Eco-Friendly Recovery of Homogalacturonan-Rich Pectin from Flaxseed Cake via NADES Extraction
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Reagents
2.2. NADES Preparation
2.3. Extraction of Pectins from Flaxseed Cake
2.4. Chemical Characterization
2.5. Monosaccharides Composition
2.6. FT-IR Spectroscopy Analysis
2.7. Homogeneity
2.8. Physicochemical Characterization
2.8.1. Microscopic Evaluation
2.8.2. Zeta Potential Measurements
2.8.3. Static Viscosity Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Crude Polysaccharides from Flaxseed Cake
3.2. Homogeneity of LU3
3.3. Physicochemical Properties of LU3
3.3.1. Morphology of LU3
3.3.2. Zeta Potential Profiles of LU3
3.3.3. Static Viscosity Characteristic of LU3
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Qamar, H.; Ilyas, M.; Shabbir, G.; Irshad, G.; Nisar, F.; Abbas, S.M.; Ghias, M.; Arshad, A.A. Flax: Ancient to modern food. Pure Appl. Biol. 2019, 8, 2269–2276. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). FAOSTAT, Crops and Livestock Products, (Flax, Raw or Retted, World, 2021). Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 1 April 2025).
- Preisner, M.; Wojtasik, W.; Kulma, A.; Żuk, M.; Szopa, J. Flax Fiber. In Kirk-Othmer Encyclopedia of Chemical Technology, 5th ed.; Akin, D.E., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014; Volume 11, pp. 1–32. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, Z.; Wang, X. Composition and Antioxidant Ability of Extract from Different Flaxseed Cakes and Its Application in Flaxseed Oil. J. Oleo Sci. 2023, 72, 59–67. [Google Scholar] [CrossRef]
- Jhala, A.J.; Hall, L.M. Flax (Linum usitatissimum L.): Current Uses and Future Applications. Aust. J. Basic Appl. Sci. 2010, 4, 4304–4312. [Google Scholar]
- Zhai, S.S.; Zhou, T.; Li, M.M.; Zhu, Y.W.; Li, M.C.; Feng, P.S.; Zhang, X.F.; Ye, H.; Wang, W.C.; Yang, L. Fermentation of flaxseed cake increases its nutritional value and utilization in ducklings. Poult. Sci. 2019, 98, 5636–5647. [Google Scholar] [CrossRef] [PubMed]
- Sanmartin, C.; Taglieri, I.; Venturi, F.; Macaluso, M.; Zinnai, A.; Tavarini, S.; Botto, A.; Serra, A.; Conte, G.; Flamini, G.; et al. Flaxseed Cake as a Tool for the Improvement of Nutraceutical and Sensorial Features of Sourdough Bread. Foods 2020, 9, 204. [Google Scholar] [CrossRef]
- Waszkowiak, K.; Gliszczyńska-Świgło, A.; Barthet, V.; Skręty, J. Effect of Extraction Method on the Phenolic and Cyanogenic Glucoside Profile of Flaxseed Extracts and their Antioxidant Capacity. J. Am. Oil Chem. Soc. 2015, 92, 1609–1619. [Google Scholar] [CrossRef]
- Chen, H.H.; Xu, S.Y.; Wang, Z. Gelation properties of flaxseed gum. J. Food Eng. 2006, 77, 295–303. [Google Scholar] [CrossRef]
- Puligundla, P.; Lim, S. A Review of Extraction Techniques and Food Applications of Flaxseed Mucilage. Foods 2022, 11, 1677. [Google Scholar] [CrossRef]
- El-Aziz, M.A.; Haggag, H.F.; Kaluoubi, M.M.; Hassan, L.K.; El-Sayed, M.M.; Sayed, A.F. Physical Properties of Ice Cream Containing Cress Seed and Flaxseed Mucilages Compared with Commercial Guar Gum. Int. J. Dairy Sci. 2015, 10, 160–172. [Google Scholar] [CrossRef]
