J. Exp. Mar. Boil. Ecol. 2005, 316, 79–89. [Google Scholar] [CrossRef]
- Place, S.P.; Hofmann, G.E. Constitutive expression of a stress-inducible heat shock protein gene, hsp70, in phylogenetically distant Antarctic fish. Polar Boil. 2004, 28, 261–267. [Google Scholar] [CrossRef]
- Place, S.P.; Hofmann, G.E. Comparison of Hsc70 orthologs from polar and temperate notothenioid fishes: Differences in prevention of aggregation and refolding of denatured proteins. Am. J. Physiol. Integr. Comp. Physiol. 2005, 288, R1195–R1202. [Google Scholar] [CrossRef]
- Huth, T.J.; Place, S.P. De novo assembly and characterization of tissue specific transcriptomes in the emerald notothen, Trematomus bernacchii. Bmc Genom. 2013, 14, 805. [Google Scholar] [CrossRef] [Green Version]
- Huth, T.J.; Place, S.P. Transcriptome wide analyses reveal a sustained cellular stress response in the gill tissue of Trematomus bernacchii after acclimation to multiple stressors. Bmc Genom. 2016, 17, 127. [Google Scholar] [CrossRef] [Green Version]
- Bilyk, K.T.; Devries, A.L. Heat tolerance of the secondarily temperate Antarctic notothenioid, Notothenia angustata. Antarct. Sci. 2011, 24, 165–172. [Google Scholar] [CrossRef]
- Privlov, P.L. Cold denaturation of proteins. Crit. Rev. Biochem. Mol. Biol. 1990, 25, 281–305. [Google Scholar] [CrossRef] [PubMed]
- Scally, A. The mutation rate in human evolution and demographic inference. Curr. Opin. Genet. Dev. 2016, 41, 36–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Itsara, A.; Wu, H.; Smith, J.D.; Nickerson, D.A.; Romieu, I.; London, S.J.; Eichler, E.E. De novo rates and selection of large copy number variation. Genome Res. 2010, 20, 1469–1481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, X.; Zhang, J. Rapid subfunctionalization accompanied by prolonged and substantial neofunctionalization in duplicate gene evolution. Genetics 2005, 169, 1157–1164. [Google Scholar] [CrossRef] [Green Version]
- Byrne, K.P.; Wolfe, K.H. Consistent patterns of rate asymmetry and gene loss indicate widespread neofunctionalization of yeast genes after whole-genome duplication. Genetics 2006, 175, 1341–1350. [Google Scholar] [CrossRef] [Green Version]
- Bogan, S.N.; Place, S.P. Accelerated evolution at chaperone promoters among Antarctic notothenioid fishes. Bmc Evol. Boil. 2019, 19, 205–212. [Google Scholar] [CrossRef] [Green Version]
- Brocchieri, H.W.L.A.L.; de Macario, E.C.; Macario, A.J.L. hsp70 genes in the human genome: Conservation and differentiation patterns predict a wide array of overlapping and specialized functions. Bmc Evol. Boil. 2008, 8, 19. [Google Scholar] [CrossRef] [Green Version]
- Hou, Y.; Zhang, H.; Miranda, L.; Lin, S. Serious overestimation in quantitative PCR by circular (supercoiled) plasmid standard: Microalgal pcna as the model gene. PLoS ONE 2010, 5, e9545. [Google Scholar] [CrossRef] [Green Version]
