Achieving High-Performance Polypropylene-Based Synthetic Paper with High-Modulus Organic Oligomer and Biaxial Stretching Force Field
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.2.1. Preparation of PP/C9 Composite Sheets
2.2.2. Preparation of PP/C9 Composite Paper Through the Biaxial Stretching
2.3. Characterization
2.3.1. Morphology and Dispersion Evolution of C9 Filler
2.3.2. Crystalline Information
2.3.3. Mechanical Test
2.3.4. Toughening Mechanism
3. Results and Discussion
3.1. Morphology and Dispersion Evolution of C9 Filler
3.2. Crystallization Behavior of PP/C9 Composite Paper
3.3. Mechanical Properties of PP/C9 Composite Paper
3.4. Modulus Enhancement Mechanisms of PP/C9 Composite Paper
3.5. Toughening Mechanisms of PP/C9 Composite Paper
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, V.; Bachala, S.K.; Madan, M.; Ahuja, A.; Rastogi, V.K. A Comprehensive Comparison between Synthetic and Bio-Based Wet-Strength Additives for Paper Manufacturing. Cellulose 2024, 31, 4645–4679. [Google Scholar] [CrossRef]
- Gonzalez-Estrella, J.; Asato, C.M.; Stone, J.J.; Gilcrease, P.C. A Review of Anaerobic Digestion of Paper and Paper Board Waste. Rev. Environ. Sci. Biotechnol. 2017, 16, 569–590. [Google Scholar] [CrossRef]
- Sharma, D.K.; Bapat, S.; Brandes, W.F.; Rice, E.; Castaldi, M.J. Technical Feasibility of Zero Waste for Paper and Plastic Wastes. Waste Biomass Valorization 2019, 10, 1355–1363. [Google Scholar] [CrossRef]
- Santana, R.M.C.; Manrich, S. Synthetic Paper from Plastic Waste: Influence of a Surface Treatment with Corona Discharge. J. Appl. Polym. Sci. 2009, 114, 3420–3427. [Google Scholar] [CrossRef]
- Cheng, D.; Zan, Y.; Du, J.; Luo, Y. Recycling of Ultrahigh Molecular Weight Polyethylene Waste Used for Preparing High Performance Synthetic Paper. J. Appl. Polym. Sci. 2016, 133, 44159. [Google Scholar] [CrossRef]
- Santi, C.R.D.; Correa, A.C.; Manrich, S. Films of Post-Consumer Polypropylene Composites for the Support Layer in Synthetic Paper. Polímeros 2006, 16, 123–128. [Google Scholar] [CrossRef]
- Wang, L.Q.; Li, Q.S.; Ma, H.P.; Guo, X.F.; Wang, R.H.; Yao, G. Synthesis and Characterization of Novel Polypropylene Paper Releasing Anion. Chin. Chem. Lett. 2009, 20, 483–486. [Google Scholar] [CrossRef]
- Ye, H.; Jiang, J.; Yang, Y.; Shi, J.; Sun, H.; Zhang, L.; Ge, S.; Zhang, Y.; Zhou, Y.; Liew, R.K.; et al. Ultra-Strong and Environmentally Friendly Waste Polyvinyl Chloride/Paper Biocomposites. Adv. Compos. Hybrid Mater. 2023, 6, 81. [Google Scholar] [CrossRef]
- Wang, H.; Hong, W.; Ran, L.; Yu, G.; Du, Q.; Wang, Z.; Ma, B.; Li, J.; Guo, S.; Li, C. A Nacre-Inspired Polymheric Multilayer Film with High Efficiency of Low-Temperature Toughening. Polymer 2024, 307, 127214. [Google Scholar] [CrossRef]
- Hong, W.; Ran, L.; Yu, G.; Qin, J.; Ma, B.; Wu, H.; Guo, S.; Li, C. Superior Low-Temperature Mechanical Toughness of the PP-Based Blown Micro/Nano Layer Films. Polymer 2022, 256, 125257. [Google Scholar] [CrossRef]
