CYP4F2 and VKORC1 Polymorphisms Amplify the Risk of Carotid Plaque Formation
Abstract
1. Introduction
2. Patients and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Libby, P.; Buring, J.E.; Badimon, L.; Hansson, G.K.; Deanfield, J.; Bittencourt, M.S.; Tokgözoğlu, L.; Lewis, E.F. Atherosclerosis. Nat. Rev. Dis. Primers 2019, 5, 56. [Google Scholar] [CrossRef] [PubMed]
- Siltari, A.; Vapaatalo, H. Vascular Calcification, Vitamin K and Warfarin Therapy-Possible or Plausible Connection? Basic Clin. Pharmacol. Toxicol. 2018, 122, 19–24. [Google Scholar] [CrossRef]
- Ohsaki, Y.; Shirakawa, H.; Miura, A.; Giriwono, P.E.; Sato, S.; Ohashi, A.; Iribe, M.; Goto, T.; Komai, M. Vitamin K suppresses the lipopolysaccharide-induced expression of inflammatory cytokines in cultured macrophage-like cells via the inhibition of the activation of nuclear factor κB through the repression of IKKα/β phosphorylation. J. Nutr. Biochem. 2010, 21, 1120–1126. [Google Scholar] [CrossRef] [PubMed]
- Kalampogias, A.; Siasos, G.; Oikonomou, E.; Tsalamandris, S.; Mourouzis, K.; Tsigkou, V.; Vavuranakis, M.; Zografos, T.; Deftereos, S.; Stefanadis, C.; et al. Basic Mechanisms in Atherosclerosis: The Role of Calcium. MC 2016, 12, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Akbari, S.; Rasouli-Ghahroudi, A.A. Vitamin K and Bone Metabolism: A Review of the Latest Evidence in Preclinical Studies. BioMed Res. Int. 2018, 2018, 1–8. [Google Scholar] [CrossRef]
- Luo, G.; Ducy, P.; McKee, M.D.; Pinero, G.J.; Loyer, E.; Behringer, R.R.; Karsenty, G. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 1997, 386, 78–81. [Google Scholar] [CrossRef]
- El Asmar, M.; Naoum, J.; Arbid, E. Vitamin K Dependent Proteins and the Role of Vitamin K2 in the Modulation of Vascular Calcification: A Review. Oman Med. J. 2014, 29, 172–177. [Google Scholar] [CrossRef]
- Zhang, Y.-T.; Tang, Z.-Y. Research progress of warfarin-Associated vascular calcification and its possible therapy. J. Cardiovasc. Pharmacol. 2014, 63, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Theuwissen, E.; Smit, E.; Vermeer, C. The Role of Vitamin K in Soft-Tissue Calcification. Adv. Nutr. 2012, 3, 166–173. [Google Scholar] [CrossRef]
- Garcia, A.A.; Reitsma, P.H. VKORC1 and the Vitamin K Cycle. In Vitamins & Hormones; Elsevier: Amsterdam, The Netherlands, 2008; Volume 78, pp. 23–33. ISBN 978-0-12-374113-4. [Google Scholar]
- Shukla, A.; Jain, A.; Kahalekar, V.; Bendkhale, S.; Gogtay, N.; Thatte, U.; Bhatia, S. Mutations in CYP2C9 and/or VKORC1 haplotype are associated with higher bleeding complications in patients with Budd-Chiari syndrome on warfarin. Hepatol. Int. 2019, 13, 214–221. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, W.; Zhang, Y.; Yang, Y.; Sun, L.; Hu, S.; Chen, J.; Zhang, C.; Zheng, Y.; Zhen, Y.; et al. VKORC1 haplotypes are associated with arterial vascular diseases (stroke, coronary heart disease, and aortic dissection). Circulation 2006, 113, 1615–1621. [Google Scholar] [CrossRef] [PubMed]
