Reduced Anisotropic in Thermal Conductivity of Polymer Composites via Chemically Bonded BN–SiC Hybrid Fillers
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of BN–SiC Hybrid Filler
2.3. Fabrication of Polymer Composites with BN–SiC Hybrid Filler
2.4. Characterization
3. Results and Discussion
3.1. Morphology Analysis
3.2. Confirmation of Chemical Bonding Via FT-IR Analysis
3.3. Evaluation of Thermal Conductivity and Anisotropy
3.4. Heat Transfer Mechanism
3.5. Experimental Setup for Thermal Performance Evaluation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, M.; Li, S.; Zhang, Z.; Su, C.; Wong, B.; Hu, Y. Advancing Thermal Management Technology for Power Semiconductors through Materials and Interface Engineering. Acc. Mater. Res. 2025, 6, 563–576. [Google Scholar] [CrossRef]
- Zichen, W.; Changqing, D. A comprehensive review on thermal management systems for power lithium-ion batteries. Renew. Sustain. Energy Rev. 2021, 139, 110685. [Google Scholar] [CrossRef]
- Ghaisas, G.; Krishnan, S. A critical review and perspective on thermal management of power electronics modules for inverters and converters. Trans. Indian Natl. Acad. Eng. 2022, 7, 47–60. [Google Scholar] [CrossRef]
- Dhumal, A.R.; Kulkarni, A.P.; Ambhore, N.H. A comprehensive review on thermal management of electronic devices. J. Eng. Appl. Sci. 2023, 70, 140. [Google Scholar] [CrossRef]
- Xing, W.; Xu, Y.; Song, C.; Deng, T. Recent advances in thermal interface materials for thermal management of high-power electronics. Nanomaterials 2022, 12, 3365. [Google Scholar] [CrossRef]
- Tu, Y.; Liu, B.; Yao, G.; Luo, H.; Jia, X.; Du, J.; Xu, C. A Review of Advanced Thermal Interface Materials with Oriented Structures for Electronic Devices. Electronics 2024, 13, 4287. [Google Scholar] [CrossRef]
- Razeeb, K.M.; Dalton, E.; Cross, G.L.W.; Robinson, A.J. Present and future thermal interface materials for electronic devices. Int. Mater. Rev. 2018, 63, 1–21. [Google Scholar] [CrossRef]
- Akhtar, S.S. An integrated approach to design and develop high-performance polymer-composite thermal interface material. Polymers 2021, 13, 807. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, X.; Hao, Q. A mini review on thermally conductive polymers and polymer-based composites. Compos. Commun. 2021, 24, 100617. [Google Scholar] [CrossRef]
- Wei, X.; Wang, Z.; Tian, Z.; Luo, T. Thermal transport in polymers: A review. J. Heat Transf. 2021, 143, 072101. [Google Scholar] [CrossRef]
- He, X.; Wang, Y. Recent advances in the rational design of thermal conductive polymer composites. Ind. Eng. Chem. Res. 2021, 60, 1137–1154. [Google Scholar] [CrossRef]
- Ma, H.; Gao, B.; Wang, M.; Yuan, Z.; Shen, J.; Zhao, J.; Feng, Y. Strategies for enhancing thermal conductivity of polymer-based thermal interface materials: A review. J. Mater. Sci. 2021, 56, 1064–1086. [Google Scholar] [CrossRef]
- Feng, C.-P.; Yang, L.-Y.; Yang, J.; Bai, L.; Bao, R.-Y.; Liu, Z.-Y.; Yang, M.-B.; Lan, H.-B.; Yang, W. Recent advances in polymer-based thermal interface materials for thermal management: A mini-review. Compos. Commun. 2020, 22, 100528. [Google Scholar] [CrossRef]
