Continuum Compressive Damage Modelling in Composites Using Genetic Algorithms and Nonlocal Averaging
Abstract
:1. Introduction
2. Genetic Algorithm for Parameter Calibration
2.1. Continuum Damage Model CODAM2
2.2. Finite Element Model
2.3. Genetic Algorithms
3. Validation: Open-Hole Compression Tests
4. Results and Discussion
4.1. Identified Input Parameters
4.2. Mesh Size Sensitivity
4.3. Mesh Orientation Sensitivity
4.4. Size Effects
4.5. Challenges and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- de Borst, R. Fracture and damage in quasi-brittle materials: A comparison of approaches. Theor. Appl. Fract. Mech. 2022, 122, 103652. [Google Scholar] [CrossRef]
- Turon, A.; Dávila, C.; Camanho, P.; Costa, J. An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng. Fract. Mech. 2007, 74, 1665–1682. [Google Scholar] [CrossRef]
- Li, D.H.; Yun, Z.X. Thermo-mechanical progressive analysis on multiple delaminations in composite laminates. Contin. Mech. Thermodyn. 2022, 34, 341–366. [Google Scholar] [CrossRef]
- Moës, N.; Dolbow, J.; Belytschko, T. A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 1999, 46, 131–150. [Google Scholar] [CrossRef]
- Hansbo, A.; Hansbo, P. A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput. Methods Appl. Mech. Eng. 2004, 193, 3523–3540. [Google Scholar] [CrossRef]
- Reiner, J. A computational investigation of failure modes in hybrid titanium composite laminates. Ph.D. Thesis, University of Queensland, School of Mechanical and Mining Engineering, Brisbane, Australia, 2016. [Google Scholar]
- Chen, B.; Pinho, S.; De Carvalho, N.; Baiz, P.; Tay, T. A floating node method for the modelling of discontinuities in composites. Eng. Fract. Mech. 2014, 127, 104–134. [Google Scholar] [CrossRef]
- Reiner, J.; Vaziri, R. Structural analysis of composites with finite element codes: An overview of commonly used computational methods. In Comprehensive Composite Materials II; Beaumont, P., Zweben, C., Eds.; Academic Press: Oxford, UK, 2017; Volume 8, pp. 61–84. [Google Scholar]
- Reiner, J.; Feser, T.; Schueler, D.; Waimer, M.; Vaziri, R. Comparison of two progressive damage models for studying the notched behavior of composite laminates under tension. Compos. Struct. 2019, 207, 385–396. [Google Scholar] [CrossRef]
- Reiner, J.; Zobeiry, N.; Vaziri, R. A stacked sublaminate-based damage-plasticity model for simulating progressive damage in composite laminates under impact loading. Thin-Walled Struct. 2020, 156, 107009. [Google Scholar] [CrossRef]
- Reiner, J.; Zobeiry, N.; Vaziri, R. Efficient finite element simulation of compression after impact behaviour in quasi-isotropic composite laminates. Compos. Commun. 2021, 28, 100967. [Google Scholar] [CrossRef]
- Gomez, C.; Dunn, M.; Veidt, M.; Reiner, J. Finite element simulation of fiber reinforced composites under bi-axial loading. Int. J. Comput. Methods 2024, 21, 2241004. [Google Scholar] [CrossRef]
- Furtado, C.; Pereira, L.F.; Tavares, R.P.; Salgado, M.; Otero, F.; Catalanotti, G.; Arteiro, A.; Bessa, M.A.; Camanho, P.P. A methodology to generate design allowables of composite laminates using machine learning. Int. J. Solids Struct. 2021, 233, 111095. [Google Scholar] [CrossRef]
- Reiner, J. Higher-order sensitivity analyses to understand the role of fe input parameters on the simulation of composites in progressive fracture tests. Compos. Struct. 2025, 351, 118585. [Google Scholar] [CrossRef]
