Out-of-Plane Mechanical Behavior of 3D-Printed Polymeric Circular-Vertex-Based Hierarchical Hexagonal Honeycombs
Abstract
:1. Introduction
2. Geometric Description of CHHHs
3. Experimental Test
3.1. Specimen Fabrication
3.2. Quasi-Static Out-of-Plane Compression Tests
4. Results and Discussion
4.1. Deformation Modes
4.2. Mechanical Properties
4.3. Energy Absorption Characteristics
5. Conclusions
- (1)
- Compared to a regular hexagonal honeycomb (RHH), the CHHH exhibited a superior mechanical performance, including higher damage resistance and strength, a more stable stress response, and enhanced energy absorption, primarily due to the introduction of circular-vertex-based hierarchy.
- (2)
- The hierarchical parameter R has a significant effect on the deformation modes of CHHHs. The results indicated that the deformation processes of CHHHs with different R were accompanied by cell wall fractures, which led to catastrophic failure in CHHHs with small R. However, as R increased, the deformation and stress response of CHHHs became more stable.
- (3)
- With the mass held constant, Young’s modulus of the CHHH remained nearly unchanged as R increased. In contrast, both the compressive strength and specific energy absorption (SEA) initially increased and then decreased, reaching their maximum values at . Notably, the maximum compressive strength and SEA of the CHHH were, respectively, 14.4% and 678.1% higher than those of the RHH.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tao, Y.; Li, W.; Wei, K.; Duan, S.; Wen, W.; Chen, L.; Pei, Y.; Fang, D. Mechanical properties and energy absorption of 3D printed square hierarchical honeycombs under in-plane axial compression. Compos. Part B Eng. 2019, 176, 107219. [Google Scholar] [CrossRef]
- Papka, S.D.; Kyriakides, S. Experiments and full-scale numerical simulations of in-plane crushing of a honeycomb. Acta Mater. 1998, 46, 2765–2776. [Google Scholar] [CrossRef]
- Ruan, D.; Lu, G.X.; Wang, B.; Yu, T.X. In-plane dynamic crushing of honeycombs—A finite element study. Int. J. Impact Eng. 2003, 28, 161–182. [Google Scholar] [CrossRef]
- Hu, L.L.; You, F.F.; Yu, T.X. Effect of cell-wall angle on the in-plane crushing behaviour of hexagonal honeycombs. Mater. Des. 2013, 46, 511–523. [Google Scholar] [CrossRef]
- Xu, S.Q.; Beynon, J.H.; Ruan, D.; Lu, G.X. Experimental study of the out-of-plane dynamic compression of hexagonal honeycombs. Compos. Struct. 2012, 94, 2326–2336. [Google Scholar] [CrossRef]
- Tao, Y.; Chen, M.; Chen, H.; Pei, Y.; Fang, D. Strain rate effect on the out-of-plane dynamic compressive behavior of metallic honeycombs: Experiment and theory. Compos. Struct. 2015, 132, 644–651. [Google Scholar] [CrossRef]
- Qin, Q.; Xia, Y.; Li, J.; Chen, S.; Zhang, W.; Li, K.; Zhang, J. On dynamic crushing behavior of honeycomb-like hierarchical structures with perforated walls: Experimental and numerical investigations. Int. J. Impact Eng. 2020, 145, 103674. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, H.; Wen, Z. Experimental and numerical studies on the crush resistance of aluminum honeycombs with various cell configurations. Int. J. Impact Eng. 2014, 66, 48–59. [Google Scholar] [CrossRef]
- Yin, H.; Zhang, W.; Zhu, L.; Meng, F.; Liu, J.; Wen, G. Review on lattice structures for energy absorption properties. Compos. Struct. 2023, 304, 116397. [Google Scholar] [CrossRef]
- Zhang, J.; Ashby, M. The out-of-plane properties of honeycombs. Int. J. Mech. Sci. 1992, 34, 475–489. [Google Scholar] [CrossRef]