- Basiri, S.; Haidary, N.; Shekarforoush, S.S.; Niakousari, M. Flaxseed mucilage: A natural stabilizer in stirred yogurt. Carbohydr. Polym. 2018, 187, 59–65. [Google Scholar] [CrossRef]
- Akl, E.M.; Abdelhamid, S.M.; Wagdy, S.M.; Salama, H.H. Manufacture of Functional Fat-free Cream Cheese Fortified with Probiotic Bacteria and Flaxseed Mucilage as a Fat Replacing Agent. Curr. Nutr. Food Sci. 2020, 16, 1393–1403. [Google Scholar] [CrossRef]
- Lai, K.W.; How, Y.H.; Ghazali, H.M.; Pui, L.P. Preliminary evaluation of potential prebiotic capacity of selected legumes and seed mucilage on the probiotic strain Lactobacillus rhamnosus GG. Asia-Pac. J. Mol. Biol. Biotechnol. 2021, 29, 60–72. [Google Scholar] [CrossRef]
- Rodrigues, F.J.; Cedran, M.F.; Garcia, S. Influence of Linseed Mucilage Incorporated into an Alginate-Base Edible Coating Containing Probiotic Bacteria on Shelf-Life of Fresh-Cut Yacon (Smallanthus sonchifolius). Food Bioprocess Technol. 2018, 11, 1605–1614. [Google Scholar] [CrossRef]
- Treviño-Garza, M.Z.; Correa-Cerón, R.C.; Ortiz-Lechuga, E.G.; Solís-Arévalo, K.K.; Castillo-Hernández, S.L.; Gallardo-Rivera, C.T.; Arévalo Niño, K. Effect of Linseed (Linum usitatissimum) Mucilage and Chitosan Edible Coatings on Quality and Shelf-Life of Fresh-Cut Cantaloupe (Cucumis melo). Coatings 2019, 9, 368. [Google Scholar] [CrossRef]
- Lu, Z.; Saldaña, M.D.A.; Jin, Z.; Sun, W.; Gao, P.; Bilige, M.; Sun, W. Layer-by-layer electrostatic self-assembled coatings based on flaxseed gum and chitosan for Mongolian cheese preservation. Innov. Food Sci. Emerg. Technol. 2021, 73, 102785. [Google Scholar] [CrossRef]
- Fang, S.; Zhou, Q.; Hu, Y.; Liu, F.; Mei, J.; Xie, J. Antimicrobial Carvacrol Incorporated in Flaxseed Gum-Sodium Alginate Active Films to Improve the Quality Attributes of Chinese Sea Bass (Lateolabrax maculatus) during Cold Storage. Molecules 2019, 24, 3292. [Google Scholar] [CrossRef]
- Parikh, M.; Maddaford, T.G.; Austria, J.A.; Aliani, M.; Netticadan, T.; Pierce, G.N. Dietary Flaxseed as a Strategy for Improving Human Health. Nutrients 2019, 11, 1171. [Google Scholar] [CrossRef]
- DeLuca, J.A.A.; Garcia-Villatoro, E.L.; Allred, C.D. Flaxseed Bioactive Compounds and Colorectal Cancer Prevention. Curr. Oncol. Rep. 2018, 20, 59. [Google Scholar] [CrossRef]
- Qian, K.Y.; Cui, S.W.; Wu, Y.; Goff, H.D. Flaxseed gum from flaxseed hulls: Extraction, fractionation, and characterization. Food Hydrocoll. 2012, 28, 275–283. [Google Scholar] [CrossRef]
- Mali, A.V.; Padhye, S.B.; Anant, S.; Hegde, M.V.; Kadam, S.S. Anticancer and antimetastatic potential of enterolactone: Clinical, preclinical and mechanistic perspectives. Eur. J. Pharmacol. 2019, 852, 107–124. [Google Scholar] [CrossRef]
- Ziolkovska, A. Laws of flaxseed mucilage extraction. Food Hydrocoll. 2012, 26, 197–204. [Google Scholar] [CrossRef]
- Elshahed, M.S.; Miron, A.; Aprotosoaie, A.C.; Farag, M.A. Pectin in diet: Interactions with the human microbiome, role in gut homeostasis, and nutrient-drug interactions. Carbohydr. Polym. 2021, 255, 117388. [Google Scholar] [CrossRef] [PubMed]
- Sultana, N. Biological Properties and Biomedical Applications of Pectin and Pectin-Based Composites: A Review. Molecules 2023, 28, 7974. [Google Scholar] [CrossRef] [PubMed]