- AL-Eitan, L.; Almasri, A.; Khasawneh, R. Impact of CYP2C9 and VKORC1 Polymorphisms on Warfarin Sensitivity and Responsiveness in Jordanian Cardiovascular Patients during the Initiation Therapy. Genes 2018, 9, 578. [Google Scholar] [CrossRef] [PubMed]
- McDonald, M.G.; Rieder, M.J.; Nakano, M.; Hsia, C.K.; Rettie, A.E. CYP4F2 Is a Vitamin K1 Oxidase: An Explanation for Altered Warfarin Dose in Carriers of the V433M Variant. Mol. Pharmacol. 2009, 75, 1337–1346. [Google Scholar] [CrossRef] [PubMed]
- Ivashchenko, D.; Rusin, I.; Sychev, D.; Grachev, A. The Frequency of CYP2C9, VKORC1, and CYP4F2 Polymorphisms in Russian patients with high thrombotic risk. Medicina 2013, 49, 81. [Google Scholar] [CrossRef]
- Roco, A.; Nieto, E.; Suárez, M.; Rojo, M.; Bertoglia, M.P.; Verón, G.; Tamayo, F.; Arredondo, A.; Cruz, D.; Muñoz, J.; et al. A Pharmacogenetically Guided Acenocoumarol Dosing Algorithm for Chilean Patients: A Discovery Cohort Study. Front. Pharmacol. 2020, 11, 325. [Google Scholar] [CrossRef] [PubMed]
- Rojo, M.; Roco, A.M.; Suarez, M.; Lavanderos, M.A.; Verón, G.; Bertoglia, M.P.; Arredondo, A.; Nieto, E.; Rubilar, J.C.; Tamayo, F.; et al. Functionally Significant Coumarin-Related Variant Alleles and Time to Therapeutic Range in Chilean Cardiovascular Patients. Clin. Appl. Thromb. Hemost. 2020, 26. [Google Scholar] [CrossRef]
- Takeuchi, M.; Kobayashi, T.; Biss, T.; Kamali, F.; Vear, S.I.; Ho, R.H.; Bajolle, F.; Loriot, M.-A.; Shaw, K.; Carleton, B.C.; et al. CYP2C9, VKORC1, and CYP4F2 polymorphisms and pediatric warfarin maintenance dose: A systematic review and meta-analysis. Pharm. J. 2020, 20, 306–319. [Google Scholar] [CrossRef]
- Sogabe, N.; Tsugawa, N.; Maruyama, R.; Kamao, M.; Kinoshita, H.; Okano, T.; Hosoi, T.; Goseki-Sone, M. Nutritional Effects of γ-Glutamyl Carboxylase Gene Polymorphism on the Correlation between the Vitamin K Status and γ-Carboxylation of Osteocalcin in Young Males. J. Nutr. Sci. Vitaminol. 2007, 53, 419–425. [Google Scholar] [CrossRef][Green Version]
- Dihingia, A.; Ozah, D.; Borah, T.; Kalita, J.; Manna, P. γ-glutamyl-carboxylated Gas6 mediates positive role of vitamin K on lowering hyperglycemia in type 2 diabetes. Ann. N. Y. Acad. Sci. 2020, 1462, 104–117. [Google Scholar] [CrossRef]
- Azuma, K.; Inoue, S. Multiple Modes of Vitamin K Actions in Aging-Related Musculoskeletal Disorders. IJMS 2019, 20, 2844. [Google Scholar] [CrossRef]