- Ouyang, Y.; Bai, L.; Tian, H.; Li, X.; Yuan, F. Recent progress of thermal conductive ploymer composites: Al2O3 fillers, properties and applications. Compos. Part A: Appl. Sci. Manuf. 2022, 152, 106685. [Google Scholar] [CrossRef]
- Lee, D.-K.; Nam, K.-W.; Kim, W.-J.; Park, S.-H. Development of hybrid composites with zero-temperature coefficient of resistance: Mechanisms and predictive modeling using symbolic regression. Chem. Eng. J. 2025, 506, 159866. [Google Scholar] [CrossRef]
- Lee, D.-K.; Hur, O.; Kim, E.; Kang, B.-H.; Kang, S.H.; Min, K.; Park, S.-H. Unveiling unexpected mechanical softening/stiffening in carbon nanotube composites under cyclic deformation: Experiments and predictive modeling. Adv. Compos. Hybrid Mater. 2025, 8, 194. [Google Scholar] [CrossRef]
- Tarhini, A.; Tehrani-Bagha, A. Advances in preparation methods and conductivity properties of graphene-based polymer composites. Appl. Compos. Mater. 2023, 30, 1737–1762. [Google Scholar] [CrossRef]
- Wang, Y.; Weng, G.J. Electrical conductivity of carbon nanotube-and graphene-based nanocomposites. In Micromechanics and Nanomechanics of Composite Solids, Springer: Berlin/Heidelberg, Germany, 2017; pp 123-156.
- Caradonna, A.; Badini, C.; Padovano, E.; Pietroluongo, M. Electrical and thermal conductivity of epoxy-carbon filler composites processed by calendaring. Materials 2019, 12, 1522. [Google Scholar] [CrossRef]
- Isarn, I.; Gamardella, F.; Fernàndez-Francos, X.; Serra, À.; Ferrando, F. Thermal conductive composites prepared by addition of several ceramic fillers to thermally cationic curing cycloaliphatic epoxy resins. Polymers 2019, 11, 138. [Google Scholar] [CrossRef]
- Meng, Y.; Yang, D.; Jiang, X.; Bando, Y.; Wang, X. Thermal conductivity enhancement of polymeric composites using hexagonal boron nitride: Design strategies and challenges. Nanomaterials 2024, 14, 331. [Google Scholar] [CrossRef]
- Jiang, H.; Cai, Q.; Mateti, S.; Bhattacharjee, A.; Yu, Y.; Zeng, X.; Sun, R.; Huang, S.; Chen, Y.I. Recent research advances in hexagonal boron nitride/polymer nanocomposites with isotropic thermal conductivity. Adv. Nanocomposites 2024, 1, 144–156. [Google Scholar] [CrossRef]
- Li, M.; Han, S.; Dan, C.; Wu, T.; You, F.; Jiang, X.; Wu, Y.; Dang, Z.M. Boron Nitride-Polymer Composites with High Thermal Conductivity: Preparation, Functionalization Strategy and Innovative Structural Regulation. Small 2025, 21, 2412447. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Qian, X.; Yang, R.; Lindsay, L. Anisotropic thermal transport in bulk hexagonal boron nitride. Phys. Rev. Mater. 2018, 2, 064005. [Google Scholar] [CrossRef]
- Kim, K.; Kim, J. Vertical filler alignment of boron nitride/epoxy composite for thermal conductivity enhancement via external magnetic field. Int. J. Therm. Sci. 2016, 100, 29–36. [Google Scholar] [CrossRef]
- Kim, K.; Ju, H.; Kim, J. Filler orientation of boron nitride composite via external electric field for thermal conductivity enhancement. Ceram. Int. 2016, 42, 8657–8663. [Google Scholar] [CrossRef]