- Nitta, K.; Sawada, T.; Yoshida, S.; Kawamura, T. Three Dimensional Molecular Orientation of Isotactic Polypropylene Films under Biaxial Deformation at Higher Temperatures. Polymer 2015, 74, 30–37. [Google Scholar] [CrossRef]
- Shen, Q.; Liu, X.; Zhao, R.; Guo, F.; Mao, Z.; Chen, S. Maintaining Modulus of Polypropylene Composites with Ultra-High Low Temperature Toughness by Synergistic Branched Polyethylene and Nucleating Agents. J. Mater. Res. Technol. 2023, 27, 2989–3004. [Google Scholar] [CrossRef]
- Li, J.; Zhu, Z.; Li, T.; Peng, X.; Jiang, S.; Turng, L. Quantification of the Young’s Modulus for Polypropylene: Influence of Initial Crystallinity and Service Temperature. J. Appl. Polym. Sci. 2020, 137, 48581. [Google Scholar] [CrossRef]
- Parenteau, T.; Ausias, G.; Grohens, Y.; Pilvin, P. Structure, Mechanical Properties and Modelling of Polypropylene for Different Degrees of Crystallinity. Polymer 2012, 53, 5873–5884. [Google Scholar] [CrossRef]
- Bao, Z.; Du, X.; Ding, S.; Chen, J.; Dai, Z.; Liu, C.; Wang, Y.; Yin, Y.; Li, X. Improved Working Temperature and Capacitive Energy Density of Biaxially Oriented Polypropylene Films with Alumina Coating Layers. ACS Appl. Energy Mater. 2022, 5, 3119–3128. [Google Scholar] [CrossRef]
- Kanai, T.; Uehara, H.; Sakauchi, K.; Yamada, T. Stretchability and Properties of Biaxially Oriented Polypropylene Film. Int. Polym. Process. 2022, 21, 449–456. [Google Scholar] [CrossRef]
- Ham, C.-H.; Youn, H.J.; Lee, H.L. Influence of Fiber Composition and Drying Conditions on the Bending Stiffness of Paper. Bioresources 2020, 15, 9197–9211. [Google Scholar] [CrossRef]
- Muljana, H.; Arends, S.; Remerie, K.; Boven, G.; Picchioni, F.; Bose, R.K. Cross-Linking of Polypropylene via the Diels–Alder Reaction. Polymers 2022, 14, 1176. [Google Scholar] [CrossRef]
- Tanaka, R.; Fujii, H.; Kida, T.; Nakayama, Y.; Shiono, T. Incorporation of Boronic Acid Functionality into Isotactic Polypropylene and Its Application as a Cross-Linking Point. Macromolecules 2021, 54, 1267–1272. [Google Scholar] [CrossRef]
- Zhou, H.; Xun, R.; Zhou, Z.; Liu, Q.; Wu, P.; Wu, K. Preparation of Collagen Fiber/CaCO3 Hybrid Materials and Their Applications in Synthetic Paper. Fibers Polym. 2014, 15, 519–524. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Q.; Cheng, Y.; Song, F.; Ding, Y.; Shao, M. Self-Reinforced Composites Based on Polypropylene Fiber and Graphene Nano-Platelets/Polypropylene Film. Carbon 2022, 189, 586–595. [Google Scholar] [CrossRef]
- Balzano, L.; Ma, Z.; Cavallo, D.; Van Erp, T.B.; Fernandez-Ballester, L.; Peters, G.W.M. Molecular Aspects of the Formation of Shish-Kebab in Isotactic Polypropylene. Macromolecules 2016, 49, 3799–3809. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Z.; Chen, B.; Liu, C.; Zhang, S.; Cao, W.; Wang, Z. Crystalline Grain Refinement Toughened Isotactic Polypropylene through Rapid Quenching of Stretched Melt. Polymer 2021, 216, 123435. [Google Scholar] [CrossRef]