- Reiner, J. A multi-analysis framework for uncertainty quantification and data-driven simulation of design allowables in laminated composites. Compos. Sci. Technol. 2025, 261, 111030. [Google Scholar] [CrossRef]
- Reiner, J.; Vaziri, R.; Zobeiry, N. Machine learning assisted characterisation and simulation of compressive damage in composite laminates. Compos. Struct. 2021, 273, 114290. [Google Scholar] [CrossRef]
- de Borst, R. Challenges in computational materials science: Multiple scales, multi-physics and evolving discontinuities. Comput. Mater. Sci. 2008, 43, 1–15. [Google Scholar] [CrossRef]
- Zhang, Y.; Bažant, Z.P. Smooth Crack Band Model—A Computational Paragon Based on Unorthodox Continuum Homogenization. J. Appl. Mech. 2023, 90, 041007. [Google Scholar] [CrossRef]
- Laš, V.; Zemčík, R. Progressive damage of unidirectional composite panels. J. Compos. Mater. 2008, 42, 25–44. [Google Scholar] [CrossRef]
- Pijaudier-Cabot, G.; Bažant, Z. Nonlocal damage theory. J. Eng. Mech. ASCE 1987, 113, 1512–1533. [Google Scholar] [CrossRef]
- Jirásek, M. Nonlocal models for damage and fracture: Comparison of approaches. Int. J. Solids Struct. 1998, 35, 4133–4145. [Google Scholar] [CrossRef]
- Peerlings, R.H.; de Borst, R.; Brekelmans, W.M.; de Vree, J. Gradient enhanced damage for quasi-brittle materials. Int. J. Numer. Methods Eng. 1996, 39, 3391–3403. [Google Scholar] [CrossRef]
- Patil, R.; Mishra, B.; Singh, I.; Bui, T. A new multiscale phase field method to simulate failure in composites. Adv. Eng. Softw. 2018, 126, 9–33. [Google Scholar] [CrossRef]
- Zhang, P.; Hu, X.; Bui, T.Q.; Yao, W. Phase field modeling of fracture in fiber reinforced composite laminate. Int. J. Mech. Sci. 2019, 161–162, 105008. [Google Scholar] [CrossRef]
- Fu, Y.-F.; Reiner, J. Deviation-based calibration for progressive damage analysis in pultruded glass fiber reinforced composites. Int. J. Damage Mech. 2022, 31, 1115–1138. [Google Scholar] [CrossRef]
- Reiner, J. Finite element analysis combined with machine learning to simulate open-hole strength and impact tests of fibre-reinforced composites. Int. J. Comput. Methods 2024, 21, 2241005. [Google Scholar] [CrossRef]
- Zobeiry, N.; Reiner, J.; Vaziri, R. Theory-Guided Machine Learning for Damage Characterization of Composites. Compos. Struct. 2020, 246, 112407. [Google Scholar]
- Fu, Y.-F.; Reiner, J. Objective and automated calibration of progressive damage models for finite element simulation of fiber reinforced composites. Compos. Struct. 2023, 307, 116618. [Google Scholar] [CrossRef]
- Forghani, A.; Poursartip, A.; Vaziri, R. An orthotropic non-local approach to modeling intra-laminar damage progression in laminated composites. Int. J. Solids Struct. 2019, 180–181, 160–175. [Google Scholar] [CrossRef]
- Bažant, Z.P.; Jirásek, M. Nonlocal integral formulations of plasticity and damage: Survey of progress. J. Eng. Mech. 2002, 128, 1119–1149. [Google Scholar] [CrossRef]
- Forghani, A.; Zobeiry, N.; Poursartip, A.; Vaziri, R. A structural modelling framework for prediction of damage development and failure of composite laminates. J. Compos. Mater. 2013, 47, 2553–2573. [Google Scholar] [CrossRef]
- Reiner, J.; Xu, X.; Zobeiry, N.; Vaziri, R.; Hallett, S.R.; Wisnom, M.R. Virtual characterization of nonlocal continuum damage model parameters using a high fidelity finite element model. Compos. Struct. 2021, 256, 113073. [Google Scholar] [CrossRef]
