Eco-Friendly Synthesis of Silver–Cellulose Nanocomposite Adsorbent from Agricultural Residues for Binary Dye System Remediation
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Isolation of Micro-Cellulose from PN Shells
2.3. Synthesis of Ag@Ce NCs
2.4. Characterization of Ag@Ce NCs
2.5. Adsorption and Desorption Studies
2.6. Adsorption Kinetics
2.7. Adsorption Isotherms
2.8. Thermodynamic Parameters
3. Results and Discussion
3.1. Characterization of Ag@Ce NCs
3.1.1. Point of Zero Charge (pHpzc)
3.1.2. FTIR Spectra
3.1.3. TEM Analysis
3.1.4. EDX-SEM Analysis
3.1.5. Zeta Potential Analysis
3.1.6. XRD Pattern Analysis
3.1.7. The Mechanism of Ag@Ce NCs Formation
3.2. Adsorption Study
3.2.1. Effect of pH
3.2.2. Effect of Adsorbent Dosage
3.2.3. Effect of Contact Time
3.2.4. Effect of Initial Concentration of Dyes
3.2.5. Effect of Ionic Strength
3.2.6. Effect of Temperature and Thermodynamic Parameters
3.2.7. Kinetic Studies
3.2.8. Isotherm Studies
3.2.9. Adsorption Mechanism
3.2.10. Desorption Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kant, R. Textile Dyeing Industry an Environmental Hazard. Nat. Sci. 2011, 2012, 22–26. [Google Scholar] [CrossRef]
- Vikrant, K.; Giri, B.S.; Raza, N.; Roy, K.; Kim, K.H.; Rai, B.N.; Singh, R.S. Recent Advancements in Bioremediation of Dye: Current Status and Challenges. Bioresour. Technol. 2018, 253, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Sirianuntapiboon, S.; Chairattanawan, K.; Jungphungsukpanich, S. Some Properties of a Sequencing Batch Reactor System for Removal of Vat Dyes. Bioresour. Technol. 2006, 97, 1243–1252. [Google Scholar] [CrossRef]
- Fortunati, E.; Puglia, D.; Monti, M.; Peponi, L.; Santulli, C.; Kenny, J.M.; Torre, L. Extraction of Cellulose Nanocrystals from Phormium Tenax Fibres. J. Polym. Environ. 2013, 21, 319–328. [Google Scholar] [CrossRef]
- Tsade Kara, H.; Anshebo, S.T.; Sabir, F.K.; Adam Workineh, G. Removal of Methylene Blue Dye from Wastewater Using Periodiated Modified Nanocellulose. Int. J. Chem. Eng. 2021, 2021, 9965452. [Google Scholar] [CrossRef]
- He, X.; Male, K.B.; Nesterenko, P.N.; Brabazon, D.; Paull, B.; Luong, J.H.T. Adsorption and Desorption of Methylene Blue on Porous Carbon Monoliths and Nanocrystalline Cellulose. ACS Appl. Mater. Interfaces 2013, 5, 8796–8804. [Google Scholar] [CrossRef]
- Ramírez-García, R.; Gohil, N.; Singh, V. Recent Advances, Challenges, and Opportunities in Bioremediation of Hazardous Materials. Phytomanag. Polluted Sites Mark. Oppor. Sustain. Phytoremediat. 2019, 517–568. [Google Scholar] [CrossRef]
- Ioannou, Z.; Kavvadias, V.; Karasavvidis, C. Recycling of Agricultural Wastes: Treatment and Uses; Foster, C.N., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2015. [Google Scholar]
- Chen, C.; Chaudhary, A.; Mathys, A. Nutritional and Environmental Losses Embedded in Global Food Waste. Resour. Conserv. Recycl. 2020, 160, 104912. [Google Scholar] [CrossRef]