- Lapomarda, A.; De Acutis, A.; Chiesa, I.; Fortunato, G.M.; Montemurro, F.; De Maria, C.; Mattioli Belmonte, M.; Gottardi, R.; Vozzi, G. Pectin-GPTMS-Based Biomaterial: Toward a Sustainable Bioprinting of 3D Scaffolds for Tissue Engineering Application. Biomacromolecules 2020, 21, 319–327. [Google Scholar] [CrossRef]
- Bostancı, N.S.; Büyüksungur, S.; Hasirci, N.; Tezcaner, A. Potential of Pectin for Biomedical Applications: A Comprehensive Review. J. Biomater. Sci. Polym. Ed. 2022, 33, 1866–1900. [Google Scholar] [CrossRef]
- Mishra, S.K.; Banthia, A.K.; Majeed, A.B.A. Pectin Based Formulations for Biomedical Applications: A Review. Asian J. Pharm. Clin. Res. 2012, 5, 1–7. [Google Scholar] [CrossRef]
- Freitas, C.M.P.; Coimbra, J.S.R.; Souza, V.G.L.; Sousa, R.C.S. Structure and Applications of Pectin in Food, Biomedical, and Pharmaceutical Industry: A Review. Coatings 2021, 11, 922. [Google Scholar] [CrossRef]
- Syarifuddin, A.; Muflih, M.H.; Izzah, N.; Fadillah, U.; Ainani, A.F.; Dirpan, A. Pectin-Based Edible Films and Coatings: From Extraction to Application on Food Packaging towards Circular Economy—A Review. Carbohydr. Polym. Technol. Appl. 2025, 9, 100680. [Google Scholar] [CrossRef]
- Dirpan, A.; Deliana, Y.; Ainani, A.F.; Irwan; Bahmid, N.A. Exploring the Potential of Pectin as a Source of Biopolymers for Active and Intelligent Packaging: A Review. Polymers 2024, 16, 2783. [Google Scholar] [CrossRef]
- Safdar, B.; Zhihua, P.; Xinqi, L.; Jatoi, M.A.; Rashid, M.T. Influence of different extraction techniques on recovery, purity, antioxidant activities, and microstructure of flaxseed gum. J. Food Sci. 2020, 85, 3168–3182. [Google Scholar] [CrossRef]
- Fabre, J.F.; Lacroux, E.; Valentin, R.; Mouloungui, Z. Ultrasonication as a highly efficient method of flaxseed mucilage extraction. Ind. Crops Prod. 2015, 65, 354–360. [Google Scholar] [CrossRef]
- Yu, X.; Huang, S.; Yang, F.; Qin, X.; Nie, C.; Deng, Q.; Huang, F.; Xiang, Q.; Zhu, Y.; Geng, F. Effect of microwave exposure to flaxseed on the composition, structure and techno-functionality of gum polysaccharides. Food Hydrocoll. 2022, 125, 107447. [Google Scholar] [CrossRef]
- Wanasundara, P.K.J.P.D.; Shahidi, F. Removal of flaxseed mucilage by chemical and enzymatic treatments. Food Chem. 1997, 59, 47–55. [Google Scholar] [CrossRef]
- Tien, N.N.T.; Le, N.L.; Khoi, T.T.; Richel, A. Optimization of microwave-ultrasound-assisted extraction (MUAE) of pectin from dragon fruit peels using natural deep eutectic solvents (NADES). J. Food Process. Preserv. 2022, 46, e16117. [Google Scholar] [CrossRef]
- Gómez Vargas, C.; Ponce, N.M.A.; Stortz, C.A.; Fissore, E.N.; Bonelli, P.; Gonzalez, C.M.O.; Gerschenson, L.N. Pectin obtention from agroindustrial wastes of Malus domestica using green solvents (citric acid and natural deep eutectic solvents). Chemical, thermal, and rheological characterization. Front. Chem. 2024, 12, 1504582. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, F.; Cheng, J.; Wu, X.; Hu, J.; Li, C.; Li, W.; Xie, N.; Wang, Y.; He, L. Natural Deep Eutectic Solvent-Assisted Extraction, Structural Characterization, and Immunomodulatory Activity of Polysaccharides from Paecilomyces hepiali. Molecules 2022, 27, 8020. [Google Scholar] [CrossRef]