- Cozzolino, M.; Mangano, M.; Galassi, A.; Ciceri, P.; Messa, P.; Nigwekar, S. Vitamin K in Chronic Kidney Disease. Nutrients 2019, 11, 168. [Google Scholar] [CrossRef] [PubMed]
- De Vilder, E.; Debacker, J.; Vanakker, O. GGCX-Associated Phenotypes: An Overview in Search of Genotype-Phenotype Correlations. IJMS 2017, 18, 240. [Google Scholar] [CrossRef] [PubMed]
- Pop, T.R.; Vesa, Ş.C.; Trifa, A.P.; Crişan, S.; Buzoianu, A.D. An acenocoumarol dose algorithm based on a South-Eastern European population. Eur. J. Clin. Pharmacol. 2013, 69, 1901–1907. [Google Scholar] [CrossRef]
- Buzoianu, A.D.; Militaru, F.C.; Vesa, Ş.C.; Trifa, A.P.; Crişan, S. The impact of the CYP2C9 and VKORC1 polymorphisms on acenocoumarol dose requirements in a Romanian population. Blood Cells Mol. Dis. 2013, 50, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Groza, I.; Matei, D.; Tanţău, M.; Trifa, A.P.; Crişan, S.; Vesa, Ş.C.; Bocşan, C.; Buzoianu, A.D.; Acalovschi, M. VKORC1-1639 G>A Polymorphism and the Risk of Non-Variceal Upper Gastrointestinal Bleeding. JGLD 2017, 26, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Azarara, M.; Afrasibirad, A.; Farzamikia, N.; Alijani, A.; Sakhinia, E. The effect of GGCX and CYP4F2 gene polymorphisms in genotype-guided dosing of warfarin in patients with a history of cardiac surgery. J. Pharm. Investig. 2017, 47, 349–355. [Google Scholar] [CrossRef]
- Casadei, A.; Floreani, M.; Catalini, R.; Serra, C.; Assanti, A.P.; Conci, P. Sonographic characteristics of carotid artery plaques: Implications for follow-up planning? J. Ultrasound 2012, 15, 151–157. [Google Scholar] [CrossRef]
- Hosseinkhani, Z.; Sadeghalvad, M.; Norooznezhad, F.; Khodarahmi, R.; Fazilati, M.; Mahnam, A.; Fattahi, A.; Mansouri, K. The effect of CYP2C9*2, CYP2C9*3, and VKORC1-1639 G>A polymorphism in patients under warfarin therapy in city of Kermanshah. Res. Pharma Sci. 2018, 13, 377. [Google Scholar] [CrossRef]
- Fodor, D.; Bondor, C.; Albu, A.; Popp, R.; Pop, I.V.; Poanta, L. Relationship between VKORC1 single nucleotide polymorphism 1173C>T, bone mineral density & carotid intima-media thickness. Indian J. Med. Res. 2013, 137, 734–741. [Google Scholar]
- Conforto, A.B.; Leite, C.d.C.; Nomura, C.H.; Bor-Seng-Shu, E.; Santos, R.D. Is there a consistent association between coronary heart disease and ischemic stroke caused by intracranial atherosclerosis? Arq. Neuro-Psiquiatr. 2013, 71, 320–326. [Google Scholar] [CrossRef]
- Hodzic, E. Potential Anti-inflammatory Treatment of Ischaemic Hearth Disease. Med. Arch 2018, 72, 94. [Google Scholar] [CrossRef] [PubMed]