- Liuzzi, S.; Rubino, C.; Stefanizzi, P.; Martellotta, F. The Agro-Waste Production in Selected EUSAIR Regions and Its Potential Use for Building Applications: A Review. Sustainability 2022, 14, 670. [Google Scholar] [CrossRef]
- Tsai, W.T.; Chang, C.Y.; Lee, S.L. A Low Cost Adsorbent from Agricultural Waste Corn Cob by Zinc Chloride Activation. Bioresour. Technol. 1998, 64, 211–217. [Google Scholar] [CrossRef]
- Raju, G.U.; Kumarappa, S.; Gaitonde, V.N. Mechanical and Physical Characterization of Agricultural Waste Reinforced Polymer Composites. J. Mater. Environ. Sci. 2012, 3, 907–916. [Google Scholar]
- Punnadiyil, R.K.; Sreejith, M.P.; Purushothaman, E. Isolation of Microcrystalline and Nano Cellulose from Peanut Shells Crystallography: Special Emphasis on Applications in Chemistry Isolation of Microcrystalline and Nano Cellulose from Peanut Shells. J. Chem. Pharm. Sci. 2016, 974, 2115. [Google Scholar]
- Liu, X.; Dong, H.Z.; Hou, H.X. Preparation and Characterization of Cellulose Nanocrystals from Peanut Shells. Mod. Food Sci. Technol. 2015, 31, 172–176. [Google Scholar] [CrossRef]
- Abdul Khalil, H.P.S.; Bhat, A.H.; Ireana Yusra, A.F. Green Composites from Sustainable Cellulose Nanofibrils: A Review. Carbohydr. Polym. 2012, 87, 963–979. [Google Scholar] [CrossRef]
- Balazs, A.C.; Emrick, T.; Russell, T.P. Nanoparticle Polymer Composites: Where Two Small Worlds Meet. Science 2006, 314, 1107–1110. [Google Scholar] [CrossRef] [PubMed]
- Braun, T.; Schubert, A.; Zsindely, S. Nanoscience and Nanotechnology on the Balance. Scientometrics 1997, 38, 321–325. [Google Scholar] [CrossRef]
- Sanchez, C.; Lebeau, B.; Chaput, F.; Boilot, J.P. Optical Properties of Functional Hybrid Organic–Inorganic Nanocomposites. Adv. Mater. 2003, 15, 1969–1994. [Google Scholar] [CrossRef]
- Tavakolian, M.; Wiebe, H.; Sadeghi, M.A.; Van De Ven, T.G.M. Dye Removal Using Hairy Nanocellulose: Experimental and Theoretical Investigations. ACS Appl. Mater. Interfaces 2020, 12, 5040–5049. [Google Scholar] [CrossRef] [PubMed]
- Chinthalapudi, N.; Kommaraju, V.V.D.; Kannan, M.K.; Nalluri, C.B.; Varanasi, S. Composites of Cellulose Nanofibers and Silver Nanoparticles for Malachite Green Dye Removal from Water. Carbohydr. Polym. Technol. Appl. 2021, 2, 100098. [Google Scholar] [CrossRef]
- Aljeddani, G.S.; Alghanmi, R.M.; Hamouda, R.A. Study on the Isotherms, Kinetics, and Thermodynamics of Adsorption of Crystal Violet Dye Using Ag-NPs-Loaded Cellulose Derived from Peanut-Husk Agro-Waste. Polymers 2023, 15, 4394. [Google Scholar] [CrossRef]
- Du, P.D.; Danh, H.T. Single and Binary Adsorption Systems of Rhodamine B and Methylene Blue onto Alkali-Activated Vietnamese Diatomite. Adsorpt. Sci. Technol. 2021, 2021, 1014354. [Google Scholar] [CrossRef]
- Shaheed, N.; Javanshir, S.; Esmkhani, M.; Dekamin, M.G.; Naimi-Jamal, M.R. Synthesis of Nanocellulose Aerogels and Cu-BTC/Nanocellulose Aerogel Composites for Adsorption of Organic Dyes and Heavy Metal Ions. Sci. Rep. 2021, 11, 18553. [Google Scholar] [CrossRef]