- Lin, H.; Xu, G.; Chen, Z.; Wang, L.; Liu, Z.; Ma, L. Thermally Conductive Polydimethylsiloxane-Based Composite with Vertically Aligned Hexagonal Boron Nitride. Polymers 2024, 16, 3126. [Google Scholar] [CrossRef]
- Hou, J.; Li, G.; Yang, N.; Qin, L.; Grami, M.E.; Zhang, Q.; Wang, N.; Qu, X. Preparation and characterization of surface modified boron nitride epoxy composites with enhanced thermal conductivity. Rsc Adv. 2014, 4, 44282–44290. [Google Scholar] [CrossRef]
- Jiang, Y.; Shi, X.; Feng, Y.; Li, S.; Zhou, X.; Xie, X. Enhanced thermal conductivity and ideal dielectric properties of epoxy composites containing polymer modified hexagonal boron nitride. Compos. Part A: Appl. Sci. Manuf. 2018, 107, 657–664. [Google Scholar] [CrossRef]
- Shin, D.-I.; Lee, J.; Kim, M.R.; Jeong, S.; Park, J.-I.; Baik, S.; Yi, G.-R.; Park, S.-Y.; Lee, G. Effect of small-sized modifier on boron nitride for efficient heat transfer through thermal conductive epoxy composites. Ceram. Int. 2024, 50, 8837–8844. [Google Scholar] [CrossRef]
- Liu, G.; Xu, P.; Luo, Z.; Zhang, L.; Luo, Y.; Zhang, P.; Zhu, M.; Wu, J. Dimensional synergy in 3D thermally conductive boron nitride/polymer composites. Appl. Phys. Rev. 2025, 12. [Google Scholar] [CrossRef]
- Pornea, A.G.M.; Choi, K.-I.; Jung, J.-H.; Hanif, Z.; Kwak, C.; Kim, J. Enhancement of isotropic heat dissipation of polymer composites by using ternary filler systems consisting of boron nitride nanotubes, h-BN, and Al2O3. ACS Omega 2023, 8, 24454–24466. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, G. Nanocarbon-Based Hybrid Fillers in Thermally Conductive Polymer Composites: A Review. Adv. Eng. Mater. 2024, 26, 2301983. [Google Scholar] [CrossRef]
- Wu, X.; Yu, H.; Wang, L.; Meng, X.; Huang, Z.; Liu, X.; Gong, X.; Liu, J. Enhancing thermal conductivity of epoxy composites via f-BN@ f-MgO hybrid fillers assisted by hot pressing. Polym. Compos. 2023, 44, 2966–2976. [Google Scholar] [CrossRef]
- Feng, F.; Luo, Y.; Yang, R.; Zhao, Z. Construction of denser networks via functionalized aluminum oxide-boron nitride hybrid fillers: Towards improved thermal conductivity of polycarbonate composites. Polym. Compos. 2025, 46, 579–589. [Google Scholar] [CrossRef]
- Yang, F.; Chen, Y.; Hai, W.; Yan, S.; Cao, T.; Yuan, Z.; Huang, Z.; Huang, Q.; Li, Y. Research progress on high-thermal-conductivity silicon carbide ceramics. Ceram. Int. 2025, 51, 4095–4109. [Google Scholar] [CrossRef]
- Jiang, F.; Cui, S.; Song, N.; Shi, L.; Ding, P. Hydrogen bond-regulated boron nitride network structures for improved thermal conductive property of polyamide-imide composites. ACS Appl. Mater. Interfaces 2018, 10, 16812–16821. [Google Scholar] [CrossRef]
- Yang, B.; Jiang, Z.; Yang, Y.; Jiang, B.; Gao, H.; Shang, Y.; Zhang, H. Covalent-Bond Modified Boron Nitride for High-Temperature Poly (Ether Ether Ketone) Composites: Enhancement of Thermal Conductivity and Mechanical Properties by Interfacial Strengthening. Polym. Compos. 2025. [Google Scholar] [CrossRef]
- ISO 22007-2:2022; Plastics—Determination of Thermal Conductivity and Thermal Diffusivity—Part 2: Transient Plane Heat Source (Hot Disc) Method. International Organization for Standardization: Geneva, Switzerland, 2022.
