Understanding the Effect of Graphene Nanoplatelet Size on the Mechanical and Thermal Properties of Fluoroelastomer-Based Composites
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Composites
2.3. Characterization of FKM Composites
3. Results and Discussion
3.1. Graphene Nanoplatelets Characterization
3.2. Mechanical Properties of FKM Composites
3.3. Dynamic Mechanical Analysis and Thermal Properties
3.4. Morphological Analysis of FKM Composites
3.5. Contact Angle and Thermal Response to Laser Infrared Arradiation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aguilar-Bolados, H.; Yazdani-Pedram, M.; Verdejo, R. Thermal, Electrical, and Sensing Properties of Rubber Nanocomposites. In High-Performance Elastomeric Materials Reinforced by Nano-Carbons: Multifunctional Properties and Industrial Applications, 2nd ed.; Valentini, L., Lopez Manchado, M.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 149–175. [Google Scholar] [CrossRef]
- Maldonado-Magnere, S.; Yazdani-Pedram, M.; Aguilar-Bolados, H.; Quijada, R. Thermally reduced graphene oxide/thermoplastic polyurethane nanocomposites: Mechanical and barrier properties. Polymers 2020, 13, 85. [Google Scholar] [CrossRef] [PubMed]
- Aguila-Toledo, E.; Maldonado-Magnere, S.; Yazdani-Pedram, M.; Bascuñan-Heredia, A.; Dahrouch, M.R.; Molina, F.; Santana, M.H.; Verdejo, R.; Lopez-Manchado, M.A.; Aguilar-Bolados, H. Fluorosilicone Composites with Functionalized Graphene Oxide for Advanced Applications. ACS Appl. Polym. Mater. 2023, 5, 7755–7765. [Google Scholar] [CrossRef]
- Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S.I.; Seal, S. Graphene based materials: Past, present and future. Prog. Mater. Sci. 2011, 56, 1178–1271. [Google Scholar] [CrossRef]
- Subramani, R. Optimizing process parameters for enhanced mechanical performance in 3D printed impellers using graphene-reinforced polylactic acid (G-PLA) filament. J. Mech. Sci. Technol. 2025, 39, 1387–1397. [Google Scholar] [CrossRef]
- Subramani, R.; Leon, R.R.; Nageswaren, R.; Rusho, M.A.; Shankar, K.V. Tribological Performance Enhancement in FDM and SLA Additive Manufacturing: Materials, Mechanisms, Surface Engineering, and Hybrid Strategies—A Holistic Review. Lubricants 2025, 13, 298. [Google Scholar] [CrossRef]
- Aarthi, S.; Subramani, R.; Rusho, M.A.; Sharma, S.; Ramachandran, T.; Mahapatro, A.; Ismail, A.I. Genetically engineered 3D printed functionally graded-lignin, starch, and cellulose-derived sustainable biopolymers and composites: A critical review. Int. J. Biol. Macromol. 2025, 321, 145843. [Google Scholar] [CrossRef]
- Olaiya, N.G.; Maraveas, C.; Salem, M.A.; Raja, S.; Rashedi, A.; Alzahrani, A.Y.; El-Bahy, Z.M.; Olaiya, F.G. Viscoelastic and Properties of Amphiphilic Chitin in Plasticised Polylactic Acid/Starch Biocomposite. Polymers 2022, 14, 2268. [Google Scholar] [CrossRef]
- Geim, A.K. Graphene: Status and prospects. Science 2009, 324, 5934. [Google Scholar] [CrossRef]
- Akhavan, O.; Meidanchi, A.; Ghaderi, E.; Khoei, S. Zinc ferrite spinel-graphene in magneto-photothermal therapy of cancer. J. Mater. Chem. B 2014, 2, 3306–3314. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Johnson, O.; Huang, J.; Feng, T.; Yang, C.; Liu, Z.; Chen, W. Enhancing the photothermal conversion efficiency of graphene oxide by doping with NaYF4: Yb, Er upconverting luminescent nanocomposites. Mater. Res. Bull. 2018, 106, 365–370. [Google Scholar] [CrossRef]