- Jianlong, W.; Xinmin, Z.; Decai, D.; Ding, Z. Bioadsorption of Lead(II) from Aqueous Solution by Fungal Biomass of Aspergillus Niger. J. Biotechnol. 2001, 87, 273–277. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Pseudo-Second Order Model for Sorption Processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Khalid, Q.-U.-A.; Khan, A.; Bhatti, H.N.; Sadaf, S.; Kausar, A.; Alissa, S.A.; Alghaith, M.K.; Iqbal, M. Cellulosic Biomass Biocomposites with Polyaniline, Polypyrrole and Sodium Alginate: Insecticide Adsorption-Desorption, Equilibrium and Kinetics Studies. Arab. J. Chem. 2021, 14, 202107. [Google Scholar] [CrossRef]
- Zaheer, Z.; AbuBaker Bawazir, W.; Al-Bukhari, S.M.; Basaleh, A.S. Adsorption, Equilibrium Isotherm, and Thermodynamic Studies to the Removal of Acid Orange 7. Mater. Chem. Phys. 2019, 232, 109–120. [Google Scholar] [CrossRef]
- Langmuir, I. The Constitution and Fundamental Properties of Solids and Liquids. Part I Solids J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef]
- Freundlich, H. Over the Adsorption in Solution. J. Phys. Chem. 1906, 57, 1100–1107. [Google Scholar]
- Weber, W.J., Jr.; Morris, J.C. Kinetics of Adsorption on Carbon from Solution. J. Sanit. Eng. Div. 1963, 89, 31–59. [Google Scholar] [CrossRef]
- Namasivayam, C.; Kavitha, D. Removal of Congo Red from Water by Adsorption onto Activated Carbon Prepared from Coir Pith, an Agricultural Solid Waste. Dye. Pigment. 2002, 54, 47–58. [Google Scholar] [CrossRef]
- Gupta, V.K.; Ali, I.; Suhas; Mohan, D. Equilibrium Uptake and Sorption Dynamics for the Removal of a Basic Dye (Basic Red) Using Low-Cost Adsorbents. J. Colloid. Interface Sci. 2003, 265, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Al-Ahmari, J.M.; Alghanmi, R.M.; Hamouda, R.A. Bio-Fabricated Aluminum Oxide Nanoparticles Derived from Waste Pharmaceutical Packages: Insight into Characterization and Applications. Biomolecules 2025, 15, 984. [Google Scholar] [CrossRef]
- Ghaffar, A.; Younis, M.N. Interaction and Thermodynamics of Methylene Blue Adsorption on Oxidized Multi-Walled Carbon Nanotubes. Green Process. Synth. 2015, 4, 209–217. [Google Scholar] [CrossRef]
- Mall, I.D.; Srivastava, V.C.; Kumar, G.V.A.; Mishra, I.M. Characterization and Utilization of Mesoporous Fertilizer Plant Waste Carbon for Adsorptive Removal of Dyes from Aqueous Solution. Colloids Surf. A Physicochem. Eng. Asp. 2006, 278, 175–187. [Google Scholar] [CrossRef]
- Kong, D.; Wilson, L.D. Uptake of Methylene Blue from Aqueous Solution by Pectin–Chitosan Binary Composites. J. Compos. Sci. 2020, 4, 95. [Google Scholar] [CrossRef]
- Fan, L.; Zhang, H.; Gao, M.; Zhang, M.; Liu, P.; Liu, X. Cellulose Nanocrystals/Silver Nanoparticles: In-Situ Preparation and Application in PVA Films. Holzforschung 2019, 74, 523–528. [Google Scholar] [CrossRef]