- Harish, A.; Alsaleh, N.A.; Ahmadein, M.; Elfar, A.A.; Djuansjah, J.; Hassanin, H.; El-Sayed, M.A.; Essa, K. Designing lightweight 3D-printable bioinspired structures for enhanced compression and energy absorption properties. Polymers 2024, 16, 729. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ma, Y.; Yin, Q.; Pan, F.; Cui, C.; Zhang, Z.; Liu, B. Advances in mechanics of hierarchical composite materials. Compos. Sci. Technol. 2021, 214, 108970. [Google Scholar] [CrossRef]
- San Ha, N.; Lu, G. A review of recent research on bio-inspired structures and materials for energy absorption applications. Compos. Part B Eng. 2020, 181, 107496. [Google Scholar]
- Huang, W.; Zhang, Y.; Xu, Y.; Xu, X.; Wang, J. Out-of-plane mechanical design of bi-directional hierarchical honeycombs. Compos. Part B Eng. 2021, 221, 109012. [Google Scholar] [CrossRef]
- Qiao, J.; Chen, C. In-plane crushing of a hierarchical honeycomb. Int. J. Solids Struct. 2016, 85–86, 57–66. [Google Scholar] [CrossRef]
- Chen, Y.; Li, T.; Jia, Z.; Scarpa, F.; Yao, C.W.; Wang, L. 3D printed hierarchical honeycombs with shape integrity under large compressive deformations. Mater. Des. 2018, 137, 226–234. [Google Scholar] [CrossRef]
- Yin, H.; Huang, X.; Scarpa, F.; Wen, G.; Chen, Y.; Zhang, C. In-plane crashworthiness of bio-inspired hierarchical honeycombs. Compos. Struct. 2018, 192, 516–527. [Google Scholar] [CrossRef]
- Chen, Q.; Pugno, N.M. In-plane elastic buckling of hierarchical honeycomb materials. Eur. J. Mech. A Solids 2012, 34, 120–129. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, B.; Pugno, N.; Wang, B.; Ding, Q. In-plane stiffness of the anisotropic multifunctional hierarchical honeycombs. Compos. Struct. 2015, 131, 616–624. [Google Scholar] [CrossRef]
- Fang, J.; Sun, G.; Qiu, N.; Pang, T.; Li, S.; Li, Q. On hierarchical honeycombs under out-of-plane crushing. Int. J. Solids Struct. 2018, 135, 1–13. [Google Scholar] [CrossRef]
- Fan, H.; Luo, Y.; Yang, F.; Li, W. Approaching perfect energy absorption through structural hierarchy. Int. J. Eng. Sci. 2018, 130, 12–32. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, Y.; Su, L.; Liu, B.; Li, K.; Zhang, F. A bi-factorial hierarchical honeycomb with promising crushing resistance. Int. J. Mech. Sci. 2022, 229, 107511. [Google Scholar] [CrossRef]
- Ajdari, A.; Jahromi, B.H.; Papadopoulos, J.; Nayeb-Hashemi, H.; Vaziri, A. Hierarchical honeycombs with tailorable properties. Int. J. Solids Struct. 2012, 49, 1413–1419. [Google Scholar] [CrossRef]
- Tao, Y.; Li, W.; Cheng, T.; Wang, Z.; Chen, L.; Pei, Y.; Fang, D. Out-of-plane dynamic crushing behavior of joint-based hierarchical honeycombs. J. Sandw. Struct. Mater. 2021, 23, 2832–2855. [Google Scholar] [CrossRef]
- Hua, L.; Ding, L.; Wang, X.; Zeng, S.; Huang, H.; Liang, X.; Wu, Z. Out-of-plane energy absorption of 3D printed basalt-fiber-reinforced hierarchical honeycomb composite. Int. J. Mech. Sci. 2025, 285, 109784. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Z.; Shi, C.; Zhou, W. Mechanical performance of vertex-based hierarchical vs square thin-walled multi-cell structure. Thin-Walled Struct. 2019, 134, 102–110. [Google Scholar] [CrossRef]
- Chen, Q.; Pugno, N.; Zhao, K.; Li, Z. Mechanical properties of a hollow-cylindrical-joint honeycomb. Compos. Struct. 2014, 109, 68–74. [Google Scholar] [CrossRef]