- Lee, D.-K.; Yoo, J.; Kim, H.; Kang, B.-H.; Park, S.-H. Electrical and thermal properties of carbon nanotube polymer composites with various aspect ratios. Materials 2022, 15, 1356. [Google Scholar] [CrossRef]
- Patki, A.M.; Maharanwar, A.A.; Harde, S.K.; Goyal, R. Polycarbonate–hexagonal boron nitride composites with better dielectric properties for electronic applications. SN Appl. Sci. 2019, 1, 775. [Google Scholar] [CrossRef]
- Ryu, S.; Oh, H.; Kim, J. Facile liquid-exfoliation process of boron nitride nanosheets for thermal conductive polyphthalamide composite. Polymers 2019, 11, 1628. [Google Scholar] [CrossRef]
- Zhang, H.-x.; Shin, B.-G.; Lee, D.-E.; Yoon, K.-B. Preparation of PP/2D-nanosheet composites using MoS2/MgCl2-and Bn/MgCl2-bisupported ziegler–natta catalysts. Catalysts 2020, 10, 596. [Google Scholar] [CrossRef]
- Su, K.-H.; Su, C.-Y.; Shih, W.-L.; Lee, F.-T. Improvement of the thermal conductivity and mechanical properties of 3D-printed polyurethane composites by incorporating hydroxylated boron nitride functional fillers. Materials 2022, 16, 356. [Google Scholar] [CrossRef]
- Li, Y.; Chen, C.; Li, J.-T.; Yang, Y.; Lin, Z.-M. Surface charges and optical characteristic of colloidal cubic SiC nanocrystals. Nanoscale Res. Lett. 2011, 6, 454. [Google Scholar] [CrossRef]
- Liu, D.; Ma, C.; Chi, H.; Li, S.; Zhang, P.; Dai, P. Enhancing thermal conductivity of polyimide composite film by electrostatic self-assembly and two-step synergism of Al2O3 microspheres and BN nanosheets. RSC Adv. 2020, 10, 42584–42595. [Google Scholar] [CrossRef]
- De Paz-Simon, H.; Chemtob, A.; Croutxé-Barghorn, C.; Rigolet, S.; Michelin, L.; Vidal, L.; Lebeau, B. Surfactant-directed synthesis of mesoporous films made single-step by a tandem photosol-gel/photocalcination route. Apl Mater. 2014, 2. [Google Scholar] [CrossRef]
- Vilmin, F.; Bottero, I.; Travert, A.; Malicki, N.; Gaboriaud, F.; Trivella, A.l.; Thibault-Starzyk, F. Reactivity of bis [3-(triethoxysilyl) propyl] tetrasulfide (TESPT) silane coupling agent over hydrated silica: Operando IR spectroscopy and chemometrics study. J. Phys. Chem. C 2014, 118, 4056–4071. [Google Scholar] [CrossRef]
- Wang, F.; Dong, X.; Liu, G.; Wan, B.; Gao, J.; Liu, B.; Zha, J.-W. Covalent bond-assisted continuous interface structure for high thermal conductive polyimide composite films. Compos. Part A Appl. Sci. Manuf. 2024, 185, 108348. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, T.; Gao, S.; Yin, X.; Zhang, G. Enhancing thermal conductivity of hBN/SiC/PTFE composites with low dielectric properties via pulse vibration molding. Macromol. Rapid Commun. 2023, 44, 2300136. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Li, J.; Wang, W.; Gao, W.; Bai, H. Isotropically ultrahigh thermal conductive polymer composites by assembling anisotropic boron nitride nanosheets into a biaxially oriented network. ACS Nano 2022, 16, 18959–18967. [Google Scholar] [CrossRef]
- Yu, C.; Gong, W.; Zhang, J.; Lv, W.; Tian, W.; Fan, X.; Yao, Y. Hot pressing-induced alignment of hexagonal boron nitride in SEBS elastomer for superior thermally conductive composites. RSC Adv. 2018, 8, 25835–25845. [Google Scholar] [CrossRef] [PubMed]