- Schurgers, L.J.; Joosen, I.A.; Laufer, E.M.; Chatrou, M.L.L.; Herfs, M.; Winkens, M.H.M.; Westenfeld, R.; Veulemans, V.; Krueger, T.; Shanahan, C.M.; et al. Vitamin K-Antagonists Accelerate Atherosclerotic Calcification and Induce a Vulnerable Plaque Phenotype. PLoS ONE 2012, 7, e43229. [Google Scholar] [CrossRef] [PubMed]
- Herisson, F.; Heymann, M.-F.; Chétiveaux, M.; Charrier, C.; Battaglia, S.; Pilet, P.; Rouillon, T.; Krempf, M.; Lemarchand, P.; Heymann, D.; et al. Carotid and femoral atherosclerotic plaques show different morphology. Atherosclerosis 2011, 216, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Dubovyk, Y.I.; Harbuzova, V.Y.; Ataman, A.V. G-1639A but Not C1173T VKORC1 Gene Polymorphism Is Related to Ischemic Stroke and Its Various Risk Factors in Ukrainian Population. BioMed Res. Int. 2016, 2016, 1–10. [Google Scholar] [CrossRef] [PubMed]
Variable | Value (Percent) | |
---|---|---|
Age (years) | 68 (55, 74) | |
Age | ≥65 | 41 (53.95%) |
<65 | 35 (46.05%) | |
Gender | Male | 36 (47.37%) |
Female | 40 (52.63%) | |
Area | Urban | 43 (56.58%) |
Rural | 33 (43.42%) | |
Ischemic heart disease | Yes | 12 (15.79%) |
No | 64 (84.21%) | |
Arterial hypertension | Yes | 51 (67.11%) |
No | 25 (32.89%) | |
Atrial fibrillation | Yes | 16 (21.05%) |
No | 60 (78.95%) | |
Heart failure | Yes | 19 (25.00%) |
No | 57 (75.00%) | |
Diabetes mellitus | Yes | 23 (30.26%) |
No | 53 (69.74%) | |
Obesity | Yes | 24 (31.58%) |
No | 52 (68.42%) | |
Dyslipidemia | Yes | 61 (80.26%) |
No | 15 (19.74%) | |
Anticoagulant use | Yes | 59 (77.63%) |
No | 17 (22.37%) | |
VKORC1 (G-1639A) polymorphism | w/w | 28 (36.84%) |
m/w | 36 (47.37%) | |
m/m | 12 (15.79%) | |
CYP4F2 (1347 C>T) polymorphism | w/w | 37 (48.68%) |
m/w | 33 (43.42%) | |
m/m | 6 (7.89%) | |
GGCX (12970 C>G) polymorphism | w/w | 67 (88.16%) |
m/w | 9 (11.84%) | |
m/m | 0 (0.00%) | |
Carotidian plaque at 5 years | Yes | 15 (19.74%) |
No | 61 (80.26%) | |
Femoral plaque at 5 years | Yes | 14 (18.42%) |
No | 62 (81.58%) | |
Smoking | Yes | 12 (15.79%) |
No | 64 (84.21%) |
Variable | Carotidian Plaque | Femoral Plaque | Any Plaque | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OR | 95% Lower CI | 95% Upper CI | p | OR | 95% Lower CI | 95% Upper CI | p | OR | 95% Lower CI | 95% Upper CI | p | |
Age ≥ 65 years | 0.695 | 0.218 | 2.171 | 0.529 | 0.579 | 0.172 | 1.860 | 0.359 | 0.546 | 0.199 | 1.460 | 0.23 |
Male gender | 0.689 | 0.208 | 2.147 | 0.525 | 1.138 | 0.35 | 3.700 | 0.827 | 0.799 | 0.293 | 2.133 | 0.655 |
Urban area | 0.849 | 0.271 | 2.705 | 0.778 | 1.029 | 0.32 | 3.458 | 0.962 | 0.997 | 0.372 | 2.719 | 0.995 |
Ischemic heart disease | 9.800 | 2.563 | 41.082 | 0.00106 | 1.606 | 0.319 | 6.461 | 0.525 | 4.200 | 1.182 | 16.025 | 0.0279 |
Arterial hypertension | 1.444 | 0.433 | 5.711 | 0.568 | 2.02 | 0.558 | 9.610 | 0.319 | 1.583 | 0.552 | 5.000 | 0.407 |
