Random Copolymerization: An Efficient Strategy for Significantly Enhancing Photothermal Performance Through Synergistic Open-Shell Radical and TICT Effects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Instrument
2.2.2. Cyclic Voltammetry
2.2.3. Photothermal Experiments
2.2.4. Calculation of the Photothermal Conversion Efficiency
3. Results and Discussion
3.1. UV-Vis-Absorption and Cyclic Voltammetry Measurements
3.2. Photoluminescence Measurements
3.3. Photothermal Performance Measurements
3.4. Water Evaporation Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, X.; Huang, Y.; Zhao, H.; Zhang, E.; Shen, Q.; Di, Y.; Lv, F.; Liu, L.; Wang, S. Near-infrared-light remote-controlled activation of cancer immunotherapy using photothermal conjugated polymer nanoparticles. Adv. Mater. 2021, 33, e2102570. [Google Scholar] [CrossRef]
- Zhu, L.; Gao, M.; Peh, C.K.N.; Ho, G.W. Recent progress in solar-driven interfacial water evaporation: Advanced designs and applications. Mater. Horiz. 2019, 6, 1834–1847. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, X.; Liang, J.; Qiu, X.; Chen, S.; Wang, Y.; Wang, Y. Broadband solar-driven water evaporator based on organic hybrid bandgap and bio-mimetic interfaces. Ecomat 2023, 5, e12323. [Google Scholar] [CrossRef]
- Lan, K.; Deng, Y.; Huang, A.; Li, S.; Liu, G.; Xie, H. Highly-performance polyimide as an efficient photothermal material for solar-driven water evaporation. Polymer 2022, 256, 125177. [Google Scholar] [CrossRef]
- Li, J.; Zhang, W.; Ji, W.; Wang, J.; Wang, N.; Wu, W.; Wu, Q.; Hou, X.; Hu, W.; Li, L. Near infrared photothermal conversion materials: Mechanism, preparation, and photothermal cancer therapy applications. J. Mater. Chem. B 2021, 9, 7909–7926. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chen, G.; Zhang, Z.; You, Y. Expanding the conjugate structure of polymeric carbon nitride for enhanced light absorption and photothermal conversion. Macromol. Rapid. Comm. 2021, 42, 2100502. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wen, K.; Chen, H.; Jiang, S.; Wu, X.; Lv, L.; Peng, A.; Zhang, S.; Huang, H. Achieving high-performance photothermal and photodynamic effects upon combining d–a structure and nonplanar conformation. Small 2020, 16, 2000909. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.; Verwilst, P.; Sharma, A.; Shin, J.; Sessler, J.L.; Kim, J.S. Organic molecule-based photothermal agents: A new paradigm for photothermal therapy. Chem. Soc. Rev. 2018, 47, 2280–2297. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Deng, Q.; Zhang, Y.; Li, X.; Wen, G.; Cui, X.; Wan, Y.; Huang, Y.; Chen, J.; Liu, Z.; et al. Rational design of conjugated small molecules for superior photothermal theranostics in the NIR-II biowindow. Adv. Mater. 2020, 32, e2001146. [Google Scholar] [CrossRef]
- Dias, F.; Bourdakos, K.; Jankus, V.; Moss, K.; Kamtekar, K.; Bhalla, V.; Santos, J.; Bryce, M.; Monkman, A. Triplet harvesting with 100% efficiency by way of thermally activated delayed fluorescence in charge transfer OLED emitters. Adv. Mater. 2013, 25, 3707–3714. [Google Scholar] [CrossRef]
- Dai, J.; Qi, S.; Zhao, M.; Liu, J.; Jia, T.; Liu, G.; Liu, F.; Sun, P.; Li, B.; Wang, C.; et al. Donor-Acceptor molecule with TICT character: A new design strategy for organic photothermal material in solar energy. Chem. Eng. J. 2023, 471, 144745. [Google Scholar] [CrossRef]
- Chenab, K.K.; Zamani-Meymian, M.R. Developing efficient dye-sensitized solar cells by inclusion of ferrocene and benzene π-bridges into molecular structures of triphenylamine dyes. Mat. Sci. Semicon. Proc. 2022, 151, 107018. [Google Scholar] [CrossRef]
- Wan, F.; Wang, H.; Gu, Y.; Fan, G.; Hou, S.; Yu, J.; Wang, M.; He, F.; Tian, L. Bromine substitution improves the photothermal performance of π-conjugated phototheranostic molecules. Chem. A Eur. J. 2024, 30, e202303502. [Google Scholar] [CrossRef]
