Tuning the Structure of Poly(aspartic acid)s’ Self-Assemblies to Enhance Cellular Uptake
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of Poly(aspartic acid) Substituted with Octadecyl Chains
2.2. Preparation and Characterization of PAsp-g-Alkyl Chain Self-Assemblies
2.3. Synthesis of PAsp-g-TAT Grafted with Octadecyl Chains
2.4. Synthesis of PHEA-g-NH2 Grafted with Octadecyl Chains
2.5. Modular Assembly for Preparing Biomimetic Self-Assemblies
2.6. Human Dermal Fibroblast Culture and Cellular Uptake
3. Results and Discussions
3.1. Synthesis of Poly(aspartic acid)s Grafted with Alkyl Chains
3.2. Characteristics of PAsp-g-C18 Self-Assembled Nanoparticles
3.3. Morphological Analysis of PAsp-g-C18 Self-Assembled Nanoparticles
3.4. Cellular Uptake of the Biomimetic Self-Assemblies into the Dermal Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Vladimir, P.T. Multifunctional nanocarriers. Adv. Drug Deliv. Rev. 2006, 58, 1532. [Google Scholar] [CrossRef]
- Jeffrey, A.H.; Ashutosh, C. Nanomaterials for drug delivery. Science 2021, 337, 303. [Google Scholar]
- Cho, Y.N.; Lim, J.W.; Oh, S.J.; Han, S.R.; Cho, S.W.; Jeong, J.M.; Han, B.H.; Jeong, J.H. O2-microbubble of iron-porphyrin conjugated polyaspartamide for molecular ultrasound contrast effect. Biotechnol. Lett. 2025, 47, 1–8. [Google Scholar] [CrossRef]
- Discher, D.E.; Eisenberg, A. Polymer vesicles. Science 2002, 297, 967–973. [Google Scholar] [CrossRef]
- Bhunia, S.; Chandel, S.; Karan, S.K.; Dey, S.; Tiwari, A.; Das, S.; Kumar, N.; Chowdhury, R.; Mondal, S.; Ghosh, I.; et al. Autonomous self-repair in piezoelectric molecular crystals. Science 2021, 373, 321–327. [Google Scholar] [CrossRef]
- Nakato, T.; Kusuno, A.; Kakuchi, T. Synthesis of poly (succinimide) by bulk polycondensation of L-aspartic acid with an acid catalyst. J. Polym. Sci. Part A Polym. Chem. 2000, 38, 117–122. [Google Scholar] [CrossRef]
- Thombre, S.M.; Sarwade, B.D. Synthesis and biodegradability of polyaspartic acid: A critical review. J. Macromol. Sci. Part A 2005, 42, 1299–1315. [Google Scholar] [CrossRef]
- Machado, C.A.; Smith, I.R.; Savin, D.A. Self-assembly of oligo-and polypeptide-based amphiphiles: Recent advances and future possibilities. Macromolecules 2019, 52, 1899–1911. [Google Scholar] [CrossRef]
- Jeong, J.H.; Kang, H.S.; Yang, S.R.; Park, K.; Kim, J.D. Biodegradable poly (asparagine) grafted with poly (caprolactone) and the effect of substitution on self-aggregation. Colloids Surf. A Physicochem. Eng. Asp. 2005, 264, 187–194. [Google Scholar] [CrossRef]
- Geng, Y.; Dalhaimer, P.; Cai, S.; Tsai, R.; Tewari, M.; Minko, T.; Discher, D.E. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2007, 2, 249–255. [Google Scholar] [CrossRef]
- Nishimura, T.; Hatatani, Y.; Ando, M.; Sasaki, Y.; Akiyoshi, K. Single-component nanodiscs via the thermal folding of amphiphilic graft copolymers with the adjusted flexibility of the main chain. Chem. Sci. 2022, 13, 5243–5251. [Google Scholar] [CrossRef]