- Fatahi, F.; Tabaraki, F. Deep eutectic solvent mediated extraction of polysaccharides and antioxidants from Persian manna (Taranjabin): Comparison of different extraction methods and optimization by response surface methodology. Microchem. J. 2023, 194, 109336. [Google Scholar] [CrossRef]
- Hayyan, A.; Samyudia, A.V.; Hashim, M.A.; Hizaddin, H.F.; Ali, E.; Hadj-Kali, M.K.; Aldeehani, A.K.; Alkandari, K.H.; Etigany, H.T.; Alajmi, F.D.H.; et al. Application of deep eutectic solvent as novel co-solvent for oil extraction from flaxseed using sonoenergy. Ind. Crops Prod. 2022, 176, 114242. [Google Scholar] [CrossRef]
- Guo, Q.; Shan, Z.; Shao, Y.; Wang, N.; Qian, K.; Goff, H.D.; Wang, Q.; Cui, S.W.; Ding, H.H. Conformational Properties of Flaxseed Rhamnogalacturonan-I and Correlation between Primary Structure and Conformation. Polymers 2022, 14, 2667. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Blumenkrantz, N.; Asboe-Hansen, O. New method for quantitative determination of uronic acids. Anal. Biochem. 1973, 54, 484–489. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by mean of Folin–Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Pettolino, F.A.; Walsh, C.; Fincher, G.B.; Bacic, A. Determining the polysaccharide composition of plant cell walls. Nat. Protoc. 2012, 7, 1590–1607. [Google Scholar] [CrossRef] [PubMed]
- ISO 2555:2018; Plastics—Resins in the Liquid State or as Emulsions or Dispersions—Determination of Apparent Viscosity Using a Single Cylinder Type Rotational Viscometer Method. ISO: Geneva, Switzerland, 2018.
- Yapo, B.M. Pectic substances: From simple pectic polysaccharides to complex pectins—A new hypothetical model. Carbohydr. Polym. 2011, 86, 373–385. [Google Scholar] [CrossRef]
- Alba, K.; Offiah, V.; Laws, A.P.; Falade, K.O.; Kontogiorgos, V. Baobab polysaccharides from fruits and leaves. Food Hydrocoll. 2020, 106, 105874. [Google Scholar] [CrossRef]
- Xu, Z.; Jiang, N.; Li, M.; Xia, X.; Xiang, X. Flaxseed (Linum usitatissimum L.) polysaccharides and oligosaccharides: Structure, extraction, biological properties and industrial applications. Trends Food Sci. Technol. 2025, 161, 105035. [Google Scholar] [CrossRef]
- Ding, H.H.; Cui, S.W.; Goff, H.D.; Wang, Q.; Chen, J.; Han, N.F. Soluble polysaccharides from flaxseed kernel as a new source of dietary fibres: Extraction and physicochemical characterization. Food Res. Int. 2014, 56, 166–173. [Google Scholar] [CrossRef]
- Manal, M.A.; Abd El-Kader, A.E.; Abozed, S.S. Optimization of Flaxseed Cake Pectin Extraction and Shelf-Life Prediction Model for Pear Fruit Preserved by Pectin Eddible Coating. Egypt. J. Chem. 2021, 64, 7481–7493. [Google Scholar] [CrossRef]
- Riyamol; Kamaraj, V.; Jeevitha, G.C.; Mittal, A.; Arya, R.K. Jackfruit waste utilization for production of pectin using natural deep eutectic solvents: A comparative study. Biomass Convers. Biorefin. 2025. [Google Scholar] [CrossRef]
- Pereira, D.T.; Méndez-Albiñana, P.; Mendiola, J.A.; Villamiel, M.; Cifuentes, A.; Martínez, J.; Ibáñez, E. An eco-friendly extraction method to obtain pectin from passion fruit rinds (Passiflora edulis sp.) using subcritical water and pressurized natural deep eutectic solvents. Carbohydr. Polym. 2024, 326, 121578. [Google Scholar] [CrossRef]