- Zobeiry, N.; Vaziri, R.; Poursartip, A. Characterization of strain-softening behavior and failure mechanisms of composites under tension and compression. Compos. Part A Appl. Sci. Manuf. 2015, 68, 29–41. [Google Scholar] [CrossRef]
- Zobeiry, N.; Forghani, A.; McGregor, C.; McClennan, S.; Vaziri, R.; Poursartip, A. Effective calibration and validation of a nonlocal continuum damage model for laminated composites. Compos. Struct. 2017, 173, 188–195. [Google Scholar] [CrossRef]
- Rev, T.; Nachman, T.; Kap, I.; Shor, O.; Shemesh, N.; Mollenhauer, D.; Rittel, D. Architecture effects for mode i trans-laminar fracture in over-height compact tension tests: Damage propagation and fracture response. Compos. Part A Appl. Sci. Manuf. 2022, 159, 106987. [Google Scholar] [CrossRef]
- Reiner, J.; Chen, C.; Vaziri, R.; Poursartip, A. Combining digital image correlation and phased-array ultrasonics for non-destructive testing of translaminar fracture in composite laminates. Compos. Part A Appl. Sci. Manuf. 2022, 161, 107060. [Google Scholar] [CrossRef]
- Kaddour, A.; Hinton, M.; Smith, P.; Li, S. Mechanical properties and details of composite laminates for the test cases used in the third world-wide failure exercise. J. Compos. Mater. 2013, 47, 2427–2442. [Google Scholar] [CrossRef]
- Lee, J.; Soutis, C. Measuring the notched compressive strength of composite laminates: Specimen size effects. Compos. Sci. Technol. 2008, 68, 2359–2366. [Google Scholar] [CrossRef]
- Bažant, Z.P.; Oh, B.H. Crack band theory for fracture of concrete. Matér. Constr. 1983, 16, 155–177. [Google Scholar] [CrossRef]
- Reiner, J. A practical approach for the non-local simulation of progressive damage in quasi-isotropic fibre-reinforced composite laminates. Compos. Struct. 2021, 265, 113761. [Google Scholar] [CrossRef]
Elastic input parameters [28] | |||||
(GPa) | (GPa) | (GPa) | (-) | ||
154.6 | 8.96 | 4.69 | 0.31 | ||
Strength/damage input parameters | |||||
(-) | (-) | (-) | (-) | ||
Local | 0.00676 | 0.143 | 0.017 | 0.0194 | |
Nonlocal | 0.006 | 0.0872 | 0.00114 | 0.0171 |
Medium | Fine | Very Fine | ||
---|---|---|---|---|
Local simulations | Scaled | 307 [+2.3%] | 327 [+9.0%] | 339 [+13.0%] |
Unscaled | 278 [−7.3%] | 267 [−11.0%] | ||
Nonlocal simulations | 281 [−6.3%] | 278 [−7.3%] | 276 [−8.0%] |
15° | 30° | 45° | 60° | |
Local simulations | 323 [+7.7%] | 319 [+6.3%] | 300 [± 0.0%] | 325 [+8.3%] |
Nonlocal simulations | 279 [−7.0%] | 280 [−6.7%] | 280 [−6.7%] | 282 [−6.0%] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reiner, J.; Fu, Y.-F. Continuum Compressive Damage Modelling in Composites Using Genetic Algorithms and Nonlocal Averaging. Polymers 2025, 17, 902. https://doi.org/10.3390/polym17070902
Reiner J, Fu Y-F. Continuum Compressive Damage Modelling in Composites Using Genetic Algorithms and Nonlocal Averaging. Polymers. 2025; 17(7):902. https://doi.org/10.3390/polym17070902
Chicago/Turabian StyleReiner, Johannes, and Yun-Fei Fu. 2025. "Continuum Compressive Damage Modelling in Composites Using Genetic Algorithms and Nonlocal Averaging" Polymers 17, no. 7: 902. https://doi.org/10.3390/polym17070902
APA StyleReiner, J., & Fu, Y.-F. (2025). Continuum Compressive Damage Modelling in Composites Using Genetic Algorithms and Nonlocal Averaging. Polymers, 17(7), 902. https://doi.org/10.3390/polym17070902