- Hamouda, R.A.; Qarabai, F.A.K.; Shahabuddin, F.S.; Al-Shaikh, T.M.; Makharita, R.R. Antibacterial Activity of Ulva/Nanocellulose and Ulva/Ag/Cellulose Nanocomposites and Both Blended with Fluoride against Bacteria Causing Dental Decay. Polymers 2023, 15, 1047. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Luo, Y.; Lin, Z.; Huang, J. A Silver-Nanoparticle/Cellulose-Nanofiber Composite as a Highly Effective Substrate for Surface-Enhanced Raman Spectroscopy. Beilstein J. Nanotechnol. 2019, 10, 1270–1279. [Google Scholar] [CrossRef]
- Faisal, M.; Žmirić, M.; Kim, N.; Bruun, S.; Mariniello, L.; Famiglietti, M.; Bordallo, H.; Kirkensgaard, J.; Jørgensen, B.; Ulvskov, P.; et al. A Comparison of Cellulose Nanocrystals and Nanofibers as Reinforcements to Amylose-Based Composite Bioplastics. Coatings 2023, 13, 1573. [Google Scholar] [CrossRef]
- Ren, S.; Dong, L.; Zhang, X.; Lei, T.; Ehrenhauser, F.; Song, K.; Li, M.; Sun, X.; Wu, Q. Electrospun Nanofibers Made of Silver Nanoparticles, Cellulose Nanocrystals, and Polyacrylonitrile as Substrates for Surface-Enhanced Raman Scattering. Materials 2017, 10, 68. [Google Scholar] [CrossRef]
- Chai, Y.D.; Pang, Y.L.; Lim, S.; Chong, W.C.; Lai, C.W.; Abdullah, A.Z. Role of Oil Palm Empty Fruit Bunch-Derived Cellulose in Improving the Sonocatalytic Activity of Silver-Doped Titanium Dioxide. Polymers 2021, 13, 3530. [Google Scholar] [CrossRef]
- Hamouda, R.A.; Makharita, R.R.; Qarabai, F.A.K.; Shahabuddin, F.S.; Saddiq, A.A.; Bahammam, L.A.; El-Far, S.W.; Bukhari, M.A.; Elaidarous, M.A.; Abdella, A. Antibacterial Activities of Ag/Cellulose Nanocomposites Derived from Marine Environment Algae against Bacterial Tooth Decay. Microorganisms 2023, 12, 1. [Google Scholar] [CrossRef]
- Li, Y.; Tian, J.; Yang, C.; Hsiao, B.S. Nanocomposite Film Containing Fibrous Cellulose Scaffold and Ag/TiO2 Nanoparticles and Its Antibacterial Activity. Polymers 2018, 10, 1052. [Google Scholar] [CrossRef]
- Clogston, J.D.; Patri, A.K. Zeta Potential Measurement. In Characterization of Nanoparticles Intended for Drug Delivery; Humana Press: Totowa, NJ, USA, 2011; Volume 697, pp. 63–70. ISBN 978-1-60327-198-1. [Google Scholar]
- Németh, Z.; Csóka, I.; Semnani Jazani, R.; Sipos, B.; Haspel, H.; Kozma, G.; Kónya, Z.; Dobó, D.G. Quality by Design-Driven Zeta Potential Optimisation Study of Liposomes with Charge Imparting Membrane Additives. Pharmaceutics 2022, 14, 1798. [Google Scholar] [CrossRef]
- Zhou, S.; Peng, H.; Zhao, A.; Zhang, R.; Li, T.; Yang, X.; Lin, D. Synthesis of Bacterial Cellulose Nanofibers/Ag Nanoparticles: Structure, Characterization and Antibacterial Activity. Int. J. Biol. Macromol. 2024, 259, 129392. [Google Scholar] [CrossRef]
