Preparation and Performance of Poly(Butylene Succinate) (PBS) Composites Reinforced with Taxus Residue and Compatibilized with Branched PBS
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis of PBS and T-PBS
2.3. Pretreatment of Taxus Residue (TF)
2.4. Preparation of PBS/TF/T-PBS Composites
2.5. Characterization
2.5.1. Injection Molding
2.5.2. Intrinsic Viscosity
2.5.3. 1H NMR Analysis
2.5.4. ATR-FTIR Analysis
2.5.5. Wide-Angle X-Ray Diffraction (XRD)
2.5.6. Differential Scanning Calorimetry (DSC)
2.5.7. Thermogravimetric Analysis (TGA)
2.5.8. Rheological Analysis
2.5.9. Mechanical Testing
2.5.10. Scanning Electron Microscopy (SEM)
3. Results and Discussion
3.1. Characterization of PBS and T-PBS
3.2. Wide-Angle X-Ray Diffraction of PBS and PBS-Based Composites
3.3. Thermal Properties
3.4. Mechanical Properties
3.5. Rheological Behavior
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- García-Depraect, O.; Bordel, S.; Lebrero, R.; Santos-Beneit, F.; Börner, R.A.; Börner, T.; Muñoz, R. Inspired by nature: Microbial production, degradation and valorization of biodegradable bioplastics for life-cycle-engineered products. Biotechnol. Adv. 2021, 53, 107772. [Google Scholar] [CrossRef] [PubMed]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed]
- Horton, A.A. Plastic pollution: When do we know enough? J. Hazard. Mater. 2022, 422, 126885. [Google Scholar] [CrossRef] [PubMed]
- Kakadellis, S.; Rosetto, G. Achieving a circular bioeconomy for plastics Designing plastics for assembly and disassembly is essential to closing the resource loop. Science 2021, 373, 49–50. [Google Scholar] [CrossRef]
- Korley, L.T.J.; Epps, T.H.; Helms, B.A.; Ryan, A.J. Toward polymer upcycling-adding value and tackling circularity. Science 2021, 373, 66–69. [Google Scholar] [CrossRef]
- Debuissy, T.; Pollet, E.; Avérous, L. Synthesis and characterization of biobased poly(butylene succinate-ran-butylene adipate). Analysis of the composition- dependent physicochemical properties. Eur. Polym. J. 2017, 87, 84–98. [Google Scholar] [CrossRef]
- Guckert, F.E.; Sayer, C.; de Oliveira, D.; de Araújo, P.H.H.; Oechsler, B.F. Synthesis of polybutylene succinate via Lipase-Catalyzed Transesterification: Enzyme Stability, reuse and PBS properties in bulk polycondensations. Eur. Polym. J. 2022, 179, 111573. [Google Scholar] [CrossRef]
- Tan, B.; Qu, J.P.; Liu, L.M.; Feng, Y.H.; Hu, S.X.; Yin, X.C. Non-isothermal crystallization kinetics and dynamic mechanical thermal properties of poly(butylene succinate) composites reinforced with cotton stalk bast fibers. Thermochim. Acta 2011, 525, 141–149. [Google Scholar] [CrossRef]
- Wu, Y.Z.; Xiong, W.; Zhou, H.Y.; Li, H.F.; Xu, G.G.; Zhao, J.H. Biodegradation of poly(butylene succinate) film by compost microorganisms and water soluble product impact on mung beans germination. Polym. Degrad. Stab. 2016, 126, 22–30. [Google Scholar] [CrossRef]
- Yokohara, T.; Yamaguchi, M. Structure and properties for biomass-based polyester blends of PLA and PBS. Eur. Polym. J. 2008, 44, 677–685. [Google Scholar] [CrossRef]
- Hwang, S.Y.; Yoo, E.S.; Im, S.S. The synthesis of copolymers, blends and composites based on poly(butylene succinate). Polym. J. 2012, 44, 1179–1190. [Google Scholar] [CrossRef]