- Fu, S. Effects of Fiber Length and Fiber Orientation Distributions on the Tensile Strength of Short-Fiber-Reinforced Polymers. Compos. Sci. Technol. 1996, 56, 1179–1190. [Google Scholar] [CrossRef]
- Lau, K.; Hung, P.; Zhu, M.-H.; Hui, D. Properties of Natural Fibre Composites for Structural Engineering Applications. Compos. Part B Eng. 2018, 136, 222–233. [Google Scholar] [CrossRef]
- Yan, Z.L.; Wang, H.; Lau, K.T.; Pather, S.; Zhang, J.C.; Lin, G.; Ding, Y. Reinforcement of Polypropylene with Hemp Fibres. Compos. Part B Eng. 2013, 46, 221–226. [Google Scholar] [CrossRef]
- Pickering, K.L.; Efendy, M.G.A.; Le, T.M. A Review of Recent Developments in Natural Fibre Composites and Their Mechanical Performance. Compos. Part A Appl. Sci. Manuf. 2016, 83, 98–112. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, C.; Li, S.; Yan, Y.; Yu, S.; Huang, L. Micronized Cellulose Particles from Mechanical Treatment and Their Performance on Reinforcing Polypropylene Composite. Cellulose 2023, 30, 235–246. [Google Scholar] [CrossRef]
- Granda, L.A.; Espinach, F.X.; Méndez, J.A.; Tresserras, J.; Delgado-Aguilar, M.; Mutjé, P. Semichemical Fibres of Leucaena Collinsii Reinforced Polypropylene Composites: Young’s Modulus Analysis and Fibre Diameter Effect on the Stiffness. Compos. Part B Eng. 2016, 92, 332–337. [Google Scholar] [CrossRef]
- Lee, M.G.; Lee, S.; Cho, J.; Bae, S.; Jho, J.Y. Effect of the Fluorination of Graphene Nanoflake on the Dispersion and Mechanical Properties of Polypropylene Nanocomposites. Nanomaterials 2020, 10, 1171. [Google Scholar] [CrossRef]
- Patti, A.; Russo, P.; Acierno, D.; Acierno, S. The Effect of Filler Functionalization on Dispersion and Thermal Conductivity of Polypropylene/Multi Wall Carbon Nanotubes Composites. Compos. Part B Eng. 2016, 94, 350–359. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, H.; Chan, C.-M.; Wu, J. Nucleating Effect of Calcium Stearate Coated CaCO3 Nanoparticles on Polypropylene. J. Colloid Interface Sci. 2011, 354, 570–576. [Google Scholar] [CrossRef]
- Ku, H.; Wang, H.; Pattarachaiyakoop, N.; Trada, M. A Review on the Tensile Properties of Natural Fiber Reinforced Polymer Composites. Compos. Part B Eng. 2011, 42, 856–873. [Google Scholar] [CrossRef]
- Ju, S.-P.; Chen, C.-C.; Huang, T.-J.; Liao, C.-H.; Chen, H.-L.; Chuang, Y.-C.; Wu, Y.-C.; Chen, H.-T. Investigation of the Structural and Mechanical Properties of Polypropylene-Based Carbon Fiber Nanocomposites by Experimental Measurement and Molecular Dynamics Simulation. Comput. Mater. Sci. 2016, 115, 1–10. [Google Scholar] [CrossRef]
- Lin, Z.; Cao, L.; Guan, Z.; Lin, H.; Du, C.; Wang, Y.; Gaosun, W.; Li, W. Grafting Polypropylene and Treatment of Calcium Carbonate to Improve Structure and Properties of Polypropylene Composites. J. Therm. Anal. Calorim. 2014, 117, 765–772. [Google Scholar] [CrossRef]
- Sullins, T.; Pillay, S.; Komus, A.; Ning, H. Hemp Fiber Reinforced Polypropylene Composites: The Effects of Material Treatments. Compos. Part B Eng. 2017, 114, 15–22. [Google Scholar] [CrossRef]