- Li, Y.; Lu, W.; Huang, Q.; Huang, M.; Li, C.; Chen, W. Copper sulfide nanoparticles for photothermal ablation of tumor cells. Nanomedicine 2010, 5, 1161–1171. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Smith, D.A.; Pinchuk, A. Size-dependent photothermal conversion efficiencies of plasmonically heated gold nanoparticles. J. Phys. Chem. C 2013, 117, 27073–27080. [Google Scholar] [CrossRef]
- Teng, H. Overview of the development of the fluoropolymer industry. Appl. Sci. 2012, 2, 496–512. [Google Scholar] [CrossRef]
- Ranieri, N. Elastomers in extreme environments applications. In High-Performance Elastomeric Materials Reinforced by Nano-Carbons: Multifunctional Properties and Industrial Applications, 2nd ed.; Valentini, L., Lopez Manchado, M.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 15–41. [Google Scholar] [CrossRef]
- Magnere, S.M.; Toledo, E.A.; Yazdani-Pedram, M.; Fuentealba, P.; Contreras-Soto, A.; Bascuñan-Heredia, A.; Alvarez-Cortes, G.; Zagal, A.; Molina, F.; Hernández-Santana, M.; et al. High performance fluoroelastomer composites filled with graphite and/or bismuth oxide for applications in gamma-ray shielding. Polym. Compos. 2024, 45, 6901–6913. [Google Scholar] [CrossRef]
- Mbayachi, V.B.; Ndayiragije, E.; Sammani, T.; Taj, S.; Mbuta, E.R.; khan, A.U. Graphene synthesis, characterization and its applications: A review. Results Chem. 2021, 3, 100163. [Google Scholar] [CrossRef]
- Ameduri, B. From vinylidene fluoride (VDF) to the applications of VDF-Containing polymers and copolymers: Recent developments and future trends. Chem. Rev. 2009, 109, 6632–6686. [Google Scholar] [CrossRef]
- Améduri, B.; Boutevin, B.; Kostov, G. Fluoroelastomers: Synthesis, properties and applications. Prog. Polym. Sci. 2001, 26, 105–187. [Google Scholar] [CrossRef]
- Rodgers, B.; Waddell, W. The Science of Rubber Compounding. In Science and Technology of Rubber, 3rd ed.; Mark, J.E., Erman, B., Eirich, F.R., Eds.; Academic Press: Cambridge, MA, USA, 2005; pp. 401–454. [Google Scholar] [CrossRef]
- Aguilar-Bolados, H.; Contreras-Cid, A.; Yazdani-Pedram, M.; Acosta-Villavicencio, G.; Flores, M.; Fuentealba, P.; Neira-Carrillo, A.; Verdejo, R.; López-Manchado, M.A. Synthesis of fluorinated graphene oxide by using an easy one-pot deoxyfluorination reaction. J. Colloid Interface Sci. 2018, 524, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Hassanzadeh-Tabrizi, S.A. Precise calculation of crystallite size of nanomaterials: A review. J. Alloys Compd. 2023, 968, 171914. [Google Scholar] [CrossRef]
- Cançado, L.G.; Jorio, A.; Ferreira, E.H.M.; Stavale, F.; Achete, C.A.; Capaz, R.B.; Moutinho, M.V.O.; Lombardo, A.; Kulmala, T.S.; Ferrari, A.C. Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Lett. 2011, 11, 3190–3196. [Google Scholar] [CrossRef]
- GB/T 16584-1996; Rubber—Measurement of Vulcanization Characteristics with Rotorless Curemeters. Standards Press of China: Beijing, China, 1996.
- ISO 6504-1:2019; Paints and Varnishes—Determination of Hiding Power—Part 1: Kubelka-Munk Method for White and Light-Coloured Paints. International Organization for Standardization (ISO): Geneva, Switzerland, 2019.
- ASTM D412-16(2021); Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers—Tension. American Society for Testing and Materials (ASTM International): West Conshohocken, PA, USA, 2021.
- ASTM D395-18(2023); Standard Test Methods for Rubber Property—Compression Set. American Society for Testing and Materials (ASTM International): West Conshohocken, PA, USA, 2023.
- ASTM D2240-15(2021); Standard Test Method for Rubber Property—Durometer Hardness. American Society for Testing and Materials (ASTM International): West Conshohocken, PA, USA, 2021.