- Wang, X.W.; Wang, G.X.; Huang, D.; Lu, B.; Zhen, Z.C.; Ding, Y.; Ren, Z.L.; Wang, P.L.; Zhang, W.; Ji, J.H. Degradability comparison of poly(butylene adipate terephthalate) and its composites filled with starch and calcium carbonate in different aquatic environments. J. Appl. Polym. Sci. 2019, 136, 46916. [Google Scholar] [CrossRef]
- Sanivada, U.K.; Marmol, G.; Brito, F.P.; Fangueiro, R. PLA Composites Reinforced with Flax and Jute Fibers-A Review of Recent Trends, Processing Parameters and Mechanical Properties. Polymers 2020, 12, 2373. [Google Scholar] [CrossRef] [PubMed]
- Horiuchi, L.N.; Torres, F.; Barbosa, R.; Azevedo, J.B.; Garcia-Villen, F.; Viseras, C.; Barbosa, R.D.; Fialho, R. Advanced Biodegradable Materials: The Development of PBS Hybrid Composites Reinforced With Natural Fibers, Lignin, and Sepiolite for Sustainable Applications. J. Appl. Polym. Sci. 2025, 142, e57543. [Google Scholar] [CrossRef]
- Inseemeesak, B.; Siripaiboon, C.; Somkeattikul, K.; Attasophonwattana, P.; Kiatiwat, T.; Punsuvon, V.; Areeprasert, C. Biocomposite fabrication from pilot-scale steam-exploded coconut fiber and PLA/PBS with mechanical and thermal characterizations. J. Clean. Prod. 2022, 379, 134517. [Google Scholar] [CrossRef]
- Sharma, A.; Zafar, S.; Nirala, C.K. Mechanical, Viscoelastic and Soil Degradation Performance of Hemp Fiber Reinforced Bio-PBS Composites Developed via Microwave Processing. Fibers Polym. 2025, 26, 2175–2188. [Google Scholar] [CrossRef]
- Ruan, J.C.; Liao, C.G.; Li, P.; Li, X.G.; Zuo, Y.F. Synergistic preparation of a straw fiber/polylactic acid composite with high toughness and strength through interfacial compatibility enhancement and elastomer toughening. Int. J. Biol. Macromol. 2024, 275, 133621. [Google Scholar] [CrossRef]
- Valdés, A.; Dominici, F.; Fortunati, E.; Kenny, J.M.; Jiménez, A.; Garrigós, M.C. Effect of Almond Skin Waste and Glycidyl Methacrylate on Mechanical and Color Properties of Poly(ε-caprolactone)/Poly(lactic acid) Blends. Polymers 2023, 15, 1045. [Google Scholar] [CrossRef]
- Melro, E.; Duarte, H.; Eivazi, A.; Costa, C.; Faleiro, M.L.; da Costa, A.M.R.; Antunes, F.E.; Valente, A.J.M.; Romano, A.; Norgren, M.; et al. Poly(butylene succinate)-Based Composites with Technical and Extracted Lignins from Wood Residues. ACS Appl. Polym. Mater. 2024, 6, 1169–1181. [Google Scholar] [CrossRef]
- Bhuvaneswari, V.; Devarajan, B.; Arulmurugan, B.; Mahendran, R.; Rajkumar, S.; Sharma, S.; Mausam, K.; Li, C.H.; Eldin, E.T. A Critical Review on Hygrothermal and Sound Absorption Behavior of Natural-Fiber-Reinforced Polymer Composites. Polymers 2022, 14, 4727. [Google Scholar] [CrossRef]
- Ucpinar, B.; Sivrikaya, T.; Aytac, A. Sustainable hemp fiber reinforced polylactic acid/poly(butylene succinate) biocomposites: Assessing the effectiveness of MAH-g-PLA as a compatibilizer. Polym. Compos. 2025, 46, 9438–9453. [Google Scholar] [CrossRef]
- Platnieks, O.; Gaidukovs, S.; Barkane, A.; Gaidukova, G.; Grase, L.; Thakur, V.K.; Filipova, I.; Fridrihsone, V.; Skute, M.; Laka, M. Highly Loaded Cellulose/Poly (butylene succinate) Sustainable Composites for Woody-Like Advanced Materials Application. Molecules 2020, 25, 121. [Google Scholar] [CrossRef]
- Karthik, A.; Bhuvaneshwaran, M.; Kumar, M.S.S.; Palanisamy, S.; Palaniappan, M.; Ayrilmis, N. A Review on Surface Modification of Plant Fibers for Enhancing Properties of Biocomposites. ChemistrySelect 2024, 9, e202400650. [Google Scholar] [CrossRef]