- Yun, H.; Kwak, M.-G.; Park, K.; Kim, Y. Fabrication, thermal conductivity, and mechanical properties of hexagonal-boron-nitride-pattern-embedded aluminum oxide composites. Nanomaterials 2022, 12, 2815. [Google Scholar] [CrossRef]
- Christensen, G.; Younes, H.; Hong, G.; Lou, D.; Hong, H.; Widener, C.; Bailey, C.; Hrabe, R. Hydrogen bonding enhanced thermally conductive carbon nano grease. Synth. Met. 2020, 259, 116213. [Google Scholar] [CrossRef]
- Ma, M.; Zhang, X.; Xiong, C.; Huang, X.; Chen, L.; Qing, S.; Wang, H. Microscopic mechanisms of thermal transport at the SiO2-water interface under the influence of wettability: A molecular dynamics study. Chem. Phys. 2025, 595, 112700. [Google Scholar] [CrossRef]
- Ran, X.; Wang, Y.; Lu, J.; Sun, R.; Xu, J.-B.; Yang, N.; Yin, H.; Wong, C.-P. Effect of hydrogen bonds on the thermal transport in a precisely branched polyethylene with ordered and amorphous structures. Comput. Mater. Sci. 2022, 205, 111191. [Google Scholar] [CrossRef]
- An, L.; An, M.; Yao, B.; Song, J.; Zhang, X.; Ma, W. Unlocking the Trade-Off Between Intrinsic and Interfacial Thermal Transport of Boron Nitride Nanosheets by Surface Functionalization for Advanced Thermal Interface Materials. Adv. Mater. 2025, 37, 2412137. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Ciarla, R.; Boonkird, A.; Raza, S.; Nguyen, T.; Zhou, J.; Osti, N.C.; Mamontov, E.; Jiang, Z.; Zuo, X. Defects vibrations engineering for enhancing interfacial thermal transport in polymer composites. Sci. Adv. 2025, 11, eadp6516. [Google Scholar] [CrossRef]
- Zhou, H.; Yu, X.; Zhou, X.; Wen, Y.; Xue, Z.; Mai, Y.W.; Xie, X. Flame-retardant, thermally conductive, and mechanically strong epoxy composites with phenylphosphonic acid-functionalized boron nitride nanosheets. Compos. Part B Eng. 2025, 112764. [Google Scholar] [CrossRef]
Filler Volume % | BN: SiC Weight Ratio | X-Y Plane Thermal Conductivity | Z-Axis Thermal Conductivity |
---|---|---|---|
70 | 1:1 | 3.32 | 1.16 |
2:1 | 4.59 | 1.61 | |
3:1 | 4.72 | 1.42 | |
4:1 | 4.85 | 1.27 | |
5:1 | 4.93 | 1.14 | |
6:1 | 5.12 | 1.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, W.-J.; An, M.-R.; Park, S.-H. Reduced Anisotropic in Thermal Conductivity of Polymer Composites via Chemically Bonded BN–SiC Hybrid Fillers. Polymers 2025, 17, 2580. https://doi.org/10.3390/polym17192580
Kim W-J, An M-R, Park S-H. Reduced Anisotropic in Thermal Conductivity of Polymer Composites via Chemically Bonded BN–SiC Hybrid Fillers. Polymers. 2025; 17(19):2580. https://doi.org/10.3390/polym17192580
Chicago/Turabian StyleKim, Won-Jin, Mi-Ri An, and Sung-Hoon Park. 2025. "Reduced Anisotropic in Thermal Conductivity of Polymer Composites via Chemically Bonded BN–SiC Hybrid Fillers" Polymers 17, no. 19: 2580. https://doi.org/10.3390/polym17192580
APA StyleKim, W.-J., An, M.-R., & Park, S.-H. (2025). Reduced Anisotropic in Thermal Conductivity of Polymer Composites via Chemically Bonded BN–SiC Hybrid Fillers. Polymers, 17(19), 2580. https://doi.org/10.3390/polym17192580