- Aguilar-Bolados, H.; Vargas-Astudillo, D.; Yazdani-Pedram, M.; Acosta-Villavicencio, G.; Fuentealba, P.; Contreras-Cid, A.; Verdejo, R.; López-Manchado, M.A. Facile and Scalable One-Step Method for Amination of Graphene Using Leuckart Reaction. Chem. Mat. 2017, 29, 6698–6705. [Google Scholar] [CrossRef]
- de Heer, W.A.; Berger, C.; Wu, X.; First, P.N.; Conrad, E.H.; Li, X.; Li, T.; Sprinkle, M.; Hass, J.; Sadowski, M.L.; et al. Epitaxial graphene. Solid State Commun. 2007, 143, 92–100. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef]
- Leong, Y.L.; Lim, H.N.; Ibrahim, I. Graphene in rubber formulations: A comprehensive review and performance optimization insights. Mol. Syst. Des. Eng. 2023, 8, 1229–1251. [Google Scholar] [CrossRef]
- Aguilar-Bolados, H.; Lopez-Manchado, M.A.; Brasero, J.; Avilés, F.; Yazdani-Pedram, M. Effect of the morphology of thermally reduced graphite oxide on the mechanical and electrical properties of natural rubber nanocomposites. Compos. B Eng. 2016, 87, 350–356. [Google Scholar] [CrossRef]
- Sierra-Chi, C.A.; Aguilar-Bolados, H.; López-Manchado, M.A.; Verdejo, R.; Cauich-Rodríguez, J.V.; Avilés, F. Flexural electromechanical properties of multilayer graphene sheet/carbon nanotube/vinyl ester hybrid nanocomposites. Compos. Sci. Technol. 2020, 194, 108164. [Google Scholar] [CrossRef]
- Raja, S.; Jayalakshmi, M.; Rusho, M.A.; Selvaraj, V.K.; Subramanian, J.; Yishak, S.; Kumar, T.A. Fused deposition modeling process parameter optimization on the development of graphene enhanced polyethylene terephthalate glycol. Sci. Rep. 2024, 14, 30744. [Google Scholar] [CrossRef]
- Saha, T.; Bhowmick, A.K.; Oda, T.; Miyauchi, T.; Fujii, N. Influence of layered nanofillers on the mechanical properties and thermal degradation of polyacrylicester polymer: Theoretical and experimental investigations. Compos. B Eng. 2019, 169, 65–78. [Google Scholar] [CrossRef]
- Wei, Z.-B.; Zhao, Y.; Wang, C.; Kuga, S.; Huang, Y.; Wu, M. Antistatic PVC-graphene Composite through Plasticizer-mediated Exfoliation of Graphite. Chin. J. Polym. Sci. 2018, 36, 1361–1367. [Google Scholar] [CrossRef]
- Pinto, A.M.; Magalhães, F.D. Graphene-polymer composites. Polymers 2021, 25, 685. [Google Scholar] [CrossRef]
- Liu, Q.; Zhou, X.; Fan, X.; Zhu, C.; Yao, X.; Liu, Z. Mechanical and Thermal Properties of Epoxy Resin Nanocomposites Reinforced with Graphene Oxide. Polym. Plast. Technol. Eng. 2012, 51, 251–256. [Google Scholar] [CrossRef]
- Pramoda, K.P.; Hussain, H.; Koh, H.M.; Tan, H.R.; He, C.B. Covalent bonded polymer-graphene nanocomposites. J. Polym. Sci. Part A Polym. Chem. 2010, 48, 4262–4267. [Google Scholar] [CrossRef]