- Mishra, D.; Hubenak, J.R.; Mathur, A.B. Nanoparticle systems as tools to improve drug delivery and therapeutic efficacy. J. Biomed. Mater. Res. Part A 2013, 101, 3646–3660. [Google Scholar] [CrossRef]
- Pytlíková, S.; Konefał, R.; Pola, R.; Braunová, A.; Lobaz, V.; Slouf, M.; Beneš, H.; Starenko, D.; Běhalová, K.; Kovář, M.; et al. Dual thermo-and pH-responsive polymer nanoparticle assemblies for potential stimuli-controlled drug delivery. ACS Appl. Bio Mater. 2024, 8, 271–284. [Google Scholar] [CrossRef] [PubMed]
- Png, Z.M.; Wang, C.G.; Yeo, J.C.C.; Lee, J.J.C.; Surat’man, N.E.; Tan, Y.L.; Liu, H.; Wang, P.; Tan, B.H.; Xu, J.W.; et al. Stimuli-responsive structure–property switchable polymer materials. Mol. Syst. Des. Eng. 2023, 8, 1097–1129. [Google Scholar] [CrossRef]
- Alexis, F.; Pridgen, E.; Molnar, L.K.; Farokhzad, O.C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm. 2008, 5, 505–515. [Google Scholar] [CrossRef]
- Moghimi, S.M.; Hunter, A.C.; Murray, J.C. Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacol. Rev. 2001, 53, 283–318. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Chen, L.; Gu, W.; Gao, Y.; Lin, L.; Zhang, Z.; Xi, Y.; Li, Y. The performance of docetaxel-loaded solid lipid nanoparticles targeted to hepatocellular carcinoma. Biomaterials 2009, 30, 226–232. [Google Scholar] [CrossRef]
- Frank, O.; Kreissl, J.K.; Daschner, A.; Hofmann, T. Accurate determination of reference materials and natural isolates by means of quantitative 1H NMR spectroscopy. J. Agric. Food Chem. 2014, 62, 2506–2515. [Google Scholar] [CrossRef] [PubMed]
- Benmeradi, N.; Payre, B.; Goodman, S.L. Easier and safer biological staining: High contrast UranyLess staining of TEM Grids using mPrep/g capsules. Microsc. Microanal. 2015, 21, 721–722. [Google Scholar] [CrossRef]
- Eray, M.; Mättö, M.; Kaartinen, M.; Andersson, L.C.; Pelkonen, J. Flow cytometric analysis of apoptotic subpopulations with a combination of Annexin V-FITC, propidium iodide, and SYTO 17. Cytom. J. Int. Soc. Anal. Cytol. 2001, 43, 134–142. [Google Scholar] [CrossRef]
- Matsubara, K.; Nakato, T.; Tomida, M. 1H and 13C NMR characterization of poly (succinimide) prepared by thermal polycondensation of l-aspartic acid. Macromolecules 1997, 30, 2305–2312. [Google Scholar] [CrossRef]
- Stevens, C.A.; Kaur, K.; Klok, H.A. Self-assembly of protein-polymer conjugates for drug delivery. Adv. Drug Deliv. Rev. 2021, 174, 447–460. [Google Scholar] [CrossRef]
- Ozawa, N.; Nishimura, T. Macromolecular architectural effects on solution self-assembly of amphiphilic AB-type block copolymers. Polym. Chem. 2024, 15, 349–370. [Google Scholar] [CrossRef]
- Huang, C.; Quinn, D.; Sadovsky, Y.; Suresh, S.; Hsia, K.J. Formation and size distribution of self-assembled vesicles. Proc. Natl. Acad. Sci. USA 2017, 114, 2910–2915. [Google Scholar] [CrossRef]
- Zhao, Z.; Kuang, X.; Kuang, X.; Yuan, C.; Qi, H.J.; Fang, D. Hydrophilic/hydrophobic composite shape-shifting structures. ACS Appl. Mater. Interfaces 2018, 10, 19932–19939. [Google Scholar] [CrossRef]