- Shafie, M.H.; Yusof, R.; Gan, C. Deep eutectic solvents (DES) mediated extraction of pectin from Averrhoa bilimbi: Optimization and characterization studies. Carbohydr. Polym. 2019, 216, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wu, J.; Zheng, J.; Peng, Y.; Zhao, J.; Pan, X.; Lao, F. Deep eutectic solvents/water systems in different pH for extracting pectin from mango peel: Analysis of physicochemical and structural properties. Food Hydrocoll. 2025, 168, 111578. [Google Scholar] [CrossRef]
- Santra, S.; Das, M.; Karmaker, S.; Banerjee, R. NADES assisted integrated biorefinery concept for pectin recovery from kinnow (Citrus reticulate) peel and strategic conversion of residual biomass to L(+) lactic acid. Int. J. Biol. Macromol. 2023, 250, 126169. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Falourd, X.; Lahaye, M. Sequential natural deep eutectic solvent pretreatments of apple pomace: A novel way to promote water extraction of pectin and to tailor its main structural domains. Carbohydr. Polym. 2021, 266, 118113. [Google Scholar] [CrossRef]
- Chen, M.; Lahaye, M. Natural deep eutectic solvents pretreatment as an aid for pectin extraction from apple pomace. Food Hydrocoll. 2021, 115, 106601. [Google Scholar] [CrossRef]
- Rai, P.; Mishra, B.; Jayakrishnan, U.; Mukherjee, A.; Moulik, S.; Roy, S.; Kumari, A. Ultrasonic cavitation assisted deep eutectic solvent extraction of pectin from waste sweet lime peel: Statistical optimization and energetic analysis. Ind. Crops Prod. 2025, 228, 120895. [Google Scholar] [CrossRef]
- Singh, N.; Kumar, S.; Patle, D.S. Natural deep eutectic liquids as green solvents in intensified extraction of bioactive compounds from fruit wastes. Environ. Prog. Sustain. Energy 2024, 44, e14651. [Google Scholar] [CrossRef]
- Bleha, R.; Shevtsova, T.; Kružik, V.; Šorpilová, T.; Saloň, I.; Erban, V.; Brindza, J.; Brovarskyi, V.; Sinica, A. Bee breads from Eastern Ukraine: Composition, physical properties and biological activities. Czech J. Food Sci. 2019, 37, 9–20. [Google Scholar] [CrossRef]
- Güzel, M.; Akpınar, Ö. Valorisation of fruit by-products: Production characterization of pectins from fruit peels. Food Bioprod. Process. 2019, 115, 126–133. [Google Scholar] [CrossRef]
- Sadat, A.; Corradini, M.G.; Joye, I.J. Molecular spectroscopy to assess protein structures within cereal systems. Curr. Opin. Food Sci. 2019, 25, 42–51. [Google Scholar] [CrossRef]
- Kačuráková, M.; Capek, P.; Sasinková, V.; Wellner, N.; Ebringerová, A. FT-IR study of plant cell wall model compounds: Pectic polysaccharides and hemicelluloses. Carbohydr. Polym. 2000, 43, 195–203. [Google Scholar] [CrossRef]
- Liu, X.; Renard, C.M.G.C.; Bureau, S.; Le Bourvellec, C. Revisiting the contribution of ATR-FTIR spectroscopy to characterize plant cell wall polysaccharides. Carbohydr. Polym. 2021, 262, 117935. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Huang, R.; Wen, P.; Song, Y.; He, B.; Tan, J.; Hao, H.; Wang, H. Structural characterization and immunological activity of pectin polysaccharide from kiwano (Cucumis metuliferus) peels. Carbohydr. Polym. 2021, 254, 117371. [Google Scholar] [CrossRef] [PubMed]