- Wu, Q.J.; Henriksson, M.; Liu, X.; Berglund, L.A. A high strength nanocomposite based on microcrystalline cellulose and polyurethane. Biomacromolecules 2007, 8, 3687–3692. [Google Scholar] [CrossRef] [PubMed]
- Fincan, G.; Güzin, A.K.K.; Saglam, A.S.Y. Hydrogen Sulfide Treatment Enhanced Paclitaxel's Anticancer Effect on the ID8 Murine Epithelial Ovarian Cancer Cell Line. Fundam. Clin. Pharmacol. 2025, 39, e70029. [Google Scholar] [CrossRef]
- Valdés, A.; Vidal, L.; Beltrán, A.; Canals, A.; Garrigós, M.C. Microwave-Assisted Extraction of Phenolic Compounds from Almond Skin Byproducts (Prunus amygdalus): A Multivariate Analysis Approach. J. Agric. Food Chem. 2015, 63, 5395–5402. [Google Scholar] [CrossRef]
- Keunecke, D.; Märki, C.; Niemz, P. Structural and mechanical properties of Yew wood. Wood Res. 2007, 52, 23–38. [Google Scholar]
- Chen, Y.; Pan, X.H.; Li, N.X.; Huang, W.K.; Wang, C.S.; Wu, J.; Wang, H.P. Crystallization and rheological properties of long-chain branched PBS polyesters and effect on multifilament properties. Text. Res. J. 2025, 95, 1501–1515. [Google Scholar] [CrossRef]
- Kim, E.K.; Bae, J.S.; Im, S.S.; Kim, B.C.; Han, Y.K. Preparation and properties of branched polybutylenesuccinate. J. Appl. Polym. Sci. 2001, 80, 1388–1394. [Google Scholar] [CrossRef]
- Souza, C.R.d.; Silva, d.S.L.M.; Felipe, S.; Marco, L.; Viktor, M.; Flávio, d.A.S. Effect of alkali treatment on physical–chemical properties of sisal fibers and adhesion towards cement-based matrices. Construct. Build. Mater. 2022, 345, 128363. [Google Scholar]
- Wu, W.; Chen, F. Interfacial Modification of Corn Stalk Cellulose Reinforced Used Rubber Powder Composites Treated with Coupling Agent. J. Renew. Mater. 2020, 8, 905–913. [Google Scholar] [CrossRef]
- Tianbo, Z.; Xueshuai, W.; Yi, L.; Liuchun, Z. A green and efficient synthetic strategy for the preparation of PBS ionomers with high molecular weight, high ionic group content and good combined properties. Chem. Eng. J. 2023, 477, 146275. [Google Scholar] [CrossRef]
- Correlo, V.M.; Boesel, L.F.; Bhattacharya, M.; Mano, J.F.; Neves, N.M.; Reis, R.L. Properties of melt processed chitosan and aliphatic polyester blends. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2005, 403, 57–68. [Google Scholar] [CrossRef]
- Tabaght, F.E.; Idrissi, A.E.; Benarbia, A.; Achelhi, N.; Aqil, M.; Barkany, S.E.; Bellaouchi, R.; Asehraou, A. Grafting of Biodegradable Polyesters on Cellulose for Biocomposites: Characterization and Biodegradation. Int. Polym. Proc. 2020, 35, 107–120. [Google Scholar] [CrossRef]
- Then, Y.Y.; Ibrahim, N.A.; Zainuddin, N.; Chieng, B.W.; Ariffin, H.; Yunus, W. Influence of Alkaline-Peroxide Treatment of Fiber on the Mechanical Properties of Oil Palm Mesocarp Fiber/Poly(butylene succinate) Biocomposite. BioResources 2015, 10, 1730–1746. [Google Scholar] [CrossRef]
- Senthamaraikannan, P.; Kathiresan, M. Characterization of raw and alkali treated new natural cellulosic fiber from Coccinia grandis L. Carbohydr. Polym. 2018, 186, 332–343. [Google Scholar] [CrossRef]
- Dharmalingam, S.; Meenakshisundaram, O.; Elumalai, V.; Boopathy, R.S. An Investigation on the Interfacial Adhesion between Amine Functionalized Luffa Fiber and Epoxy Resin and Its Effect on Thermal and Mechanical Properties of Their Composites. J. Nat. Fibers 2021, 18, 2254–2269. [Google Scholar] [CrossRef]