- Seo, H.Y.; Cho, K.Y.; Im, D.; Kwon, Y.J.; Shon, M.; Baek, K.-Y.; Yoon, H.G. High Mechanical Properties of Covalently Functionalized Carbon Fiber and Polypropylene Composites by Enhanced Interfacial Adhesion Derived from Rationally Designed Polymer Compatibilizers. Compos. Part B Eng. 2022, 228, 109439. [Google Scholar] [CrossRef]
- Abu-Zurayk, R.; Harkin-Jones, E.; McNally, T.; Menary, G.; Martin, P.; Armstrong, C. Biaxial Deformation Behavior and Mechanical Properties of a Polypropylene/Clay Nanocomposite. Compos. Sci. Technol. 2009, 69, 1644–1652. [Google Scholar] [CrossRef]
- Lee, D.J.; Song, Y.S. Thermomechanical Anisotropy and Flowability of Talc and Glass Fiber Reinforced Multiphase Polymer Composites. Compos. Struct. 2017, 174, 329–337. [Google Scholar] [CrossRef]
- Li, S.-Z.; Ding, L.; Yang, F.; Wu, T.; Lan, F.; Cao, Y.; Xiang, M. Facile Preparation of a Trilayer Separator with a Shutdown Function Based on the Compounding of β-Crystal Polypropylene and Hydrogenated Petroleum Resin. Ind. Eng. Chem. Res. 2022, 61, 9015–9024. [Google Scholar] [CrossRef]
- Hu, H.; Tang, K.; Zhang, S.; Kang, J.; Cao, Y.; Chen, J. Influence of Hydrogenated Petroleum Resin on the Crystallization Behavior of Polyethylene for Biaxially Stretched Films. J. Polym. Res. 2021, 28, 373. [Google Scholar] [CrossRef]
- Kang, J.; Li, J.; Chen, S.; Zhu, S.; Li, H.; Cao, Y.; Yang, F.; Xiang, M. Hydrogenated Petroleum Resin Effect on the Crystallization of Isotactic Polypropylene. J. Appl. Polym. Sci. 2013, 130, 25–38. [Google Scholar] [CrossRef]
- Das, A.; Marnot, A.E.C.; Fallon, J.J.; Martin, S.M.; Joseph, E.G.; Bortner, M.J. Material Extrusion-Based Additive Manufacturing with Blends of Polypropylene and Hydrocarbon Resins. ACS Appl. Polym. Mater. 2020, 2, 911–921. [Google Scholar] [CrossRef]
- Bonggeun, C.; Ik-Gyeong, S.; Jungjoon, L. A Study on the Filmic Properties of Polypropylenen by Modification of Hydrogenated Hydrocarbon Resin. Adhes. Interface 2013, 14, 192–196. [Google Scholar] [CrossRef]
- Cimmino, S.; Di Pace, E.; Karasz, F.E.; Martuscelli, E.; Silvestre, C. Isotactic Polypropylene/Hydrogenated Oligo(Cyclopentadiene) Blends: Phase Diagram and Dynamic-Mechanical Behaviour of Extruded Isotropic Films. Polymer 1993, 34, 972–976. [Google Scholar] [CrossRef]
- Ivanov, I.; Muke, S.; Kao, N.; Bhattacharya, S.N. Morphological and Rheological Study of Polypropylene Blends with a Commercial Modifier Based on Hydrogenated Oligo Cyclopentadiene). Polymer 2001, 42, 9809–9817. [Google Scholar] [CrossRef]
- Kong, W.-S.; Ju, T.-J.; Park, J.-H.; Joo, S.-R.; Yoon, H.-G.; Lee, J.-W. Synthesis and Characterization of Hydrogenated Sorbic Acid Grafted Dicyclopentadiene Tackifier. Int. J. Adhes. Adhes. 2012, 38, 38–44. [Google Scholar] [CrossRef]