Atrial fibrillation | 0.516 | 0.075 | 2.178 | 0.419 | 1.028 | 0.21 | 3.898 | 0.97 | 0.719 | 0.182 | 2.380 | 0.607 |
Heart failure | 0.398 | 0.058 | 1.647 | 0.256 | 0.784 | 0.162 | 2.903 | 0.733 | 0.533 | 0.137 | 1.711 | 0.318 |
Diabetes mellitus | 0.804 | 0.202 | 2.699 | 0.735 | 0.905 | 0.226 | 3.094 | 0.879 | 1.012 | 0.335 | 2.880 | 0.983 |
Obesity | 3.214 | 1.003 | 10.607 | 0.0493 | 2.647 | 0.798 | 8.870 | 0.108 | 3.727 | 1.329 | 10.819 | 0.0132 |
Dyslipidemia | 0.605 | 0.169 | 2.496 | 0.455 | 3.792 | 0.662 | 71.862 | 0.218 | 1.244 | 0.371 | 4.942 | 0.735 |
Anticoagulant use | 0.49 | 0.144 | 1.810 | 0.261 | 4.522 | 0.799 | 85.385 | 0.161 | 0.742 | 0.241 | 2.445 | 0.609 |
VKORC1 (G-1639A) polymorphism | 2.778 | 0.785 | 13.111 | 0.142 | 0.733 | 0.226 | 2.480 | 0.606 | 1.500 | 0.54 | 4.470 | 0.447 |
CYP4F2 (1347 C>T) polymorphism | 0.566 | 0.171 | 1.762 | 0.331 | 7.778 | 1.914 | 52.748 | 0.0109 | 1.742 | 0.651 | 4.849 | 0.275 |
GGCX (12970 C>G) polymorphism | 0.473 | 0.024 | 2.905 | 0.497 | NA | NA | NA | NA | 0.256 | 0.013 | 1.521 | 0.212 |
β blocker | 1.023 | 0.255 | 3.488 | 0.973 | 1.150 | 0.284 | 3.992 | 0.832 | 0.983 | 0.305 | 2.916 | 0.976 |
ACE inhibitor or ARB | 1.181 | 0.378 | 3.759 | 0.773 | 1.000 | 0.308 | 3.248 | 1.000 | 0.883 | 0.328 | 2.359 | 0.803 |
Calcium channel blocker | 2.462 | 0.714 | 8.172 | 0.142 | 1.905 | 0.516 | 6.503 | 0.310 | 2.036 | 0.675 | 6.044 | 0.199 |
Thiazide diuretic | 0.952 | 0.268 | 3.059 | 0.936 | 1.085 | 0.301 | 3.565 | 0.896 | 1.037 | 0.359 | 2.869 | 0.945 |
Other antihypertensive medication | 2.192 | 0.283 | 12.554 | 0.393 | 0.877 | 0.0438 | 6.075 | 0.908 | 1.167 | 0.153 | 6.467 | 0.864 |
Hypolipemiant medication | 1.102 | 0.346 | 3.448 | 0.867 | 0.911 | 0.271 | 2.928 | 0.876 | 1.196 | 0.444 | 3.211 | 0.721 |
Insulin | 4.833 | 0.811 | 29.047 | 0.072 | 0.877 | 0.044 | 6.075 | 0.908 | 2.500 | 0.431 | 14.526 | 0.286 |
Oral antidiabetic medication | 1.653 | 0.401 | 5.926 | 0.455 | 1.136 | 0.231 | 4.355 | 0.860 | 1.725 | 0.511 | 5.553 | 0.363 |
Smoking | 2.409 | 0.564 | 9.200 | 0.207 | 1.606 | 0.319 | 6.461 | 0.525 | 2.765 | 0.770 | 10.017 | 0.114 |
Variable | Carotidian Plaque | Any Plaque | ||||||
---|---|---|---|---|---|---|---|---|
OR | 95% Lower CI | 95% Upper CI | p | OR | 95% Lower CI | 95% Upper CI | p | |
Ischemic heart disease | 11.883 | 2.847 | 58.525 | 0.00106 | 4.749 | 1.246 | 19.740 | 0.0245 |
Obesity | 4.114 | 1.109 | 17.347 | 0.0391 | 4.076 | 1.388 | 12.654 | 0.0119 |
Variable 1 | Variable 2 | Carotidian Plaque | Femoral Plaque | Any Plaque | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OR | 95% Lower CI | 95% Upper CI | p | OR | 95% Lower CI | 95% Upper CI | p | OR | 95% Lower CI | 95% Upper CI | p | ||