- Chen, G.; Sun, J.; Peng, Q.; Sun, Q.; Wang, G.; Cai, Y.; Gu, X.; Shuai, Z.; Tang, B. Biradical-featured stable organic-small-molecule Photothermal materials for highly efficient solar-driven water evaporation. Adv. Mater. 2020, 32, e1908537. [Google Scholar] [CrossRef]
- Naito, H.; Nishino, K.; Morisaki, Y.; Tanaka, K.; Chujo, Y. Solid-state emission of the anthracene-o-carborane dyad from the twisted-intramolecular charge transfer in the crystalline state. Angew. Chem. Inter. Ed. 2017, 56, 254. [Google Scholar] [CrossRef]
- An, F.; Zhao, Y.; Li, H.; Meng, J.; Jiao, L.; Zhang, Z.; Li, X.; Sun, X. Intramolecular charge transfer versus intersystem crossing: The way toward super-high photothermal efficiency by thionation. Dye. Pigment. 2023, 217, 111411. [Google Scholar] [CrossRef]
- Ng, K.K.; Zheng, G. Molecular interactions in organic nanoparticles for phototheranostic applications. Chem. Rev. 2015, 115, 11012–11042. [Google Scholar] [CrossRef]
- Li, Y.; Guo, Y.; Chen, Z.; Zhan, L.; He, C.; Bi, Z.; Yao, N.; Li, S.; Zhou, G.; Yi, Y.; et al. Mechanism study on organic ternary photovoltaics with 18.3% certified efficiency: From molecule to device. Energy Environ. Sci. 2022, 15, 855–865. [Google Scholar] [CrossRef]
- Zhang, T.; Xiao, Y.; Wang, H.; Kong, S.; Huang, R.; Ka-Man Au, V.; Yu, T.; Huang, W. Highly twisted thermally activated delayed fluorescence (TADF) molecules and their applications in organic light-emitting diodes (OLEDs). Angew. Chemie. Inter. Ed. 2023, 62, e202301896. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.-T.D.; Phan, L.M.T.; Cho, S.; Park, J. Enhancement approaches for photothermal conversion of donor–acceptor conjugated polymer for photothermal therapy: A review. Sci. Technol. Adv. Mat. 2022, 23, 707–734. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, J.; Zhang, Y.; Zhu, W.; Li, Y. Accessing highly efficient photothermal conversion with stable open-shell aromatic nitric acid radicals. Angew. Chem. Int. Ed. Engl. 2022, 61, e202113653. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, S.; Drummen, G.P.C.; Konishi, G.-I. Recent advances in twisted intramolecular charge transfer (TICT) fluorescence and related phenomena in materials chemistry. J. Mater. Chem. C 2016, 4, 2731–2743. [Google Scholar] [CrossRef]
- Wang, C.; Chi, W.; Qiao, Q.; Tan, D.; Xu, Z.; Liu, X. Twisted intramolecular charge transfer (TICT) and twists beyond TICT: From mechanisms to rational designs of bright and sensitive fluorophores. Chem. Soc. Rev. 2021, 50, 12656–12678. [Google Scholar] [CrossRef]
- Cai, Y.; Liang, P.; Tang, Q.; Yang, X.; Si, W.; Huang, W.; Zhang, Q.; Dong, X. Diketopyrrolopyrrole–triphenylamine organic nanoparticles as multifunctional reagents for photoacoustic imaging-guided photodynamic/photothermal synergistic tumor therapy. ACS Nano 2017, 11, 1054–1063. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, W.; Peng, M.; Zhang, X. Free radicals for cancer theranostics. Biomaterials 2021, 266, 120474. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Cheng, L.; Wang, C.; Peng, R.; Liu, Z. Conjugated polymers for photothermal therapy of cancer. Polym. Chem 2014, 5, 1573–1580. [Google Scholar] [CrossRef]
- Cui, C.; Li, Y. High-performance conjugated polymer donor materials for polymer solar cells with narrow-bandgap nonfullerene acceptors. Energy Environ. Sci. 2019, 12, 3225–3246. [Google Scholar] [CrossRef]
- Hung, Y.; Chao, C.; Dai, C.; Su, W.; Lin, S.J. Band gap engineering via controlling donor–acceptor compositions in conjugated copolymers. Phys. Chem. B 2013, 117, 690–696. [Google Scholar] [CrossRef]