- Ali, M.H.; Azad, M.A.K.; Khan, K.A.; Rahman, M.O.; Chakma, U.; Kumer, A. Analysis of Crystallographic Structures and Properties of Silver Nanoparticles Synthesized Using PKL Extract and Nanoscale Characterization Techniques. ACS Omega 2023, 8, 28133–28142. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Haq, I.U.; Akhtar, J.; Sher, M.; Ahmed, N.; Zia, M. Synthesis of Ag-NPs Impregnated Cellulose Composite Material: Its Possible Role in Wound Healing and Photocatalysis. IET Nanobiotechnol. 2017, 11, 477–484. [Google Scholar] [CrossRef]
- Kishanji, M.; Mamatha, G.; Obi Reddy, K.; Varada Rajulu, A.; Madhukar, K. In Situ Generation of Silver Nanoparticles in Cellulose Matrix Using Azadirachta Indica Leaf Extract as a Reducing Agent. Int. J. Polym. Anal. Charact. 2017, 22, 734–740. [Google Scholar] [CrossRef]
- Ovalle-Serrano, S.A.; Díaz-Serrano, L.A.; Hong, C.; Hinestroza, J.P.; Blanco-Tirado, C.; Combariza, M.Y. Synthesis of Cellulose Nanofiber Hydrogels from Fique Tow and Ag Nanoparticles. Cellulose 2020, 27, 9947–9961. [Google Scholar] [CrossRef]
- Araki, J.; Hida, Y. Comparison of Methods for Quantitative Determination of Silver Content in Cellulose Nanowhisker/Silver Nanoparticle Hybrids. Cellulose 2018, 25, 1065–1076. [Google Scholar] [CrossRef]
- Varghese Alex, K.; Tamil Pavai, P.; Rugmini, R.; Shiva Prasad, M.; Kamakshi, K.; Sekhar, K.C. Green Synthesized Ag Nanoparticles for Bio-Sensing and Photocatalytic Applications. ACS Omega 2020, 5, 13123–13129. [Google Scholar] [CrossRef] [PubMed]
- Garcia, A.M.; Martins, T.S.; Camilo, F.F. Free Facile Preparation of Ag-Nanoparticles on Cellulose Membrane for Catalysis. Cellulose 2021, 28, 4899–4911. [Google Scholar] [CrossRef]
- Iqbal, D.; Zhao, Y.; Zhao, R.; Russell, S.J.; Ning, X. A Review on Nanocellulose and Superhydrophobic Features for Advanced Water Treatment. Polymers 2022, 14, 2343. [Google Scholar] [CrossRef]
- Wu, X.L.; Shi, Y.; Zhong, S.; Lin, H.; Chen, J.R. Facile Synthesis of Fe3O4-Graphene@mesoporous SiO2 Nanocomposites for Efficient Removal of Methylene Blue. Appl. Surf. Sci. 2016, 378, 80–86. [Google Scholar] [CrossRef]
- Rápó, E.; Tonk, S. Factors Affecting Synthetic Dye Adsorption; Desorption Studies: A Review of Results from the Last Five Years (2017–2021). Molecules 2021, 26, 5419. [Google Scholar] [CrossRef]
- Panczyk, T.; Wolski, P.; Nieszporek, K.; Pietrzak, R. Adsorption of Methylene Blue on Activated Carbon Surfaces Obtained by Shock Compression of Graphite Using Reactive Molecular Dynamics. Molecules 2024, 29, 6030. [Google Scholar] [CrossRef]
- Muftah Elsherif, K.; El-Dali, A.; Mabrok Ewlad-Ahmed, A.; Treban, A.; Alttayib, I. Removal of Safranin Dye from Aqueous Solution by Adsorption onto Olive Leaves Powder. J. Mater. Environ. Sci. 2021, 12, 418–430. [Google Scholar]
- Salem, M.A.; Salem, I.A.; Zaki, H.M.; El-Sawy, A.M. Elimination of Safranin-O and a Binary Mixture of Safranin-O and Methylene Blue from Water by Adsorption on Magnetite/Ag Nanocomposite. Egypt. J. Pet. 2022, 31, 39–49. [Google Scholar] [CrossRef]
