Model Test of Strip Footing Behavior on Embankment Reinforced with Geogrid with Strengthened Nodes Under Static and Dynamic Loadings
Abstract
1. Introduction
2. Experimental Materials and Methods
2.1. Experimental Materials
2.1.1. Sand Sample
2.1.2. Reinforcement Material
2.2. Experimental Apparatus
2.3. Sample Preparation and Testing Procedures
2.4. Experimental Limitations
3. Results and Discussion
3.1. Static Load Test
3.1.1. Bearing Capacity
3.1.2. Lateral Displacement Characteristics
3.2. Dynamic Load Test
3.2.1. Cumulative Settlement
3.2.2. Cumulative Lateral Displacement
3.2.3. Deformation Image Analysis
3.2.4. Dynamic Soil Pressure
4. Conclusions
- (1)
- Compared to geogrid reinforcement, the ultimate bearing capacity of GSN-reinforced embankments increased by 26.2%, and the lateral displacement at the slope crest was reduced by 22.44%, demonstrating its superior performance under static loading.
- (2)
- The GSN-reinforced embankment exhibited stronger fatigue resistance under dynamic loading. After 20,000 cyclic loadings, the cumulative settlement was reduced by 32.82%, and the lateral displacement at the slope crest was reduced by 64.34%, compared to geogrid reinforcement.
- (3)
- Under dynamic loading, the soil pressure directly below the loading plate of GSN-reinforced embankments significantly increased and effectively transferred the load to deeper soil layers, significantly alleviating local stress concentration in unreinforced embankments and making the load distribution more uniform.
- (4)
- By strengthening the nodes, GSN used lateral resistance to limit lateral deformation of the soil, forming a stable “reinforcement zone”. This optimized load transfer paths, significantly enhancing the overall stiffness and shear strength of the soil, thereby substantially improving the bearing capacity and stability of the embankment.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Jia, M.C.; Zhu, W.K.; Xu, C. Performance of a 33m high geogrid reinforced soil embankment without concrete panel. Geotext. Geomembr. 2021, 49, 122–129. [Google Scholar] [CrossRef]
- Zhang, M.X.; Zhu, H.; Chen, L.Q.; Javadi, A.A. Experimental study for the geogrid-reinforced embankment with clay cover under static and cyclic loading. Int. J. Civ. Eng. 2024, 22, 181–194. [Google Scholar] [CrossRef]
- Wang, Z.J.; Jacobs, F.; Ziegler, M.; Yang, G.Q. Visualisation and quantification of geogrid reinforcing effects under strip footing loads using discrete element method. Geotext. Geomembr. 2020, 48, 62–70. [Google Scholar] [CrossRef]
- Xu, H.; Ren, X.; Chen, J.N.; Liu, C.N.; Xia, L.; Liu, Y.W. Centrifuge model tests of geogrid-reinforced slope supporting a high embankment. Geosynth. Int. 2019, 26, 629–640. [Google Scholar] [CrossRef]
- Rowe, R.K.; Taechakumthorn, C. Design of reinforced embankments on soft clay deposits considering the viscosity of both foundation and reinforcement. Geotext. Geomembr. 2011, 29, 448–461. [Google Scholar] [CrossRef]
- Bai, X.H.; Huang, X.Z.; Zhang, W. Bearing capacity of square footing supported by a geobelt-reinforced crushed stone cushion on soft soil. Geotext. Geomembr. 2013, 38, 37–42. [Google Scholar] [CrossRef]
- Zhang, M.X.; Qiu, C.C.; Javadi, A.A.; Zhang, S.L. Model tests on reinforced sloped embankment with denti-strip inclusions under monotonic loading. KSCE J. Civ. Eng. 2014, 18, 1342–1350. [Google Scholar] [CrossRef]
- Lin, Y.L.; Leng, W.M.; Yang, G.L.; Li, L.; Yang, J.S. Seismic response of embankment slopes with different reinforcing measures in shaking table tests. Nat. Hazards 2015, 76, 791–810. [Google Scholar] [CrossRef]
- Javankhoshdel, S.; Bathurst, R.J. Deterministic and probabilistic failure analysis of simple geosynthetic reinforced soil slopes. Geosynth. Int. 2017, 24, 14–29. [Google Scholar] [CrossRef]