Ischemic heart disease | CYP4F2 | 21.818 | 2.901 | 449.243 | 0.00815 | 8.181 | 1.225 | 67.878 | 0.0302 | 10.947 | 1.504 | 221.534 | 0.0374 |
Ischemic heart disease | VKORC1 | 12.889 | 2.889 | 70.509 | 0.00126 | 1.210 | 0.180 | 6.274 | 0.755 | 5.882 | 1.395 | 30.368 | 0.0199 |
Ischemic heart disease | CYP4F2 or VKORC1 | 16.917 | 3.904 | 92.243 | 0.000323 | 2.143 | 0.414 | 9.123 | 0.319 | 7.292 | 1.804 | 37.034 | 0.00786 |
Femoral plaque | CYP4F2 | 2.409 | 0.564 | 9.200 | 0.207 | NA | NA | NA | NA | NA | NA | NA | NA |
Femoral plaque | VKORC1 | 5.182 | 1.083 | 25.148 | 0.0349 | NA | NA | NA | NA | NA | NA | NA | NA |
Femoral plaque | CYP4F2 or VKORC1 | 3.313 | 0.857 | 12.217 | 0.072 | NA | NA | NA | NA | NA | NA | NA | NA |
Obesity | CYP4F2 | 2.101 | 0.499 | 7.818 | 0.279 | 5.893 | 1.561 | 22.693 | 0.00838 | 5.120 | 1.489 | 19.280 | 0.011 |
Obesity | VKORC1 | 2.550 | 0.678 | 8.971 | 0.148 | 1.136 | 0.231 | 4.355 | 0.860 | 2.461 | 0.754 | 7.979 | 0.129 |
Obesity | CYP4F2 or VKORC1 | 3.231 | 0.973 | 10.736 | 0.052 | 2.571 | 0.739 | 8.701 | 0.127 | 4.481 | 1.529 | 13.719 | 0.00688 |
Anticoagulant use | CYP4F2 | 0.589 | 0.167 | 1.867 | 0.382 | 6.667 | 1.855 | 31.838 | 0.00699 | 1.662 | 0.620 | 4.518 | 0.312 |
Anticoagulant use | VKORC1 | 0.966 | 0.303 | 3.016 | 0.952 | 1.138 | 0.350 | 3.700 | 0.827 | 0.799 | 0.293 | 2.133 | 0.655 |
Anticoagulant use | CYP4F2 or VKORC1 | 0.846 | 0.268 | 2.817 | 0.777 | 4.333 | 1.063 | 29.387 | 0.069 | 1.500 | 0.540 | 4.470 | 0.447 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vesa, S.C.; Vlaicu, S.I.; Vacaras, V.; Crisan, S.; Sabin, O.; Pasca, S.; Trifa, A.P.; Rusz-Fogarasi, T.; Sava, M.; Buzoianu, A.D. CYP4F2 and VKORC1 Polymorphisms Amplify the Risk of Carotid Plaque Formation. Genes 2020, 11, 822. https://doi.org/10.3390/genes11070822
Vesa SC, Vlaicu SI, Vacaras V, Crisan S, Sabin O, Pasca S, Trifa AP, Rusz-Fogarasi T, Sava M, Buzoianu AD. CYP4F2 and VKORC1 Polymorphisms Amplify the Risk of Carotid Plaque Formation. Genes. 2020; 11(7):822. https://doi.org/10.3390/genes11070822
Chicago/Turabian StyleVesa, Stefan Cristian, Sonia Irina Vlaicu, Vitalie Vacaras, Sorin Crisan, Octavia Sabin, Sergiu Pasca, Adrian Pavel Trifa, Tamas Rusz-Fogarasi, Madalina Sava, and Anca Dana Buzoianu. 2020. "CYP4F2 and VKORC1 Polymorphisms Amplify the Risk of Carotid Plaque Formation" Genes 11, no. 7: 822. https://doi.org/10.3390/genes11070822
APA StyleVesa, S. C., Vlaicu, S. I., Vacaras, V., Crisan, S., Sabin, O., Pasca, S., Trifa, A. P., Rusz-Fogarasi, T., Sava, M., & Buzoianu, A. D. (2020). CYP4F2 and VKORC1 Polymorphisms Amplify the Risk of Carotid Plaque Formation. Genes, 11(7), 822. https://doi.org/10.3390/genes11070822