- Pernyeszi, T.; Farkas, R.; Kovács, J. Methylene Blue Adsorption Study on Microcline Particles in the Function of Particle Size Range and Temperature. Minerals 2019, 9, 555. [Google Scholar] [CrossRef]
- Sadoq, M.; Atlas, H.; Imame, S.; Kali, A.; Amar, A.; Loulidi, I.; Jabri, M.; Sadoq, B.E.; Ouchabi, M.; Abdullah, P.S.; et al. Elimination of Crystal Violet from Aqueous Solution by Adsorption on Naturel Polysaccharide: Kinetic, Isotherm, Thermodynamic Studies and Mechanism Analysis. Arab. J. Chem. 2024, 17, 105453. [Google Scholar] [CrossRef]
- Ma, C.M.; Hong, G.B.; Wang, Y.K. Performance Evaluation and Optimization of Dyes Removal Using Rice Bran-Based Magnetic Composite Adsorbent. Materials 2020, 13, 2764. [Google Scholar] [CrossRef]
- Ghaedi, M.; Hajjati, S.; Mahmudi, Z.; Tyagi, I.; Agarwal, S.; Maity, A.; Gupta, V.K. Modeling of Competitive Ultrasonic Assisted Removal of the Dyes–Methylene Blue and Safranin-O Using Fe3O4 Nanoparticles. Chem. Eng. J. 2015, 268, 28–37. [Google Scholar] [CrossRef]
- Khalili, M.S.; Zare, K.; Moradi, O.; Sillanpää, M. Preparation and Characterization of MWCNT–COOH–Cellulose–MgO NP Nanocomposite as Adsorbent for Removal of Methylene Blue from Aqueous Solutions: Isotherm, Thermodynamic and Kinetic Studies. J. Nanostruct. Chem. 2018, 8, 103–121. [Google Scholar] [CrossRef]
- Maruthapandi, M.; Kumar, V.B.; Luong, J.H.T.; Gedanken, A. Kinetics, Isotherm, and Thermodynamic Studies of Methylene Blue Adsorption on Polyaniline and Polypyrrole Macro-Nanoparticles Synthesized by C-Dot-Initiated Polymerization. ACS Omega 2018, 3, 7196–7203. [Google Scholar] [CrossRef]
- Handayani, T.; Emriadi; Deswati; Ramadhani, P.; Zein, R. Modelling Studies of Methylene Blue Dye Removal Using Activated Corn Husk Waste: Isotherm, Kinetic and Thermodynamic Evaluation. S. Afr. J. Chem. Eng. 2024, 47, 15–27. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Al-Absi, R.S. Mechanistic Understanding of the Adsorption and Thermodynamic Aspects of Cationic Methylene Blue Dye onto Cellulosic Olive Stones Biomass from Wastewater. Sci. Rep. 2020, 10, 15928. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Chauhan, G.; Jain, A.K.; Sharma, S.K. Adsorptive Potential of Agricultural Wastes for Removal of Dyes from Aqueous Solutions. J. Environ. Chem. Eng. 2017, 5, 122–135. [Google Scholar] [CrossRef]
- Hadi, P.; Guo, J.; Barford, J.; McKay, G. Multilayer Dye Adsorption in Activated Carbons-Facile Approach to Exploit Vacant Sites and Interlayer Charge Interaction. Environ. Sci. Technol. 2016, 50, 5041–5049. [Google Scholar] [CrossRef]
- Suleman, M.; Zafar, M.; Ahmed, A.; Rashid, M.U.; Hussain, S.; Razzaq, A.; Mohidem, N.A.; Fazal, T.; Haider, B.; Park, Y.K. Castor Leaves-Based Biochar for Adsorption of Safranin from Textile Wastewater. Sustainability 2021, 13, 6926. [Google Scholar] [CrossRef]
- Saad, E.M.; Wagdy, M.; Orabi, A.S. Advanced Nano Modification of Ecofriendly Glauconite Clay for High Efficiency Methylene Blue Dye Adsorption. Sci. Rep. 2024, 14, 23614. [Google Scholar] [CrossRef]