- Du, Q.; Zhou, P.; Pan, Y.; Qu, X.; Liu, L.; Yu, H.; Hou, J. Influence of hydrophobicity and roughness on the wetting and flow resistance of water droplets on solid surface: A many-body dissipative particle dynamics study. Chem. Eng. Sci. 2022, 249, 117327. [Google Scholar] [CrossRef]
- Subramani, R.; Vijayakumar, P.; Rusho, M.A.; Kumar, A.; Shankar, K.V.; Thirugnanasambandam, A.K. Selection and Optimization of Carbon-Reinforced Polyether Ether Ketone Process Parameters in 3D Printing—A Rotating Component Application. Polymers 2024, 16, 1443. [Google Scholar] [CrossRef] [PubMed]
- Raja, S.; Ali, R.M.; Babar, Y.V.; Surakasi, R.; Karthikeyan, S.; Panneerselvam, B.; Jagadheeswari, A.S. Integration of nanomaterials in FDM for enhanced surface properties: Optimized manufacturing approaches. Appl. Chem. Eng. 2024, 7, 5534. [Google Scholar] [CrossRef]
- Selvaraj, V.K.; Subramanian, J.; Lazar, P.; Raja, S.; Jafferson, J.M.; Jeevan, S.; Krishnan, P.; Zachariah, A.A. An Experimental and Optimization of Bio-Based Polyurethane Foam for Low-Velocity Impact: Towards Futuristic Applications. In Proceedings of the High-Performance Sustainable Materials and Structures, Chennai, India, 22–23 February 2024. [Google Scholar]
Sample | FKM | FKMG | FKMGN5 | FKMGN15 |
---|---|---|---|---|
phr * | ||||
FKM | 100 | 100 | 100 | 100 |
Magnesium(II) oxide | 3 | 3 | 3 | 3 |
Calcium(II) hydroxide | 6 | 6 | 6 | 6 |
Bisphenol AF | 2 | 2 | 2 | 2 |
BPP | 0.55 | 0.55 | 0.55 | 0.55 |
Graphite | 0 | 10 | 0 | 0 |
Graphene nanoplatelets 5 nm | 0 | 0 | 10 | 0 |
Graphene nanoplatelets 15 nm | 0 | 0 | 0 | 10 |
Parameter | G | GN5 | GN15 | FKMG | FKMGN5 | FKMG15 |
---|---|---|---|---|---|---|
2θ (°) | 26.3 | 26.3 | 26.4 | 26.6 | 26.5 | 26.6 |
d002 (nm) | 0.334 | 0.334 | 0.333 | 0.329 | 0.331 | 0.329 |
L (nm) | 16.0 | 28.5 | 22.4 | 46.0 | 26.2 | 28.8 |
NL | 48 | 86 | 68 | 140 | 80 | 87 |
Band | Graphite | GN 5 um | GN 15 um | FKMG | FKMGN5 | FKMGN15 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ID/IG | 0.165 | 0.0471 | 0.0432 | 0.354 | 0.521 | 0.758 | ||||||
I2D/IG | 0.278 | 0.253 | 0.184 | 0.104 | 0.071 | 0.087 | ||||||
0.127 | 0.092 | 0.083 | ||||||||||
LD (µm) | 13.3 | 25.1 | 26.3 | 85.1 | 58.2 | 40.4 | ||||||
Raman shift (cm−1) | Intensity (a.u.) | Raman shift (cm−1) | Intensity (a.u.) | Raman shift (cm−1) | Intensity (a.u.) | Raman shift (cm−1) | Intensity (a.u.) | Raman shift (cm−1) | Intensity (a.u.) | Raman shift (cm−1) | Intensity (a.u.) | |
D | 1356 | 0.158 | 1350 | 0.046 | 1357 | 0.041 | 1312 | 0.318 | 1312 | 0.455 | 1320 | 0.641 |
G | 1582 | 0.954 | 1570 | 0.976 | 1569 | 0.949 | 1578 | 0.898 | 1576 | 0.872 | 1577 | 0.846 |