- Brankatschk, R.; Bodenhausen, N.; Zeyer, J.; Buergmann, H. Simple absolute quantification method correcting for quantitative PCR efficiency variations for microbial community samples. Appl. Env. Microbiol. 2012, 78, 4481–4489. [Google Scholar] [CrossRef] [Green Version]
- Hardie, D.C.; Hebert, P.D.N. The nucleotypic effects of cellular DNA content in cartilaginous and ray-finned fishes. Genome 2003, 46, 683–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardie, D.C.; Hebert, P.D.N. Genome-size evolution in fishes. Can. J. Fish. Aquat. Sci. 2004, 61, 1636–1646. [Google Scholar] [CrossRef]
- Detrich, H.W.; Stuart, A.; Schoenborn, M.; Parker, S.K.; Methe, B.A.; Amemiya, C.T. Genome enablement of the notothenioidei: Genome size estimates from 11 species and BAC libraries from 2 Representative Taxa. J. Exp. Zool. Part B Mol. Dev. Evol. 2010, 314, 369–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, B.; Garrido, N.; Spelbrink, J.N.; Suzuki, C.K. Tid1 isoforms are mitochondrial DnaJ-like chaperones with unique carboxyl termini that determine cytosolic fate. J. Boil. Chem. 2006, 281, 13150–13158. [Google Scholar] [CrossRef] [Green Version]
- Fan, C.-Y.; Lee, S.; Cyr, D.M. Mechanisms for regulation of Hsp70 function by Hsp40. Cell Stress Chaperons 2003, 8, 309–316. [Google Scholar] [CrossRef]
- Papp, B.; Pál, C.; Hurst, L.D. Evolution of cis-regulatory elements in duplicated genes of yeast. Trends Genet. 2003, 19, 417–422. [Google Scholar] [CrossRef]
- Goswami, A.V.; Samaddar, M.; Sinha, D.; Purushotham, J.; D’Silva, P. Enhanced J-protein interaction and compromised protein stability of mtHsp70 variants lead to mitochondrial dysfunction in Parkinson’s disease. Hum. Mol. Genet. 2012, 21, 3317–3332. [Google Scholar] [CrossRef]
- Buchner, J.; Li, J. Structure, function and regulation of the Hsp90 machinery. Biomed. J. 2013, 36, 106. [Google Scholar] [CrossRef]
- Queitsch, C.; Sangster, T.A.; Lindquist, S. Hsp90 as a capacitor of phenotypic variation. Nature 2002, 417, 618–624. [Google Scholar] [CrossRef]
- Schuermann, J.P.; Jiang, J.; Cuéllar, J.; Llorca, O.; Wang, L.; Gimenez, L.E.; Jin, S.; Taylor, A.B.; Demeler, B.; Morano, K.A.; et al. Structure of the Hsp110:Hsc70 nucleotide exchange machine. Mol. Cell 2008, 31, 232–243. [Google Scholar] [CrossRef] [Green Version]
- Dragovic, Z.; Broadley, S.A.; Shomura, Y.; Bracher, A.; Hartl, F.-U. Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s. Embo J. 2006, 25, 2519–2528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Species Specificity | Gene Target | F’ Primer Sequence | R’ Primer Sequence |
---|---|---|---|
T.b./N.a. | hsc71 (hsp70) | 5-TGCTTCGTCAGGGTTGATAC-3 | 5-GAAAGACATCAGCGACAACAAG-3 |
T.b./N.a. | hspa4b (hsp70) | 5-CCGAGATGCCCTGTCAATAAA-3 | 5-TGCTGGTTCATGGAGCTATTC-3 |
T.b./N.a. | hspa6 (hsp70) | 5-TCAAGTCGGGAGAACGAAAC-3 | 5-CTCATCTGGGTTGATGCTCTT-3 |
T.b./N.a. | hspa12a (hsp70) | 5-CCTGCTTACAGCACTACCATA-3 | 5-GAGCTCCTCACAAGGAAGATAAA-3 |