- Chen, K.; Du, L.; Gao, P.; Zheng, J.; Liu, Y.; Lin, H. Super and Selective Adsorption of Cationic Dyes onto Carboxylate-Modified Passion Fruit Peel Biosorbent. Front. Chem. 2021, 9, 646492. [Google Scholar] [CrossRef]
- Mirbolooki, H.; Amirnezhad, R.; Pendashteh, A.R.; Mirbolooki, H.; Amirnezhad, R.; Pendashteh, A.R. Treatment of High Saline Textile Wastewater by Activated Sludge Microorganisms. J. Appl. Res. Technol. 2017, 15, 167–172. [Google Scholar] [CrossRef]
- Kah Yeow, P.; Wei Wong, S.; Hadibarata, T. Removal of Azo and Anthraquinone Dye by Plant Biomass as Adsorbent—A Review. Biointerface Res. Appl. Chem. 2021, 11, 8218–8232. [Google Scholar] [CrossRef]
- Uknowledge, U.; Potgieter, J.H.; Pearson, S.; Pardesi, C. Kinetic and Thermodynamic Parameters for the Adsorption of Methylene Blue Using Fly Ash under Batch, Column, and Heap Leaching Configurations. Coal Combust. Gasif. Prod. J. Arch. 2018, 10, 23. [Google Scholar] [CrossRef]
- Yu, Y.; Zhuang, Y.Y.; Wang, Z.H. Adsorption of Water-Soluble Dye onto Functionalized Resin. J. Colloid. Interface Sci. 2001, 242, 288–293. [Google Scholar] [CrossRef]
- Mohammed, N.; Grishkewich, N.; Berry, R.M.; Tam, K.C. Cellulose Nanocrystal–Alginate Hydrogel Beads as Novel Adsorbents for Organic Dyes in Aqueous Solutions. Cellulose 2015, 22, 3725–3738. [Google Scholar] [CrossRef]
- Abbasi, S.; Nezafat, Z.; Javanshir, S.; Aghabarari, B. Bionanocomposite MIL-100(Fe)/Cellulose as a High-Performance Adsorbent for the Adsorption of Methylene Blue. Sci. Rep. 2024, 14, 14497. [Google Scholar] [CrossRef]
- Benamer-Oudih, S.; Tahtat, D.; Nacer Khodja, A.; Mansouri, B.; Mahlous, M.; Guittoum, A.E.; Kebbouche Gana, S. Sorption Behavior of Chitosan Nanoparticles for Single and Binary Removal of Cationic and Anionic Dyes from Aqueous Solution. Environ. Sci. Pollut. Res. 2024, 31, 39976–39993. [Google Scholar] [CrossRef]
- Grigoraș, C.G.; Simion, A.I.; Favier, L.; Drob, C.; Gavrilă, L. Performance of Dye Removal from Single and Binary Component Systems by Adsorption on Composite Hydrogel Beads Derived from Fruits Wastes Entrapped in Natural Polymeric Matrix. Gels 2022, 8, 795. [Google Scholar] [CrossRef]
- Alhumaimess, M.S. Adsorption, Kinetic and Thermodynamic Studies of Safranin and Methylene Blue on a Novel Adsorbent Based on Phosphorylated Sawdust. Desalination Water Treat. 2019, 151, 199–211. [Google Scholar] [CrossRef]
Dye | Methylene Blue, MB | Safranine O, SO |
---|---|---|
Type | Basic blue 9, C.I. 52,015, cationic | Basic red 2, C.I. 50,240, cationic |
Phase | Solid | Solid |
Molecular formula | C16H18ClN3S | C20H19ClN4 |
Molecular weight | 319.85 g/mol | 350.85 g/mol |
Chemical Structure | ||
Color | Blue | Redish |
λmax | 664 nm | 522 nm |
Isotherm Model | Equations | Parameters | Ref. | |
---|---|---|---|---|