D’ | 1620 | 0.040 | 1610 | 0.016 | 1598 | 0.025 | 1610 | 0.095 | 1608 | 0.188 | 1608 | 0.257 |
2D | 2692 | 0.265 | 2677 | 0.247 | 2673 | 0.175 | 2611 | 0.093 | 2617 | 0.062 | 2613 | 0.074 |
2647 | 0.114 | 2645 | 0.080 | 2646 | 0.070 | |||||||
D + G | 2728 | 0.438 | 2710 | 0.261 | 2709 | 0.284 | 2774 | 0.028 | 2772 | 0.064 | - | - |
Sample | Parameters | |||
---|---|---|---|---|
ML | MH | t2 (min) | t90 (min) | |
FKM | 0.224 ± 0.005 | 1.101 ± 0.068 | 2:38 | 7:01 |
FKMG | 0.227 ± 0.021 | 1.376 ± 0.092 | 2:02 | 6:06 |
FKMGN5 | 0.287 ± 0.003 | 1.694 ± 0.110 | 2:10 | 6:50 |
FKMGN15 | 0.253 ± 0.006 | 1.434 ± 0.085 | 2:10 | 6:32 |
Sample | Tensile Test | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Modulus (MPa) | Tensile Strength (MPa) | PI (%) | Elongation at Break (%) | PI (%) | Hardness (Shore A) | PI (%) | Compression SET (%) | ||||||
E50 | PI (%) | E100 | PI (%) | E300 | PI (%) | ||||||||
FKM | 0.69 ± 0.16 | - | 1.21 ± 0.13 | - | 4.40 ± 0.38 | - | 8.81 ± 0.94 | - | 477 ± 46 | - | 51.6 ± 1.6 | - | 2.8 ± 0.4 |
FKMG | 1.47 ± 0.23 | 113 | 2.84 ± 0.12 | 135 | 7.0 ± 0.11 | 59 | 8.90 ± 0.81 | 1 | 383 ± 32 | −20 | 55.7 ± 3.2 | 8 | 11.6 ± 0.5 |
FKMGN5 | 0.82 ± 0.03 | 18 | 2.47 ± 0.07 | 104 | 8.85 ± 0.48 | 101 | 9.68 ± 0.98 | 10 | 330 ± 18 | −30 | 57.6 ± 2.0 | 12 | 10.7 ± 0.4 |
FKMGN15 | 0.77 ± 0.01 | 12 | 2.30 ± 0.01 | 90 | 7.87 ± 0.06 | 79 | 9.42 ± 0.81 | 7 | 361 ± 29 | −24 | 64.6 ± 3.1 | 25 | 11.0 ± 2.3 |
Sample | Tg (°C) | tanδmax | FWHM (°C) |
---|---|---|---|
FKM | 4.2 ± 0.5 | 1.434 ± 0.0001 | 16.6 ± 0.5 |
FKMG | 5.1 ± 0.5 | 1.316 ± 0.0001 | 17.6 ± 0.5 |
FKMGN05 | 4.8 ± 0.5 | 1.097 ± 0.0001 | 19.7 ± 0.5 |
FKMGN15 | 4.9 ± 0.5 | 1.197 ± 0.0001 | 18.3 ± 0.5 |
Sample | a T10 (°C) | b T50 (°C) | c Tmax (°C) | Residual Mass (%) | d Tg (°C) | e Tg (°C) |
---|---|---|---|---|---|---|
FKM | 430.9 ± 0.1 | 470.3 ± 0.1 | 474.8 ± 0.1 | 8.8 ± 0.01 | −17.2 ± 0.1 | 4.2 ± 0.1 |
FKMG | 433.1 ± 0.1 | 472.9 ± 0.1 | 476.9 ± 0.1 | 18.8 ± 0.01 | −17.1 ± 0.1 | 5.1 ± 0.1 |
FKMGN5 | 436.9 ± 0.1 | 475.5 ± 0.1 | 477.5 ± 0.1 | 19.3 ± 0.01 | −17.5 ± 0.1 | 4.8 ± 0.1 |
FKMGN15 | 435.2 ± 0.1 | 476.3 ± 0.1 | 479.5 ± 0.1 | 16.5 ± 0.01 | −17.0 ± 0.1 | 4.9 ± 0.1 |
Sample | Distance (cm) | Power | Temperature (°C) | ||
---|---|---|---|---|---|
1 min | 5 min | 10 min (°C) | |||
FKM | 2 | 1.0 ± 0.1 | 18.2 ± 0.5 | 18.3 ± 0.5 | 18.2 ± 0.5 |
5.0 ± 0.1 | 30.0 ± 0.5 | 44.4 ± 0.5 | 46.3 ± 0.5 | ||
10.0 ± 0.1 | 57.3 ± 0.5 | 70.1 ± 0.5 | 71.7 ± 0.5 | ||
5 | 1.0 ± 0.1 | 21.2 ± 0.5 | 21.0 ± 0.5 | 21.3 ± 0.5 | |
5.0 ± 0.1 | 26.7 ± 0.5 | 30.9 ± 0.5 | 31.7 ± 0.5 | ||
10.0 ± 0.1 | 31.2 ± 0.5 | 37.3 ± 0.5 | 40.5 ± 0.5 | ||