- Sun, Y.J.; Xu, H.Z.; Gu, P.; Hu, W.J. Application of FBG sensing technology in stability analysis of geogrid-reinforced slope. Sensors 2017, 17, 597. [Google Scholar] [CrossRef]
- Qie, X.Y.; Li, X.X.; Tao, X.H.; Xu, S.H.; Huang, L. Seismic reliability analysis of reinforced slope considering soil parameter dependence structure. Sci. Rep. 2025, 15, 8908. [Google Scholar] [CrossRef] [PubMed]
- Srilatha, N.; Latha, G.M.; Puttappa, C.G. Effect of frequency on seismic response of reinforced soil slopes in shaking table tests. Geotext. Geomembr. 2013, 36, 27–32. [Google Scholar] [CrossRef]
- Mehrjardi, G.T.; Ghanbari, A.; Mehdizadeh, H. Experimental study on the behaviour of geogrid-reinforced slopes with respect to aggregate size. Geotext. Geomembr. 2016, 44, 862–871. [Google Scholar] [CrossRef]
- Yan, Q.W.; Yang, H.F.; Xiao, S.G. Large-scale model tests on a bilaterally wrapped geogrid-reinforced embankment. Int. J. Civ. Eng. 2023, 21, 159–172. [Google Scholar] [CrossRef]
- Liu, J.; Wang, B.; Sun, Y.L. Analysis of strengthening mechanism of the steep slope embankment through centrifugal model test. Shock Vib. 2022, 6536257. [Google Scholar] [CrossRef]
- Luo, F.Y.; Huang, R.L.; Zhang, G. Centrifuge modeling of the geogrid-reinforced slope subjected to differential settlement. Acta. Geotech. 2020, 15, 3027–3040. [Google Scholar] [CrossRef]
- Zhang, R.; Lan, T.; Zheng, J.L.; Gao, Q.F. Field performance of a geogrid-reinforced expansive soil slope: A case study. Bull. Eng. Geol. Environ. 2024, 83, 7. [Google Scholar] [CrossRef]
- Keskin, M.; Laman, M. Experimental and numerical studies of strip footings on geogrid-reinforced sand slope. Arab. J. Sci. Eng. 2014, 39, 1607–1619. [Google Scholar] [CrossRef]
- Marx, D.H.; Zornberg, J.G. Modelling the ultimate pullout resistance of geogrids. Geosynth. Int. 2025, 32, 355–372. [Google Scholar] [CrossRef]
- Zhang, M.X.; Javadi, A.A.; Min, X. Triaxial tests of sand reinforced with 3D inclusions. Geotext. Geomembr. 2006, 24, 201–209. [Google Scholar] [CrossRef]
- Zhang, M.X.; Qiu, C.C.; Javadi, A.A.; Lu, Y.; Zhang, S.L. Discrete-element method simulation of a model test of an embankment reinforced with horizontal-vertical inclusions. Geosynth. Int. 2013, 20, 238–251. [Google Scholar] [CrossRef]
- Lin, Y.L.; Zhang, M.X.; Javadi, A.A.; Lu, Y.; Zhang, S.L. Experimental and DEM simulation of sandy soil reinforced with H-V inclusions in plane strain tests. Geosynth. Int. 2013, 20, 162–173. [Google Scholar] [CrossRef]
- Hou, J.; Zhang, M.X.; Dai, Z.H.; Li, J.Z.; Zeng, F.F. Bearing capacity of strip foundations in horizontal-vertical reinforced soils. Geotext. Geomembr. 2017, 45, 29–34. [Google Scholar] [CrossRef]
- Hou, J.; Liu, S.T.; Nam, B.; Ma, Y.X. Bearing capacity and mechanism of the H-V geogrid-reinforced foundation. Polymers 2023, 15, 2606. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Chu, C.X.; Li, J.Z.; Copeland, T.; Chen, J.N.; Nam, B.H. An analytical model of horizontal-vertical geogrid reinforced foundation. KSCE J. Civ. Eng. 2024, 28, 2673–2680. [Google Scholar] [CrossRef]
- Horpibulsuk, S.; Niramitkornburee, A. Pullout resistance of bearing reinforcement embedded in sand. Soils Found. 2010, 50, 215–226. [Google Scholar] [CrossRef]
- Horpibulsuk, S.; Suksiripattanapong, C.; Niramitkornburee, A.; Chinkulkijniwat, A.; Tangsutthinon, T. Performance of an earth wall stabilized with bearing reinforcements. Geotext. Geomembr. 2011, 29, 514–524. [Google Scholar] [CrossRef]
- Horpibulsuk, S.; Udomchai, A.; Joongklang, A.; Chinkulkijniwat, A.; Mavong, N.; Suddeepong, A.; Arulrajah, A. Pullout resistance mechanism of bearing reinforcement embedded in residual clayey soils. Geosynth. Int. 2017, 24, 255–263. [Google Scholar] [CrossRef]