T.b./N.a. | hspa13 (hsp70) | 5-ACGTTGCATGTCGCTAGAGT-3 | 5-GGCCAGGATAACGGAACCAA-3 |
T.b./N.a. | hsp90ab1 (hsp90) | 5-GACCAAAGCCGACCTGATTA-3 | 5-TCTCTTCCTTCTCCTCCTTCTC-3 |
T.b./N.a. | hsp90b1 (hsp90) | 5-CAGTACGGCTGGTCTGGAAA-3 | 5-TCCTCTCTCCGTAGGCCTTG-3 |
T.b./N.a. | dnaja3 (hsp40) | 5-GGACTAGTGGGTGTTGGATAAG-3 | 5-GTGTTAAAGGTGGGACAGTTTG-3 |
Species | Gene Target | F’ Sequence | R’ Sequence | E(AMP) gDNA | E(AMP) pDNA |
---|---|---|---|---|---|
T.b. | hsc71 (hsp70) | 5-TCTTATTGAGTTCCTTGCCGC-3 | 5-CGACATTGTCCTGGTGGGAG-3 | 1.97 | 1.96 |
T.b. | hspa4b (hsp70) | 5-GAGGCTGAAGTGAGACCTAAAG-3 | 5-GCAGGCTTCCACAAATTTCAT-3 | 1.96 | 1.95 |
T.b. | hspa6 (hsp70) | 5-AGGGCGTCGACTTTTACACC-3 | 5-GGCTTTCTCCACAGGTTCCA-3 | 1.94 | 1.97 |
T.b. | hspa12a (hsp70) | 5-AAGGCGTATCACCTCTCAGAC-3 | 5-TTTCTGGGGTTGTATAGAGCGA-3 | 1.96 | 2.01 |
T.b. | hspa13 (hsp70) | 5-ATTACCCAGCATCCACAGGG-3 | 5-TGACAGCTGTGTGATGCGAAA-3 | 2.00 | 2.00 |
T.b. | hsp90ab1 (hsp90) | 5-CTTCTCCTCCTGCTTCTTCTTC-3 | 5-GAAGGAGTTTGATGGCAAGAAC-3 | 2.01 | 1.95 |
T.b. | hsp90b1 (hsp90) | 5-GATGACCATACGGCGTCAGA-3 | 5-TCCTCTCTCCGTAGGCCTTG-3 | 1.91 | 1.90 |
T.b. | dnaja3 (hsp40) | 5-CAGACCCTGCAAAAGACGGA-3 | 5-AATGACCACGACGGACACTT-3 | 1.96 | 2.04 |
N.a.* | hsc71 (hsp70) | 5-GCCTGTGGAAAAGGCTCTCC-3 | 5-CAGCAGCTTTTGGATCTTGGG-3 | 1.91 | 2.05 |
N.a. | hspa4b (hsp70) | 5-CCTTCATTTAGCAGGCTTCCACA-3 | 5-CCCATCCAGGAGAGGTACAC-3 | 1.90 | 1.94 |
N.a. | hspa6 (hsp70) | 5-CGAGGGCGTCGACTTTTACA-3 | 5-TCCATTTTGGCGTCCCTCAG-3 | 1.90 | 1.93 |
N.a. | hspa12a (hsp70) | 5-AGGCGTATCACCTCTCAGAC-3 | 5-ATCTGAAGCAAAGAAGATGCAAT-3 | 1.90 | 1.90 |
N.a. | hspa13 (hsp70) | 5-ACACGTCAACATTGCATGGC-3 | 5-ACGTTGCATGTCGCTAGAGT-3 | 1.94 | 1.92 |
N.a. | hsp90ab1 (hsp90) | 5-CATGAAAGGCCTTAGTGCCG-3 | 5-GATTTAACAAACCTGGGTACCATC-3 | 1.95 | 1.94 |
N.a. | hsp90b1 (hsp90) | 5-GATGACCATACGGCGTCAGA-3 | 5-TCCTCTCTCCGTAGGCCTTG-3 | 1.95 | 1.92 |
N.a. * | dnaja3 (hsp40) | 5-ATGACCACGACGGACACTTG-3 | 5-CAGACCCTGCAAAAGACGGA-3 | 1.94 | 1.94 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tercero, A.D.; Place, S.P. Characterizing Gene Copy Number of Heat Shock Protein Gene Families in the Emerald Rockcod, Trematomus bernacchii. Genes 2020, 11, 867. https://doi.org/10.3390/genes11080867
Tercero AD, Place SP. Characterizing Gene Copy Number of Heat Shock Protein Gene Families in the Emerald Rockcod, Trematomus bernacchii. Genes. 2020; 11(8):867. https://doi.org/10.3390/genes11080867
Chicago/Turabian StyleTercero, Anthony D., and Sean P. Place. 2020. "Characterizing Gene Copy Number of Heat Shock Protein Gene Families in the Emerald Rockcod, Trematomus bernacchii" Genes 11, no. 8: 867. https://doi.org/10.3390/genes11080867
APA StyleTercero, A. D., & Place, S. P. (2020). Characterizing Gene Copy Number of Heat Shock Protein Gene Families in the Emerald Rockcod, Trematomus bernacchii. Genes, 11(8), 867. https://doi.org/10.3390/genes11080867