- Abdelmouleh, M.; Boufi, S.; Belgacem, M.N.; Duarte, A.P.; Ben Salah, A.; Gandini, A. Modification of cellulosic fibres with functionalised silanes: Development of surface properties. Int. J. Adhes. Adhes. 2004, 24, 43–54. [Google Scholar] [CrossRef]
- Androsch, R.; Jariyavidyanont, K.; Janke, A.; Schick, C. Poly (butylene succinate): Low-temperature nucleation and crystallization, complex morphology and absence of lamellar thickening. Polymer 2023, 285, 126311. [Google Scholar] [CrossRef]
- Shi, K.; Liu, Y.; Hu, X.Y.; Su, T.T.; Li, P.; Wang, Z.Y. Preparation, characterization, and biodegradation of poly(butylene succinate)/cellulose triacetate blends. Int. J. Biol. Macromol. 2018, 114, 373–380. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, W.X.; Xin, Z.; Zhao, S.C.; Shi, Y.Q. Relationship between molecular structure, crystallization behavior, and mechanical properties of long chain branching polypropylene. J. Mater. Sci. 2016, 51, 5598–5608. [Google Scholar] [CrossRef]
- Sun, Y.J.; Wu, L.B.; Bu, Z.Y.; Li, B.G.; Li, N.X.; Dai, J.M. Synthesis and Thermomechanical and Rheological Properties of Biodegradable Long-Chain Branched Poly(butylene succinate-co-butylene terephthalate) Copolyesters. Ind. Eng. Chem. Res. 2014, 53, 10380–10386. [Google Scholar] [CrossRef]
- Di Lorenzo, M.L.; Androsch, R.; Righetti, M.C. Low-temperature crystallization of poly(butylene succinate). Eur. Polym. J. 2017, 94, 384–391. [Google Scholar] [CrossRef]
- Vandesteene, M.; Jacquel, N.; Saint-Loup, R.; Boucard, N.; Carrot, C.; Rousseau, A.; Fenouillot, F. Synthesis of branched poly(butylene succinate): Structure properties relationship. Chin. J. Polym. Sci. 2016, 34, 873–888. [Google Scholar] [CrossRef]
- Shan, P.; Lu, H.; Chen, N.; Liu, H.; Zhang, X.; Liu, X. A novel bioderived AB2-type monomer from castor oil derivative for the preparation of fully biobased hyperbranched polyesters. J. Appl. Polym. Sci. 2022, 139, e52765. [Google Scholar] [CrossRef]
- Soatthiyanon, N.; Aumnate, C.; Srikulkit, K. Rheological, tensile, and thermal properties of poly(butylene succinate) composites filled with two types of cellulose (kenaf cellulose fiber and commercial cellulose). Polym. Compos. 2020, 41, 2777–2791. [Google Scholar] [CrossRef]
- Terzopoulou, Z.N.; Papageorgiou, G.Z.; Papadopoulou, E.; Athanassiadou, E.; Reinders, M.; Bikiaris, D.N. Development and study of fully biodegradable composite materials based on poly(butylene succinate) and hemp fibers or hemp shives. Polym. Compos. 2016, 37, 407–421. [Google Scholar] [CrossRef]
- Ararat, C.A.; Quiñonez, W.; Murillo, E.A. Maleinized Hyperbranched Polyol Polyester: Effect of the Content of Maleic Anhydride in the Structural, Thermal and Rheological Properties. Macromol. Res. 2019, 27, 693–702. [Google Scholar] [CrossRef]
- Wang, G.; Guo, B.; Li, R. Synthesis, characterization, and properties of long-chain branched poly(butylene succinate). J. Appl. Polym. Sci. 2012, 124, 1271–1280. [Google Scholar] [CrossRef]
- Lu, J.; Wu, L.; Li, B.G. Long chain branched poly(butylene succinate-co-terephthalate) copolyesters using pentaerythritol as branching agent: Synthesis, thermo-mechanical, and rheological properties. J. Appl. Polym. Sci. 2017, 134. [Google Scholar] [CrossRef]