- Han, R.; Nie, M.; Wang, Q. Control over β-Form Hybrid Shish-Kebab Crystals in Polypropylene Pipe via Coupled Effect of Self-Assembly β Nucleating Agent and Rotation Extrusion. J. Taiwan Inst. Chem. Eng. 2015, 52, 158–164. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, G.; Li, H.; Hong, W.; Du, Q.; Wang, H.; Guo, S.; Li, C. Toughening Polypropylene Pipe by Tailoring the Multilayer of β-Transcrystallinity Alternating β-Spherulite. Macromolecules 2025, 58, 2014–2025. [Google Scholar] [CrossRef]
- Liu, H.; Du, B.; Xiao, M.; Ma, Y. Carrier Deflection Behavior in Polypropylene under Strong Electromagnetic Field. IEEE Trans. Dielectr. Electr. Insul. 2023, 30, 2625–2632. [Google Scholar] [CrossRef]
- Kawai, T.; Kimura, T. Magnetic Orientation of Isotactic Polypropylene. Polymer 2000, 41, 155–159. [Google Scholar] [CrossRef]
- Zhu, J.; Wei, S.; Li, Y.; Sun, L.; Haldolaarachchige, N.; Young, D.P.; Southworth, C.; Khasanov, A.; Luo, Z.; Guo, Z. Surfactant-Free Synthesized Magnetic Polypropylene Nanocomposites: Rheological, Electrical, Magnetic, and Thermal Properties. Macromolecules 2011, 44, 4382–4391. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Mao, Y.-M.; Li, Z.-M.; Hsiao, B.S. Competitive Growth of α- and β-Crystals in β-Nucleated Isotactic Polypropylene under Shear Flow. Macromolecules 2010, 43, 6760–6771. [Google Scholar] [CrossRef]
- Mi, D.; Xia, C.; Jin, M.; Wang, F.; Shen, K.; Zhang, J. Quantification of the Effect of Shish-Kebab Structure on the Mechanical Properties of Polypropylene Samples by Controlling Shear Layer Thickness. Macromolecules 2016, 49, 4571–4578. [Google Scholar] [CrossRef]
- Tabatabaei, S.H.; Carreau, P.J.; Ajji, A. Structure and Properties of MDO Stretched Polypropylene. Polymer 2009, 50, 3981–3989. [Google Scholar] [CrossRef]
- Lin, Y.J.; Dias, P.; Chen, H.Y.; Hiltner, A.; Baer, E. Relationship between Biaxial Orientation and Oxygen Permeability of Polypropylene Film. Polymer 2008, 49, 2578–2586. [Google Scholar] [CrossRef]
- Zhu, E.; Wei, L.; Jin, Z.; Liu, Z.; Zhao, S. The Effects of Stretching on the Mechanical Properties of Neat and Nucleated Isotactic Polypropylene and Its Enhancement Mechanism. Polymer 2025, 319, 128017. [Google Scholar] [CrossRef]
- Bastiaansen, C.W.M.; Leblans, P.J.R.; Smith, P. The Theoretical Modulus of Biaxially Oriented Polymer Films. Macromolecules 1990, 23, 2365–2370. [Google Scholar] [CrossRef]
- Zhu, J.; Han, X.; Cheng, H.; Guo, H.; Chen, J.; Yu, W.; Li, L.; Cui, K. Unraveling the Biaxial Deformation Mechanism of Isotactic Polypropylene Film via In-Situ Synchrotron Radiation X-Ray Scattering. Polymer 2025, 327, 128411. [Google Scholar] [CrossRef]
- Adeniyi, A.G.; Iwuozor, K.O.; Emenike, E.C.; Voskressensky, L.G.; Luque, R. Advances and Challenges in Production and Valorization of Biaxially Oriented Polypropylene (BOPP). Funct. Compos. Struct. 2025, 7, 22001. [Google Scholar] [CrossRef]
- Díez, F.J.; Alvarińo, C.; López, J.; Ramírez, C.; Abad, M.J.; Cano, J.; García-Garabal, S.; Barral, L. Influence of the Stretching in the Crystallinity of Biaxially Oriented Polypropylene (BOPP) Films. J. Therm. Anal. Calorim. 2005, 81, 21–25. [Google Scholar] [CrossRef]