- Jiao, Y.; Liu, K.; Wang, G.; Wang, Y.; Zhang, X. Supramolecular free radicals: Near-infrared organic materials with enhanced photothermal conversion. Chem. Sci. 2015, 6, 3975–3980. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Park, G.E.; Lee, D.H.; Godumala, M.; Cho, M.J.; Choi, D.H. Quinoxaline-based D-A conjugated polymers for organic solar cells: Probing the effect of quinoxaline side chains and fluorine substitution on the power conversion efficiency. J. Polym. Sci. Pol. Chem. 2017, 55, 1209–1218. [Google Scholar] [CrossRef]
- Du, J.; Hu, K.; Meng, L.; Angunawela, I.; Zhang, J.; Qin, S.; Liebman-Pelaez, A.; Zhu, C.; Zhang, Z.; Ade, H.; et al. High-performance all-polymer solar cells: Synthesis of polymer acceptor by a random ternary copolymerization strategy. Angew. Chem. Int. Edit. 2020, 59, 15181–15185. [Google Scholar] [CrossRef] [PubMed]
- Yuen, J.D.; Wang, M.F.; Fan, J.; Sheberla, D.; Kemei, M.; Banerji, N.; Scarongella, M.; Valouch, S.; Pho, T.; Kumar, R.; et al. Importance of unpaired electrons in organic electronics. J. Polym. Sci. Pol. Chem. 2015, 53, 287–293. [Google Scholar] [CrossRef]
- Thomas, A.; Bhanuprakash, K.; Prasad, K.M.M.K.J. Near infrared absorbing benzobis(thiadiazole) derivatives: Computational studies point to biradical nature of the ground states. Phys. Org. Chem. 2011, 24, 821–832. [Google Scholar] [CrossRef]
- Chen, Z.; Li, W.; Sabuj, M.A.; Li, Y.; Zhu, W.; Zeng, M.; Sarap, C.S.; Huda, M.M.; Qiao, X.; Peng, X.; et al. Evolution of the electronic structure in open-shell donor-acceptor organic semiconductors. Nat. Commun. 2021, 12, 5889. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Guo, J.; Li, S.; Yang, Y.; Lai, W.; Keoingthong, P.; Wang, S.; Zhang, L.; Dong, Q.; Zeng, Z.; et al. Dual Charge Transfer Generated from Stable Mixed-Valence Radical Crystals for Boosting Solar-to-Thermal Conversion. Adv. Sci. 2023, 10, 2300980. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Liang, X.; Wu, D.; Yu, B.; Wang, Y.; Mi, Y.; Cao, Z.; Zhao, Z.J. Towards white-light emission of fluorescent polymeric nanoparticles with a single luminogen possessing AIE and TICT properties. Mater. Chem. C. 2020, 8, 734–741. [Google Scholar] [CrossRef]
- Zhang, R.; Jin, N.; Jia, T.; Wang, L.; Liu, J.; Nan, M.; Qi, S.; Liu, S.; Pan, Y. A narrow-bandgap photothermal material based on a donor–acceptor structure for the solar–thermal conversion application. J. Mater. Chem. A. 2023, 11, 15380. [Google Scholar] [CrossRef]
Polymers | λmax (nm) | HOMOCV (eV) | LUMOCV (eV) | Eg (eV) |
---|---|---|---|---|
PBT4T | 440 | −5.89 | −4.69 | 1.2 |
PBT4T-BBT-5 | 455 | −5.09 | −4.17 | 0.92 |
PBT4T-BBT-10 | 600 | −4.97 | −3.44 | 1.53 |
PBT4T-BBT-20 | 471 | −4.99 | −3.46 | 1.53 |
PBB4T | 1080 | −4.37 | −3.80 | 0.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Tan, H.; Li, Y.; Ma, X.; Xu, H.; Zhou, D.; Wan, Q.; Lv, R. Random Copolymerization: An Efficient Strategy for Significantly Enhancing Photothermal Performance Through Synergistic Open-Shell Radical and TICT Effects. Polymers 2025, 17, 454. https://doi.org/10.3390/polym17040454
Xu W, Tan H, Li Y, Ma X, Xu H, Zhou D, Wan Q, Lv R. Random Copolymerization: An Efficient Strategy for Significantly Enhancing Photothermal Performance Through Synergistic Open-Shell Radical and TICT Effects. Polymers. 2025; 17(4):454. https://doi.org/10.3390/polym17040454
Chicago/Turabian StyleXu, Wenjin, Haoran Tan, Yu Li, Xiaorui Ma, Haitao Xu, Dan Zhou, Qing Wan, and Ruizhi Lv. 2025. "Random Copolymerization: An Efficient Strategy for Significantly Enhancing Photothermal Performance Through Synergistic Open-Shell Radical and TICT Effects" Polymers 17, no. 4: 454. https://doi.org/10.3390/polym17040454
APA StyleXu, W., Tan, H., Li, Y., Ma, X., Xu, H., Zhou, D., Wan, Q., & Lv, R. (2025). Random Copolymerization: An Efficient Strategy for Significantly Enhancing Photothermal Performance Through Synergistic Open-Shell Radical and TICT Effects. Polymers, 17(4), 454. https://doi.org/10.3390/polym17040454