Structure–Property Relationships in PDLLA/Silica Hybrid Films: Impact of Grafting and Network Formation on Optical Behavior
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Mono-Silane-Terminated ET-PDLLA I and II
2.3. Preparation of PDLLA/SiO2 Hybrid Films
2.4. Characterization
2.5. SAXS Data Analysis Procedure
2.5.1. Ruland Correction and Background Subtraction
2.5.2. Transformation into Electron Density Correlation Function γ(r)
2.5.3. Porod Analysis
3. Results and Discussion
3.1. Characterization of PDLLA Hybrid Films
3.2. SAXS Profiles of PDLLA Hybrid Films
3.3. Optical Properties of PDLLA Hybrid Films
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bender, R.; Feron, D.; Mills, D.; Ritter, S.; Bäßler, R.; Bettge, D.; Graeve, D.I.; Dugstad, A.; Grassini, S.; Hack, T.; et al. Corrosion challenges towards a sustainable society. Mater. Corros. 2022, 73, 1730–1751. [Google Scholar] [CrossRef]
- Graupner, N.; Herrmann, S.A.; Mussig, J. Natural and man-made cellulose fibrereinforced poly (lactic acid) (PLA) composites: An overview about mechanical, characteristics and application areas. Compos. Part A 2009, 40, 810–821. [Google Scholar] [CrossRef]
- Abdeldaim, H.; González, E.; Duarte, N.; Asua, M.J. Solving the Film Formation Dilemma: Blends of Soft Core–Hard “Shell” Particles. Macromolecules 2023, 56, 9054–9061. [Google Scholar] [CrossRef]
- Farah, S.; Anderson, G.D.; Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review. Adv. Drug Deliv. Rev. 2016, 107, 367–392. [Google Scholar] [CrossRef]
- Ramot, Y.; Haim-Zada, M.; Domb, J.A.; Nyska, A. Biocompatibility and safety of PLA and its copolymers. Adv. Drug Deliv. Rev. 2016, 107, 153–162. [Google Scholar] [CrossRef]
- Régibeau, N.; Tilkin, R.G.; Compère, P.; Heinrichs, B.; Grandfils, C. Preparation of PDLLA based nanocomposites with modified silica by in situ polymerization: Study of molecular, morphological and mechanical properties. Mater. Today Commun. 2020, 25, 101610. [Google Scholar] [CrossRef]
- Lahiri, D.; Rouzaud, F.; Namin, S.; Keshri, A.; Vald’es, J.J.; Kos, L.; Tsoukias, N.; Agarwal, A. Carbon nanotube reinforced polylactide-caprolactone copolymer: Mechanical strengthening and interaction with human osteoblasts in vitro. ACS Appl. Mater. Interfaces 2009, 1, 2470–2476. [Google Scholar] [CrossRef]
- Qiu, X.; Hong, Z.; Hu, J.; Chen, L.; Chen, X.; Jing, X. Hydroxyapatite surface modified by L-lactic acid and its subsequent grafting polymerization of L-lactide. Biomacromolecules 2005, 6, 1193–1199. [Google Scholar] [CrossRef]
- Re, L.G.; Benali, S.; Habibi, Y.; Raquez, M.J.; Dubois, P. Stereocomplexed PLA nanocomposites: From in situ polymerization to materials properties. Eur. Polym. J. 2014, 54, 138–150. [Google Scholar] [CrossRef]
- Wu, F.; Zhang, B.; Yang, W.; Liu, Z.Y.; Yang, M.B. Inorganic silica functionalized with PLLA chains via grafting methods to enhance the melt strength of PLLA/silica nanocomposites. Polymer 2014, 55, 5760–5772. [Google Scholar] [CrossRef]
- Lv, H.; Song, S.; Sun, S.; Ren, L.; Zhang, H. Enhanced Properties of Poly(Lactic Acid) with Silica Nanoparticles. Polym. Adv. Technol. 2016, 27, 1156–1163. [Google Scholar] [CrossRef]
- Régibeau, N.; Tilkin, R.G.; Grandfils, C.; Heinrichs, B. Preparation of poly-d,l-lactide based nanocomposites with polymer-grafted silica by melt blending: Study of molecular, morphological, and mechanical properties. Polym. Compos. 2021, 42, 955–972. [Google Scholar] [CrossRef]