- Wu, Y.; Fang, J.; He, Y.; Li, W. Crashworthiness of hierarchical circular-joint quadrangular honeycombs. Thin-Walled Struct. 2018, 133, 180–191. [Google Scholar] [CrossRef]
- Luo, Y.; Fan, H. Investigation of lateral crushing behaviors of hierarchical quadrangular thin-walled tubular structures. Thin-Walled Struct. 2018, 125, 100–106. [Google Scholar] [CrossRef]
- Wang, Z.; Deng, J.; Liu, K.; Tao, Y. Hybrid hierarchical square honeycomb with widely tailorable effective in-plane elastic modulus. Thin-Walled Struct. 2022, 171, 108816. [Google Scholar] [CrossRef]
- Wang, Z.; Deng, J.; He, K.; Tao, Y. Out-of-plane crushing behavior of hybrid hierarchical square honeycombs. Thin-Walled Struct. 2022, 181, 110051. [Google Scholar] [CrossRef]
- Yang, J.; Yang, D.; Tao, Y.; Shi, J. Machine learning assisted prediction and analysis of in-plane elastic modulus of hybrid hierarchical square honeycombs. Thin-Walled Struct. 2024, 198, 111736. [Google Scholar] [CrossRef]
- Oftadeh, R.; Haghpanah, B.; Vella, D.; Boudaoud, A.; Vaziri, A. Optimal fractal-like hierarchical honeycombs. Phys. Rev. Lett. 2014, 113, 104301. [Google Scholar] [CrossRef] [PubMed]
- Oftadeh, R.; Haghpanah, B.; Papadopoulos, J.; Hamouda, A.M.S.; Nayeb-Hashemi, H.; Vaziri, A. Mechanics of anisotropic hierarchical honeycombs. Int. J. Mech. Sci. 2014, 81, 126–136. [Google Scholar] [CrossRef]
- Tao, Y.; Zhao, R.; Shi, J.; Zhou, D.; Han, Y. In-plane elastic properties of 3D-printed graded hierarchical hexagonal honeycombs. Polymers 2024, 16, 859. [Google Scholar] [CrossRef]
- Mousanezhad, D.; Babaee, S.; Ebrahimi, H.; Ghosh, R.; Hamouda, A.S.; Bertoldi, K.; Vaziri, A. Hierarchical honeycomb auxetic metamaterials. Sci. Rep. 2015, 5, 18306. [Google Scholar] [CrossRef]
- He, Q.; Feng, J.; Zhou, H. A numerical study on the in-plane dynamic crushing of self-similar hierarchical honeycombs. Mech. Mater. 2019, 138, 103151. [Google Scholar] [CrossRef]
- Haghpanah, B.; Oftadeh, R.; Papadopoulos, J.; Vaziri, A. Self-similar hierarchical honeycombs. Proc. R. Soc. A-Math. Phys. Eng. Sci. 2013, 469, 20130022. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, X.; Okabe, Y.; Saito, K.; Guo, Z.; Pan, L. The deformation mode and strengthening mechanism of compression in the beetle elytron plate. Mater. Des. 2017, 131, 481–486. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, J.; Chen, J.; Okabe, Y.; Pan, L.; Xu, M. The beetle elytron plate: A lightweight, high-strength and buffering functional-structural bionic material. Sci. Rep. 2017, 7, 4440. [Google Scholar] [CrossRef]
- Sun, G.; Jiang, H.; Fang, J.; Li, G.; Li, Q. Crashworthiness of vertex based hierarchical honeycombs in out-of-plane impact. Mater. Des. 2016, 110, 705–719. [Google Scholar] [CrossRef]
- An, L.Q.; Zhang, X.C.; Wu, H.X.; Jiang, W.Q. In-plane dynamic crushing and energy absorption capacity of self-similar hierarchical honeycombs. Adv. Mech. Eng. 2017, 9, 1687814017703896. [Google Scholar] [CrossRef]
- Zhang, D.; Fei, Q.; Jiang, D.; Li, Y. Numerical and analytical investigation on crushing of fractal-like honeycombs with self-similar hierarchy. Compos. Struct. 2018, 192, 289–299. [Google Scholar] [CrossRef]
- Hu, D.; Wang, Y.; Song, B.; Dang, L.; Zhang, Z. Energy-absorption characteristics of a bionic honeycomb tubular nested structure inspired by bamboo under axial crushing. Compos. Part B Eng. 2019, 162, 21–32. [Google Scholar] [CrossRef]
- GB/T 1453-2022; Test Method for Flatwise Compression Properties of Sandwich Constructions or Cores. China Standards Press: Beijing, China, 2022.