- Filippov, M.P. Practical infrared spectroscopy of pectic substances. Food Hydrocol. 1992, 6, 115–142. [Google Scholar] [CrossRef]
- Masuda, Y.; Fukushima, K.; Fujii, T.; Miyazawa, T. Low-frequency infrared bands and chain conformations of polypeptides. Biopolym. Orig. Res. Biomol. 1969, 8, 91–99. [Google Scholar] [CrossRef]
- Han, Y.; Ling, S.; Qi, Z.; Shao, Z.; Chen, X. Application of far-infrared spectroscopy to the structural identification of protein materials. Phys. Chem. Chem. Phys. 2018, 20, 11643–11648. [Google Scholar] [CrossRef]
- Julakanti, S.; Charles, A.P.R.; Syed, R.; Bullock, F.; Wu, Y. Hempseed polysaccharide (Cannabis sativa L.): Physicochemical characterization and comparison with flaxseed polysaccharide. Food Hydrocoll. 2023, 143, 108900. [Google Scholar] [CrossRef]
- Ozhimkova, E.; Uschapovsky, I.; Manaenkov, O. Study of Varietal Differences in the Composition of Heteropolysaccharides of Oil Flax and Fiber Flax. Polysaccharides 2023, 4, 78–87. [Google Scholar] [CrossRef]
- Guo, M.Q.; Hu, X.; Wang, C.; Ai, L. Structure and solubility relationships. In Polysaccharides: Structure and Solubility; Xu, Z., Ed.; InTech: London, UK, 2017. [Google Scholar] [CrossRef]
- Goh, K.K.T.; Pinder, D.N.; Hall, C.E.; Hemar, Y. Rheological and Light Scattering Properties of Flaxseed Polysaccharides Aqueous Solutions. Biomacromolecules 2006, 7, 3098–3103. [Google Scholar] [CrossRef]
- Kazemi, M.; Khodaiyan, F.; Hosseini, S.S. Utilization of Food Processing Wastes of Eggplant as a High Potential Pectin Source and Characterization of Extracted Pectin. Food Chem. 2019, 294, 339–346. [Google Scholar] [CrossRef]
- Kazemi, M.; Khodaiyan, F.; Labbafi, M.; Hosseini, S.S.; Hojjati, M. Pistachio Green Hull Pectin: Optimization of Microwave-Assisted Extraction and Evaluation of Its Physicochemical, Structural and Functional Properties. Food Chem. 2019, 271, 663–672. [Google Scholar] [CrossRef]
- Zhao, H.; Kwak, J.H.; Zhang, Z.C.; Brown, H.M.; Arey, B.W.; Holladay, J.E. Studying Cellulose Fiber Structure by SEM, XRD, NMR and Acid Hydrolysis. Carbohydr. Polym. 2007, 68, 235–241. [Google Scholar] [CrossRef]
- Espinal-Ruiz, M.; Restrepo-Sánchez, L.P.; Narváez-Cuenca, C.E.; McClements, D.J. Impact of Pectin Properties on Lipid Digestion under Simulated Gastrointestinal Conditions: Comparison of Citrus and Banana Passion Fruit (Passiflora Tripartita var. mollissima) Pectins. Food Hydrocoll. 2016, 52, 329–342. [Google Scholar] [CrossRef]
- Mahmoud, M.H.; Abu-Salem, F.M.; Azab, D.E.S.H. A Comparative Study of Pectin Green Extraction Methods from Apple Waste: Characterization and Functional Properties. Int. J. Food Sci. 2022, 2022, 2865921. [Google Scholar] [CrossRef] [PubMed]
- Al Jitan, S.; Scurria, A.; Albanese, L.; Pagliaro, M.; Meneguzzo, F.; Zabini, F.; Al Sakkaf, R.; Yusuf, A.; Palmisano, G.; Ciriminna, R. Micronized Cellulose from Citrus Processing Waste Using Water and Electricity Only. Int. J Biol. Macromol. 2022, 204, 587–592. [Google Scholar] [CrossRef] [PubMed]