- Osváth, Z.; Tóth, T.; Iván, B. Sustained drug release by thermoresponsive sol-gel hybrid hydrogels of poly(N-isopropylacrylamide-co-3-(trimethoxysilyl)propyl methacrylate) copolymers. Macromol. Rapid Commun. 2017, 38, 1600724. [Google Scholar] [CrossRef]
- Ikake, H.; Hara, S.; Shimizu, S. Skillful Control of Dispersion and 3D Network Structures: Advances in Functional Organic–Inorganic Nano-Hybrid Materials Prepared Using the Sol-Gel Method. Polymers 2022, 14, 3247. [Google Scholar] [CrossRef]
- Pirzada, T.; Arvidson, S.A.; Saquing, C.D.; Shah, S.S.; Khan, S.A. Hybrid Silica-PVA Nanofibers via Sol-Gel Electrospinning. Langmuir 2012, 28, 5834–5844. [Google Scholar] [CrossRef]
- Hara, S.; Ishizu, M.; Watanabe, S.; Kaneko, T.; Toyama, T.; Shimizu, S.; Ikake, H. Improvement of the Transparency, Mechanical, and Shape Memory Properties of Polymethylmethacrylate/Titania Hybrid Films Using Tetrabutylphosphonium Chloride. Polym. Chem. 2019, 10, 4779–4788. [Google Scholar] [CrossRef]
- Hara, S.; Tomono, M.; Fukumoto, K.; Kubodera, M.; Kato, N.; Kaneko, T.; Toyama, T.; Shimizu, S.; Ikake, H. Melt-Moldable Copolymethacrylate/Titania Thermoreversible Polymer Networks with Shape Memory. ACS Appl. Polym. Mater. 2020, 2, 5654–5663. [Google Scholar] [CrossRef]
- Hara, S.; Aisu, J.; Nishizaki, Y.; Kato, H.; Sanae, G.; Kurebayashi, S.; Shimizu, S.; Ikake, H. Bulk structure of Poly (ethylene glycol)/Titania Hybrid system and the evaluation of their influence on apatite growth using simulated body fluid (SBF). Polym. Test. 2021, 94, 106984. [Google Scholar] [CrossRef]
- Mazzocchetti, L.; Sandri, S.; Scandola, M.; Bergia, A.; Zuccheri, G. Radiopaque Organic-Inorganic Hybrids Based on Poly(d,l-lactide). Biomacromolecules 2007, 8, 672–678. [Google Scholar] [CrossRef]
- Ikake, H.; Hara, S.; Kubodera, M.; Kato, H.; Fukasawa, K.; Takeoka, Y.; Ikehara, T.; Shimizu, S. Macroscopic Property Evaluation of Titania Nanocomposite Polymer Capable of Drawing Double-Network Macrostructure Using Photolithography. ACS Macro Lett. 2023, 12, 943–948. [Google Scholar] [CrossRef] [PubMed]
- Tawade, V.B.; Singh, M.; Apata, E.I.; Veerasamy, J.; Pradhan, N.; Karim, A.; Douglas, F.J.; Raghavan, D. Polymer-Grafted Nanoparticles with Variable Grafting Densities for High Energy Density Polymeric Nanocomposite Dielectric Capacitors. JACS Au 2023, 3, 1365–1375. [Google Scholar] [CrossRef] [PubMed]
- Kubiak, J.M.; Macfarlane, R.J. Polymer-Grafted Nanoparticles as Single-Component, High Filler Content Composites via Simple Transformative Aging. Adv. Funct. Mater. 2022, 32, 2107139. [Google Scholar] [CrossRef]
- Kumar, K.S.; Jouault, N.; Benicewicz, B.; Neely, T. Nanocomposites with Polymer Grafted Nanoparticles. Macromolecules 2013, 46, 3199–3214. [Google Scholar] [CrossRef]
- Cho, J.; Hui, M.C.; Schmitt, M.; Pietrasik, J.; Margel, S.; Matyjazsewski, K.; Bockstaller, R.M. Effect of Polymer-Graft Modification on the Order Formation in Particle Assembly Structures. Langmuir 2013, 29, 6452–6459. [Google Scholar] [CrossRef]
- Moji, G.R.; Motloung, V.S.; Motaung, E.T.; Koao, F.L. Characterization of the incorporated SiO2 co-doped with Sr2+ and Tb3+ phosphors into PLA polymer matrix. J. Mol. Struct. 2022, 1263, 133176. [Google Scholar] [CrossRef]
- Filatova, K.; Bergerova, D.E.; Kazantseva, N.; Masar, M.; Suly, P.; Sopik, T.; Cisar, J.; Durpekova, S.; Sedlarik, V. Design and Fabrication of Electrospun PLA-Based Silica-Modified Composite Nanofibers with Antibacterial Properties for Perspective Wound Treatment. Polymers 2023, 15, 3500. [Google Scholar] [CrossRef]
- Rathje, J.; Ruland, W. Density fluctuations in amorphous and semicrystalline polymers. Colloid Polym. Sci. 1976, 254, 358–370. [Google Scholar] [CrossRef]