- Lule, Z.C.; Wondu, E.; Kim, J. Functionalization of various coffee husk biofibers on the rheological and thermomechanical properties of poly(butylene succinate)-urethane blended composites. Mater. Today Sustain. 2023, 22, 100382. [Google Scholar] [CrossRef]
Sample | SA/mol | BDO/mol | TMP/%mol | Time/h |
---|---|---|---|---|
PBS | 0.5 | 1.0 | - | 2 |
T-PBS1 | 0.5 | 1.0 | 0.25 | 0.5 |
T-PBS2 | 0.5 | 1.0 | 0.25 | 1 |
T-PBS3 | 0.5 | 1.0 | 0.25 | 1.5 |
T-PBS4 | 0.5 | 1.0 | 0.25 | 2 |
T-PBS5 | 0.5 | 1.0 | 0.25 | 2.5 |
Sample | PBS/wt% | TF/wt% | T-PBS1/wt% | T-PBS2/wt% | T-PBS3/wt% | T-PBS4/wt% | TPBS5/wt% |
---|---|---|---|---|---|---|---|
PBS | 100 | - | - | - | - | - | - |
85/15PBS | 85 | 15 | - | - | - | - | - |
85/15/T-PBS1 | 85 | 15 | 8 | - | - | - | - |
85/15/T-PBS2 | 85 | 15 | - | 8 | - | - | - |
85/15/T-PBS3 | 85 | 15 | - | - | 8 | - | - |
85/15/T-PBS4 | 85 | 15 | - | - | - | 8 | - |
85/15/T-PBS5 | 85 | 15 | - | - | - | - | 8 |
Sample | [η] (dL/g) a |
---|---|
PBS | 1.72 |
T-PBS1 | 0.21 |
T-PBS2 | 0.78 |
T-PBS3 | 1.34 |
T-PBS4 | 1.70 |
T-PBS5 | 1.85 |
Sample | Tm/°C | Tc/°C | ∆Hm/(J·g−1) | ∆HC/(J·g−1) | Xc/% | Xc*/% | T5%/°C | T85%/°C | Tmax/°C |
---|---|---|---|---|---|---|---|---|---|
PBS | 114.5 | 80.8 | 43.73 | 45.08 | 39.6 | 32.3 | 325.65 | 400.16 | 388.2 |
85/15PBS | 114.8 | 79.7 | 59.35 | 61.08 | 53.8 | 43.4 | 292.63 | 403.44 | 382.6 |
85/15/T-PBS1 | 115.5 | 84.4 | 54.22 | 65.19 | 49.2 | 38.8 | 291.63 | 401.98 | 384.0 |
85/15/T-PBS2 | 114.9 | 85.4 | 51.91 | 64.80 | 47.1 | 35.5 | 292.90 | 403.26 | 384.3 |
85/15/T-PBS3 | 115.4 | 82.9 | 53.27 | 60.36 | 48.3 | 39.4 | 291.63 | 404.81 | 384.1 |
85/15/T-PBS4 | 115.0 | 82.8 | 54.16 | 60.82 | 49.1 | 40.5 | 291.90 | 408.19 | 383.4 |
85/15/T-PBS5 | 114.6 | 81.9 | 56.20 | 59.99 | 50.9 | 41.5 | 294.27 | 404.08 | 383.7 |
Sample | Elongation at Break (%) | Yield Strength (MPa) | Flexural Strength (MPa) | Elastic Modulus (MPa) | Impact Strength (J/m) |
---|---|---|---|---|---|
PBS | 246.768 | 40.028 | 27.144 | 797 | 58.427 |
85/15PBS | 6.222 | 32.426 | 37.332 | 1485 | 42.955 |
85/15/T-PBS1 | 7.652 | 35.192 | 36.691 | 1346 | 40.432 |
85/15/T-PBS2 | 8.436 | 36.941 | 34.686 | 1224 | 39.808 |
85/15/T-PBS3 | 10.076 | 37.124 | 30.732 | 1189 | 39.691 |
85/15/T-PBS4 | 11.128 | 38.813 | 29.652 | 1112 | 39.432 |
85/15/T-PBS5 | 10.908 | 37.641 | 29.160 | 1089 | 38.144 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Li, S.; Wang, B.; Chen, C.; Zheng, L. Preparation and Performance of Poly(Butylene Succinate) (PBS) Composites Reinforced with Taxus Residue and Compatibilized with Branched PBS. Polymers 2025, 17, 2597. https://doi.org/10.3390/polym17192597
Chen S, Li S, Wang B, Chen C, Zheng L. Preparation and Performance of Poly(Butylene Succinate) (PBS) Composites Reinforced with Taxus Residue and Compatibilized with Branched PBS. Polymers. 2025; 17(19):2597. https://doi.org/10.3390/polym17192597
Chicago/Turabian StyleChen, Shiwanyi, Shufeng Li, Bing Wang, Chen Chen, and Liuchun Zheng. 2025. "Preparation and Performance of Poly(Butylene Succinate) (PBS) Composites Reinforced with Taxus Residue and Compatibilized with Branched PBS" Polymers 17, no. 19: 2597. https://doi.org/10.3390/polym17192597
APA StyleChen, S., Li, S., Wang, B., Chen, C., & Zheng, L. (2025). Preparation and Performance of Poly(Butylene Succinate) (PBS) Composites Reinforced with Taxus Residue and Compatibilized with Branched PBS. Polymers, 17(19), 2597. https://doi.org/10.3390/polym17192597