FKMG | 2 | 1.0 ± 0.1 | 23.4 ± 0.5 | 23.1 ± 0.5 | 23.5 ± 0.5 |
5.0 ± 0.1 | 38.0 ± 0.5 | 45.6 ± 0.5 | 46.8 ± 0.5 | ||
10.0 ± 0.1 | 57.3 ± 0.5 | 69.2 ± 0.5 | 71.3 ± 0.5 | ||
5 | 1.0 ± 0.1 | 23.0 ± 0.5 | 22.6 ± 0.5 | 22.8 ± 0.5 | |
5.0 ± 0.1 | 23.0 ± 0.5 | 31.6 ± 0.5 | 32.4 ± 0.5 | ||
10.0 ± 0.1 | 33.5 ± 0.5 | 38.8 ± 0.5 | 40.7 ± 0.5 | ||
FKMGN5 | 2 | 1.0 ± 0.1 | 22.3 ± 0.5 | 22.7 ± 0.5 | 22.8 ± 0.5 |
5.0 ± 0.1 | 42.2 ± 0.5 | 48.7 ± 0.5 | 51.5 ± 0.5 | ||
10.0 ± 0.1 | 63.0 ± 0.5 | 75.0 ± 0.5 | 76.5 ± 0.5 | ||
5 | 1.0 ± 0.1 | 22.7 ± 0.5 | 22.6 ± 0.5 | 22.7 ± 0.5 | |
5.0 ± 0.1 | 29.5 ± 0.5 | 33.6 ± 0.5 | 35.0 ± 0.5 | ||
10.0 ± 0.1 | 36.1 ± 0.5 | 41.5 ± 0.5 | 44.4 ± 0.5 | ||
FKMGN15 | 2 | 1.0 ± 0.1 | 22.0 ± 0.5 | 22.0 ± 0.5 | 21.8 ± 0.5 |
5.0 ± 0.1 | 31.1 ± 0.5 | 39.3 ± 0.5 | 40.6 ± 0.5 | ||
10.0 ± 0.1 | 44.5 ± 0.5 | 57.8 ± 0.5 | 59.7 ± 0.5 | ||
5 | 1.0 ± 0.1 | 21.3 ± 0.5 | 21.3 ± 0.5 | 21.8 ± 0.5 | |
5.0 ± 0.1 | 31.4 ± 0.5 | 32.8 ± 0.5 | 33.5 ± 0.5 | ||
10.0 ± 0.1 | 32.7 ± 0.5 | 39.8 ± 0.5 | 42.0 ± 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maldonado-Magnere, S.; Yazdani-Pedram, M.; Fuentealba, P.; Neira-Carrillo, A.; Lopez-Manchado, M.A.; Hernandez-Villar, H.; Bascuñan-Heredia, A.; Dahrouch, M.; Aguilar-Bolados, H. Understanding the Effect of Graphene Nanoplatelet Size on the Mechanical and Thermal Properties of Fluoroelastomer-Based Composites. Polymers 2025, 17, 2534. https://doi.org/10.3390/polym17182534
Maldonado-Magnere S, Yazdani-Pedram M, Fuentealba P, Neira-Carrillo A, Lopez-Manchado MA, Hernandez-Villar H, Bascuñan-Heredia A, Dahrouch M, Aguilar-Bolados H. Understanding the Effect of Graphene Nanoplatelet Size on the Mechanical and Thermal Properties of Fluoroelastomer-Based Composites. Polymers. 2025; 17(18):2534. https://doi.org/10.3390/polym17182534
Chicago/Turabian StyleMaldonado-Magnere, Santiago, Mehrdad Yazdani-Pedram, Pablo Fuentealba, Andrónico Neira-Carrillo, Miguel A. Lopez-Manchado, Hector Hernandez-Villar, Allan Bascuñan-Heredia, Mohamed Dahrouch, and Héctor Aguilar-Bolados. 2025. "Understanding the Effect of Graphene Nanoplatelet Size on the Mechanical and Thermal Properties of Fluoroelastomer-Based Composites" Polymers 17, no. 18: 2534. https://doi.org/10.3390/polym17182534
APA StyleMaldonado-Magnere, S., Yazdani-Pedram, M., Fuentealba, P., Neira-Carrillo, A., Lopez-Manchado, M. A., Hernandez-Villar, H., Bascuñan-Heredia, A., Dahrouch, M., & Aguilar-Bolados, H. (2025). Understanding the Effect of Graphene Nanoplatelet Size on the Mechanical and Thermal Properties of Fluoroelastomer-Based Composites. Polymers, 17(18), 2534. https://doi.org/10.3390/polym17182534