- Sucheta; Misra, N.N.; Yadav, S.K. Extraction of Pectin from Black Carrot Pomace Using Intermittent Microwave, Ultrasound and Conventional Heating: Kinetics, Characterization and Process Economics. Food Hydrocoll. 2020, 102, 105592. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Smith, B.; Guo, Y. Ultrasound-Microwave Assisted Extraction of Pectin from Fig (Ficus carica L.) Skin: Optimization, Characterization and Bioactivity. Carbohydr. Polym. 2019, 222, 114992. [Google Scholar] [CrossRef]
- Begum, R.; Aziz, M.G.; Yusof, Y.A.; Saifullah, M.; Uddin, M.B. Evaluation of Gelation Properties of Jackfruit (Artocarpus heterophyllus) Waste Pectin. Carbohydr. Polym. Technol. Appl. 2021, 2, 100160. [Google Scholar] [CrossRef]
- Li, K.; Zhu, L.; Li, H.; Zhu, Y.; Pan, C.; Gao, X.; Liu, W. Structural Characterization and Rheological Properties of a Pectin with Anti-Constipation Activity from the Roots of Arctium lappa L. Carbohydr. Polym. 2019, 215, 119–129. [Google Scholar] [CrossRef]
Name of the Samples | Extraction Medium | Conductivity of Extraction Medium (mS/cm) | pH of Extraction Medium | Yield of Extraction (mg/g) | Saccharides (wt%) | Uronic Acids (wt%) | Uronic Acids in Saccharide Part (wt%) | Uronic Acids in Raw Material (mg/g) | Polyphenols (µM GAE/1 g of Dry Product) | Proteins (wt%) |
---|---|---|---|---|---|---|---|---|---|---|
LU1 | H2O | 0.0064 | 5.22 | 53.58 | 34.89 ± 1.36 | 14.35 ± 0.16 | 41.13 | 7.72 | 94.24 ± 10.80 | 14.52 ± 0.72 |
LU2 | 0:1 * | 4.70 | 2.88 | 117.21 | 41.29 ± 2.20 | 24.41 ± 0.21 | 59.12 | 28.61 | 144.88 ± 3.03 | 12.00 ± 049 |
LU3 | 1:1 * | 20.30 | 2.94 | 121.62 | 40.14 ± 1.92 | 30.33 ± 2.39 | 68.15 | 36.88 | 174.56 ± 11.35 | 11.46 ± 0.41 |
LU4 | 1:2 * | 15.63 | 2.90 | 136.71 | 39.45 ± 1.56 | 24.64 ± 0.58 | 61.44 | 33.71 | 200.69 ± 16.02 | 12.18 ± 0.28 |
LU5 | 1:3 * | 13.38 | 2.89 | 133.43 | 38.60 ± 0.75 | 23.15 ± 0.30 | 59.97 | 30.91 | 194.16 ± 16.77 | 13.01 ± 0.32 |
LU6 | 1:4 * | 11.44 | 2.88 | 119.26 | 45.20 ± 1.21 | 24.37 ± 0.25 | 53.92 | 29.06 | 182.88 ± 8.52 | 11.95 ± 0.31 |
Monosaccharides Composition (wt%) | DM b (%) | |||||||
---|---|---|---|---|---|---|---|---|
Fuc | Rha | Ara | Xyl | Man | Gal | Glc | GalA a | |
0.12 ± 0.01 | 3.06 ± 0.15 | 7.67 ± 0.38 | 11.90 ± 0.60 | 1.09 ± 0.05 | 3.08 ± 0.15 | 0.77 ± 0.24 | 68.31 ± 3.42 | 53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazurek-Hołys, A.; Górska, E.; Tsirigotis-Maniecka, M.; Zoumpanioti, M.; Bleha, R.; Pawlaczyk-Graja, I. Eco-Friendly Recovery of Homogalacturonan-Rich Pectin from Flaxseed Cake via NADES Extraction. Polymers 2025, 17, 2532. https://doi.org/10.3390/polym17182532
Mazurek-Hołys A, Górska E, Tsirigotis-Maniecka M, Zoumpanioti M, Bleha R, Pawlaczyk-Graja I. Eco-Friendly Recovery of Homogalacturonan-Rich Pectin from Flaxseed Cake via NADES Extraction. Polymers. 2025; 17(18):2532. https://doi.org/10.3390/polym17182532
Chicago/Turabian StyleMazurek-Hołys, Aleksandra, Ewa Górska, Marta Tsirigotis-Maniecka, Maria Zoumpanioti, Roman Bleha, and Izabela Pawlaczyk-Graja. 2025. "Eco-Friendly Recovery of Homogalacturonan-Rich Pectin from Flaxseed Cake via NADES Extraction" Polymers 17, no. 18: 2532. https://doi.org/10.3390/polym17182532
APA StyleMazurek-Hołys, A., Górska, E., Tsirigotis-Maniecka, M., Zoumpanioti, M., Bleha, R., & Pawlaczyk-Graja, I. (2025). Eco-Friendly Recovery of Homogalacturonan-Rich Pectin from Flaxseed Cake via NADES Extraction. Polymers, 17(18), 2532. https://doi.org/10.3390/polym17182532