- Gibson, L.J.; Ashby, M.F. Cellular Solids: Structure and Properties; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Wen, W.; Lei, M.; Tao, Y. The effect of material distribution on the out-of-plane elastic properties of hierarchical diamond honeycombs. Eng. Struct. 2022, 272, 115000. [Google Scholar] [CrossRef]
- Chen, Q.; Shi, Q.; Signetti, S.; Sun, F.; Li, Z.; Zhu, F.; He, S.; Pugno, N.M. Plastic collapse of cylindrical shell-plate periodic honeycombs under uniaxial compression: Experimental and numerical analyses. Int. J. Mech. Sci. 2016, 111–112, 125–133. [Google Scholar] [CrossRef]
- Li, Q.M.; Magkiriadis, I.; Harrigan, J.J. Compressive strain at the onset of densification of cellular solids. J. Cell. Plast. 2006, 42, 371–392. [Google Scholar] [CrossRef]
R | r (mm) | t1 (mm) | Lx (mm) | Ly (mm) | b (mm) | |
---|---|---|---|---|---|---|
0.1053 | 0 | 0 | 0.7500 | 76.21 | 72 | 40 |
0.1053 | 0.1 | 0.8 | 0.6408 | 76.21 | 72 | 40 |
0.1053 | 0.2 | 1.6 | 0.5321 | 76.21 | 72 | 40 |
0.1053 | 0.3 | 2.4 | 0.4562 | 76.21 | 72 | 40 |
0.1053 | 0.4 | 3.2 | 0.3997 | 76.21 | 72 | 40 |
Density | Young’s Modulus | Poisson’s Ratio | Yield Strength | Ultimate Strength |
---|---|---|---|---|
1180 kg/m3 | 2.18 GPa | 0.33 | 31.54 MPa | 37.98 MPa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, Y.; Chen, X.; Lu, S. Out-of-Plane Mechanical Behavior of 3D-Printed Polymeric Circular-Vertex-Based Hierarchical Hexagonal Honeycombs. Polymers 2025, 17, 862. https://doi.org/10.3390/polym17070862
Tao Y, Chen X, Lu S. Out-of-Plane Mechanical Behavior of 3D-Printed Polymeric Circular-Vertex-Based Hierarchical Hexagonal Honeycombs. Polymers. 2025; 17(7):862. https://doi.org/10.3390/polym17070862
Chicago/Turabian StyleTao, Yong, Xiyu Chen, and Siping Lu. 2025. "Out-of-Plane Mechanical Behavior of 3D-Printed Polymeric Circular-Vertex-Based Hierarchical Hexagonal Honeycombs" Polymers 17, no. 7: 862. https://doi.org/10.3390/polym17070862
APA StyleTao, Y., Chen, X., & Lu, S. (2025). Out-of-Plane Mechanical Behavior of 3D-Printed Polymeric Circular-Vertex-Based Hierarchical Hexagonal Honeycombs. Polymers, 17(7), 862. https://doi.org/10.3390/polym17070862