Langmuir | (6) | : equilibrium adsorption capacity (mg/g) : maximum monolayer adsorption capacity from Langmuir model (mg/g) : Langmuir constant (L/mg) : remaining concentration of the dyes in the solution (mg/L) | [28] | |
Freundlich | (7) | : equilibrium adsorption capacity (mg/g) KF: Freundlich adsorption constants indicative of adsorption capacity (mg/g) : heterogeneity factor : remaining concentration of the dyes in the solution (mg/L) | [29] | |
Temkin | (8) | : Temkin isotherm equilibrium binding constant (L/g) : maximum binding heat of sorption (kJ/mol) R: ideal gas constant (0.008314 kJ/mol K) : binding energy T: absolute Temperature (K) | [30] | |
(9) |
Temperature (K) | MB Dye | SO Dye | ||||
---|---|---|---|---|---|---|
ΔG° (kJ/mol) | ΔH° (kJ/mol) | ΔS° (J/mol K) | ΔG° (kJ/mol) | ΔH° (kJ/mol) | ΔS° (J/mol K) | |
293 | −1.07 | −1.21 | −8.99 | −1.53 | −10.05 | −29.46 |
303 | −0.91 | −1.091 | ||||
313 | −0.59 | −0.49 | ||||
323 | −1.18 | −0.78 |
Dyes | PFO | PSO | qe (exp.) (mg/g) | ||||
---|---|---|---|---|---|---|---|
qe (mg/g) | k1 (min−1) | R2 | qe (mg/g) | k2 (g/mg min−1) | R2 | ||
MB | 0.54 | 1.54 × 10−2 | 0.990 | 5.52 | 51.67 × 10−2 | 0.998 | 5.65 |
SO | 0.47 | 1.90 × 10−2 | 0.946 | 5.70 | 23.99 × 10−2 | 0.999 | 5.77 |
Dye | Langmuir | Freundlich | Temkin | |||||||
---|---|---|---|---|---|---|---|---|---|---|
qm | KL | R2 | KF | 1/nF | R2 | KT | BT | bT | R2 | |
MB (binary) | 17.98 | 10.56 × 10−2 | 0.998 | 1.95 | 0.68 | 0.971 | 13.67 × 10−2 | 3.22 | 0.76 | 0.987 |
SO (binary) | 14.90 | 10.95 × 10−2 | 0.997 | 1.64 | 0.70 | 0.989 | 8.56 × 10−2 | 3.05 | 0.80 | 0.972 |
MB (single) | 4.10 | 14.09 × 10−2 | 0.999 | 7.82 | 0.24 | 0.998 | 0.57 × 10−2 | 1.47 | 1.66 | 0.998 |
SO (single) | 4.57 | 9.90 × 10−2 | 0.999 | 7.63 | 0.22 | 0.997 | 0.40 × 10−2 | 1.35 | 1.80 | 0.997 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Raimi, D.S.; Alghanmi, R.M.; Aljeddani, G.S.; Hamouda, R.A. Eco-Friendly Synthesis of Silver–Cellulose Nanocomposite Adsorbent from Agricultural Residues for Binary Dye System Remediation. Polymers 2025, 17, 2555. https://doi.org/10.3390/polym17182555
Al-Raimi DS, Alghanmi RM, Aljeddani GS, Hamouda RA. Eco-Friendly Synthesis of Silver–Cellulose Nanocomposite Adsorbent from Agricultural Residues for Binary Dye System Remediation. Polymers. 2025; 17(18):2555. https://doi.org/10.3390/polym17182555
Chicago/Turabian StyleAl-Raimi, Doaa S., Reem M. Alghanmi, Ghalia S. Aljeddani, and Ragaa A. Hamouda. 2025. "Eco-Friendly Synthesis of Silver–Cellulose Nanocomposite Adsorbent from Agricultural Residues for Binary Dye System Remediation" Polymers 17, no. 18: 2555. https://doi.org/10.3390/polym17182555
APA StyleAl-Raimi, D. S., Alghanmi, R. M., Aljeddani, G. S., & Hamouda, R. A. (2025). Eco-Friendly Synthesis of Silver–Cellulose Nanocomposite Adsorbent from Agricultural Residues for Binary Dye System Remediation. Polymers, 17(18), 2555. https://doi.org/10.3390/polym17182555