- Li, C.; Wang, J.; Guo, J.; Wu, H.; Guo, S. The Toughening Behavior of the PP/POE Alternating Multilayered Blends under EWF and Impact Tensile Methods. Chin. J. Polym. Sci. 2015, 33, 1477–1490. [Google Scholar] [CrossRef]
- Ran, L.; Hong, W.; Yu, G.; Du, Q.; Guo, S.; Li, C. Preparation and Improving Mechanism of PBAT/PPC-Based Micro-Layer Biodegradable Mulch Film with Excellent Water Resistance and Mechanical Properties. Polymer 2024, 291, 126614. [Google Scholar] [CrossRef]
- Yang, W.; Li, Z.; Xie, B.; Feng, J.; Shi, W.; Yang, M. Stress-induced Crystallization of Biaxially Oriented Polypropylene. J. Appl. Polym. Sci. 2003, 89, 686–690. [Google Scholar] [CrossRef]
- Zhu, E.; Liu, Z.; Luo, P.; Zhao, S. A Stretch-Induced Memory Effect of Isotactic Polypropylene and Its Mechanism. Polymer 2025, 335, 128800. [Google Scholar] [CrossRef]
- Xie, C.; Tang, X.; Yang, J.; Xu, T.; Tian, F.; Li, L. Stretch-Induced Coil–Helix Transition in Isotactic Polypropylene: A Molecular Dynamics Simulation. Macromolecules 2018, 51, 3994–4002. [Google Scholar] [CrossRef]
- Men, Y.; Strobl, G. Evidence for a Mechanically Active High Temperature Relaxation Process in Syndiotactic Polypropylene. Polymer 2002, 43, 2761–2768. [Google Scholar] [CrossRef]
- Boyd, R.H. Relaxation Processes in Crystalline Polymers: Experimental Behaviour—A Review. Polymer 1985, 26, 323–347. [Google Scholar] [CrossRef]
- Martín, J.; Stingelin, N.; Cangialosi, D. Direct Calorimetric Observation of the Rigid Amorphous Fraction in a Semiconducting Polymer. J. Phys. Chem. Lett. 2018, 9, 990–995. [Google Scholar] [CrossRef] [PubMed]









Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Du, Q.; Hong, W.; Yu, G.; Wang, H.; Feng, Y.; Chen, X.; Li, H.; Guo, S.; Li, C. Achieving High-Performance Polypropylene-Based Synthetic Paper with High-Modulus Organic Oligomer and Biaxial Stretching Force Field. Polymers 2025, 17, 2951. https://doi.org/10.3390/polym17212951
Wang Z, Du Q, Hong W, Yu G, Wang H, Feng Y, Chen X, Li H, Guo S, Li C. Achieving High-Performance Polypropylene-Based Synthetic Paper with High-Modulus Organic Oligomer and Biaxial Stretching Force Field. Polymers. 2025; 17(21):2951. https://doi.org/10.3390/polym17212951
Chicago/Turabian StyleWang, Zhenkun, Quanjia Du, Weiyouran Hong, Guiying Yu, Haoran Wang, Yanshan Feng, Xinyu Chen, Hongrun Li, Shaoyun Guo, and Chunhai Li. 2025. "Achieving High-Performance Polypropylene-Based Synthetic Paper with High-Modulus Organic Oligomer and Biaxial Stretching Force Field" Polymers 17, no. 21: 2951. https://doi.org/10.3390/polym17212951
APA StyleWang, Z., Du, Q., Hong, W., Yu, G., Wang, H., Feng, Y., Chen, X., Li, H., Guo, S., & Li, C. (2025). Achieving High-Performance Polypropylene-Based Synthetic Paper with High-Modulus Organic Oligomer and Biaxial Stretching Force Field. Polymers, 17(21), 2951. https://doi.org/10.3390/polym17212951