- Ruland, W. Density Fluctuations in Amorphous and Semicrystalline Polymers. Pure Appl. Chem. 1977, 49, 905–913. [Google Scholar] [CrossRef]
- Schindler, A.; Harper, D. Polylactide. II. Viscosity–molecular weight relationships and unperturbed chain dimensions. J. Polym. Sci. Polym. Chem. Ed. 1979, 17, 2593–2599. [Google Scholar] [CrossRef]
- Schaefer, W.D. Polymers, Fractals, and Ceramic Materials. Science 1989, 243, 1023. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, W.D.; Keefer, D.K. The Effect of Hydrolysis Conditions on the Structure and Growth of Silicate Polymers. Mater. Res. Soc. Symp. Proc. 1984, 32, 1–14. [Google Scholar] [CrossRef]
- Takahashi, S.; Paul, D.R. Gas permeation in poly (ether imide) nanocomposite membranes based on surface-treated silica. Part 1: Without chemical coupling to matrix. Polymer 2006, 47, 7519–7534. [Google Scholar] [CrossRef]
- Wen, X.; Zhang, K.; Wang, Y.; Han, L.; Han, C.; Zhang, H.; Chen, S.; Dong, L. Study of the thermal stabilization mechanism of biodegradable poly (L-lactide)/silica nanocomposites. Polym. Int. 2010, 60, 202–210. [Google Scholar] [CrossRef]
- Prada, A.; González, I.R.; Camarada, B.M.; Allende, S.; Torres, A.; Sepúlveda, J.; Rojas-Nunez, J.; Baltazar, E.S. Nanoparticle Shape Influence over Poly(lactic acid) Barrier Properties by Molecular Dynamics Simulations. ACS Omega 2022, 7, 2583–2590. [Google Scholar] [CrossRef] [PubMed]
- Inde, H.; Kanezashi, M.; Nagasawa, H.; Nakaya, T.; Tsuru, T. Tailoring a Thermally Stable Amorphous SiOC Structure for the Separation of Large Molecules: The Effect of Calcination Temperature on SiOC Structures and Gas Permeation Properties. ACS Omega 2018, 3, 6369–6377. [Google Scholar] [CrossRef]







| Sample | Tg by E′ Onset [°C] | E′25°C [Pa] | E′Tg+25°C [Pa] | T10% [°C] |
|---|---|---|---|---|
| PDLLA | 33.9 | 2.90 × 109 | - | 259.5 |
| 15ET-PDLLA I | 41.5 | 3.31 × 109 | - | 319.7 |
| 20ET-PDLLA I | 39.8 | 3.83 × 109 | - | 318.2 |
| 15ET-PDLLA II | 50.3 | 3.58 × 109 | 6.92 × 107 | 317.8 |
| Sample | %T400nm | n486 ± SD | n589 ± SD | n656 ± SD | VD ± SD |
|---|---|---|---|---|---|
| PDLLA | 93.41 | 1.465 ± 2.3 × 10−4 | 1.460 ± 1.1 × 10−4 | 1.457 ± 1.6 × 10−4 | 54.7 ± 1.3 |
| 15ET-PDLLA I | 90.17 | 1.461 ± 2.1 × 10−4 | 1.457 ± 3.6 × 10−4 | 1.454 ± 2.2 × 10−4 | 63.9 ± 0.3 |
| 20ET-PDLLA I | 93.05 | 1.459 ± 2.4 × 10−3 | 1.456 ± 1.3 × 10−3 | 1.453 ± 7.1 × 10−4 | 73.3 ± 4.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hara, S.; Kawamura, K.; Furukawa, A.; Shimizu, S.; Ikake, H. Structure–Property Relationships in PDLLA/Silica Hybrid Films: Impact of Grafting and Network Formation on Optical Behavior. Polymers 2025, 17, 3202. https://doi.org/10.3390/polym17233202
Hara S, Kawamura K, Furukawa A, Shimizu S, Ikake H. Structure–Property Relationships in PDLLA/Silica Hybrid Films: Impact of Grafting and Network Formation on Optical Behavior. Polymers. 2025; 17(23):3202. https://doi.org/10.3390/polym17233202
Chicago/Turabian StyleHara, Shuta, Keiya Kawamura, Atsushi Furukawa, Shigeru Shimizu, and Hiroki Ikake. 2025. "Structure–Property Relationships in PDLLA/Silica Hybrid Films: Impact of Grafting and Network Formation on Optical Behavior" Polymers 17, no. 23: 3202. https://doi.org/10.3390/polym17233202
APA StyleHara, S., Kawamura, K., Furukawa, A., Shimizu, S., & Ikake, H. (2025). Structure–Property Relationships in PDLLA/Silica Hybrid Films: Impact of Grafting and Network Formation on Optical Behavior. Polymers, 17(23), 3202. https://doi.org/10.3390/polym17233202