- Sajanlal, P.R.; Sreeprasad, T.S.; Samal, A.K.; Pradeep, T. Anisotropic nanomaterials: Structure, growth, assembly, and functions. Nano Rev. 2011, 2, 5883. [Google Scholar] [CrossRef]
- Lu, Y.; Lin, J.; Wang, L.; Zhang, L.; Cai, C. Self-assembly of copolymer micelles: Higher-level assembly for constructing hierarchical structure. Chem. Rev. 2020, 120, 4111–4140. [Google Scholar] [CrossRef]
- Hahn, L.; Zorn, T.; Kehrein, J.; Kielholz, T.; Ziegler, A.-L.; Forster, S.; Sochor, B.; Lisitsyna, E.S.; Durandin, N.A.; Laaksonen, T.; et al. Unraveling an alternative mechanism in polymer self-assemblies: An order–order transition with unusual molecular interactions between hydrophilic and hydrophobic polymer blocks. ACS Nano 2023, 17, 6932–6942. [Google Scholar] [CrossRef]
- Yuan, C.; Ji, W.; Xing, R.; Li, J.; Gazit, E.; Yan, X. Hierarchically oriented organization in supramolecular peptide crystals. Nat. Rev. Chem. 2019, 3, 567–588. [Google Scholar] [CrossRef] [PubMed]
- Sen Gupta, A. Role of particle size, shape, and stiffness in design of intravascular drug delivery systems: Insights from computations, experiments, and nature. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2016, 8, 255–270. [Google Scholar] [CrossRef]
- Jinnai, H. Electron microscopy for polymer structures. Microscopy 2022, 71, i148–i164. [Google Scholar] [CrossRef] [PubMed]
- Han, S.R.; Ahn, Y.; Cho, S.; Jeong, H.; Ji, Y.; Jung, W.; Jeong, J.H. A Spike-like Self-Assembly of Polyaspartamide Integrated with Functionalized Nanoparticles. Polymers 2024, 16, 234. [Google Scholar] [CrossRef] [PubMed]
Polymers | Feed a | DS b | Number c | Morphology d | f(w) e | CAC f |
---|---|---|---|---|---|---|
PAsp | 100/0 | - | - | - | - | |
PAsp-C18-1 | 95/5 | 4.5 | 26 | Spherical | 88.8 | 5.1 × 10−2 |
PAsp-C18-2 | 90/10 | 9.1 | 53 | Spherical | 78.9 | 1.9 × 10−2 |
PAsp-C18-3 | 80/20 | 19.0 | 111 | Ellipsoidal | 61.4 | 4.4 × 10−3 |
PAsp-C18-4 | 60/40 | 25.7 | 151 | Vesicle | 51.9 | 7.5 × 10−3 |
PAsp-C18-5 | 40/60 | 37.6 | 221 | Lamellar | 38.3 | 3.1 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, J.; Lim, J.; Cho, S.; Han, S.R.; Hong, S.H.; Jeong, J.H. Tuning the Structure of Poly(aspartic acid)s’ Self-Assemblies to Enhance Cellular Uptake. Polymers 2025, 17, 2373. https://doi.org/10.3390/polym17172373
Jeong J, Lim J, Cho S, Han SR, Hong SH, Jeong JH. Tuning the Structure of Poly(aspartic acid)s’ Self-Assemblies to Enhance Cellular Uptake. Polymers. 2025; 17(17):2373. https://doi.org/10.3390/polym17172373
Chicago/Turabian StyleJeong, Jimin, Junwoo Lim, Sungwoo Cho, Sa Ra Han, Suk Hyeon Hong, and Jae Hyun Jeong. 2025. "Tuning the Structure of Poly(aspartic acid)s’ Self-Assemblies to Enhance Cellular Uptake" Polymers 17, no. 17: 2373. https://doi.org/10.3390/polym17172373
APA StyleJeong, J., Lim, J., Cho, S., Han, S. R., Hong, S. H., & Jeong, J. H. (2025). Tuning the Structure of Poly(aspartic acid)s’ Self-Assemblies to Enhance Cellular Uptake. Polymers, 17(17), 2373. https://doi.org/10.3390/polym17172373