- Mosallanezhad, M.; Hataf, N.; Taghavi, S.H.S. Experimental and large-scale field tests of grid-anchor system performance in increasing the ultimate bearing capacity of granular soils. Can. Geotech. J. 2016, 53, 1047–1058. [Google Scholar] [CrossRef]
- Mosallanezhad, M.; Taghavi, S.H.S.; Hataf, N.; Alfaro, M.C. Experimental and numerical studies of the performance of the new reinforcement system under pull-out conditions. Geotext. Geomembr. 2016, 44, 70–80. [Google Scholar] [CrossRef]
- Zeng, W.X.; Liu, F.Y.; Ying, M.J. Cyclic response of stereoscopic geogrid-sand interface under static and cyclic loading. Geosynth. Int. 2024, 31, 541–554. [Google Scholar] [CrossRef]
- Zeng, W.X.; Liu, F.Y.; Ying, M.J.; Zhang, S.X.; Gao, C.B. DEM-FDM analysis in stereoscopic geogrid-reinforced interface under cyclic loading. Geosynth. Int. 2025. [Google Scholar] [CrossRef]
- Qiu, C.C.; Lin, Y.L.; Ma, Y.; He, M. Effect of vibration frequency on settlement characteristic of reinforced embankment by geogrid with strengthened nodes using DEM simulation. IOP Conf. Ser. Mater. Sci. Eng. 2019, 657, 012016. [Google Scholar] [CrossRef]
- Miao, C.X.; Zheng, J.J.; Zhang, R.J.; Xie, M.X.; Yin, J.H. Visualization of pullout behaviour of geogrid in sand with emphasis on size effect of protrusive junctions. J Cent. South Univ. 2017, 24, 2121–2133. [Google Scholar] [CrossRef]
- Du, W.; Nie, R.S.; Tan, Y.C.; Zhang, J.; Qi, Y.L.; Zhao, C.Y. Influence of strengthened nodes on the mechanical performance of aeolian sand-geogrid interface. Materials 2023, 16, 4665. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.X.; Ma, Y.; Qiu, C.C. Influence of strengthened node arrangement on pull-out characteristics of biaxial geogrid. J. Shanghai Jiaotong Univ. 2020, 54, 1307–1315. [Google Scholar] [CrossRef]
- Tafreshi, S.N.M.; Dawson, A.R. Comparison of bearing capacity of a strip footing on sand with geocell and with planar forms of geotextile reinforcement. Geotext. Geomembr. 2010, 28, 72–84. [Google Scholar] [CrossRef]
- Mirzababaei, M.; Mohamed, M.; Miraftab, M. Analysis of strip footings on fiber-reinforced slopes with the aid of particle image velocimetry. J. Mater. Civ. Eng. 2017, 29, 4016243. [Google Scholar] [CrossRef]
- Chen, J.F.; Guo, X.P.; Sun, R.; Rajesh, S.; Jiang, S.; Xue, J.F. Physical and numerical modelling of strip footing on geogrid reinforced transparent sand. Geotext. Geomembr. 2021, 49, 399–412. [Google Scholar] [CrossRef]
Property | Value |
---|---|
D10 (mm) | 0.54 |
D30 (mm) | 0.62 |
D60 (mm) | 0.75 |
Specific gravity | 2.64 |
Coefficient of uniformity | 1.39 |
Coefficient of curvature | 0.94 |
Minimum dry density (g/cm3) | 1.58 |
Maximum dry density (g/cm3) | 1.87 |
Property | Value |
---|---|
Longitudinal/transverse mean tensile strength (kN/m) | 25 |
Longitudinal/transverse tensile strength at 2% strain (kN/m) | 12 |
Longitudinal/transverse tensile strength at 5% strain (kN/m) | 20 |
Strain at ultimate tensile strength (%) | 10 |
Aperture size (mm) | 50 × 50 |
Property | Value |
---|---|
Density (g/cm3) | 0.939 |
Tensile yield strength (N/mm) | 22 |
Elongation at yield (%) | 12 |
Tensile breaking strength (N/mm) | 40 |
Elongation at break (%) | 700 |
Reference | Model Dimensions (Length × Width × Height) | Model Length/Strip Footing Width | Model Height/Strip Footing Width |
---|---|---|---|
Tafreshi et al. (2010) [37] | 750 mm × 150 mm × 375 mm | 10 | 5 |
Mirzababaei et al. (2017) [38] | 800 mm × 300 mm × 350 mm | 16 | 7 |
Chen et al. (2021) [39] | 800 mm × 200 mm × 480 mm | 10 | 6 |
Zhang et al. (2024) [2] | 600 mm × 290 mm × 333/343 mm | 10 | 5.55~5.72 |
This study | 600 mm × 290 mm × 300 mm | 10 | 5 |
Case | Reinforcement Layers | Reinforcement Material | Loading Form |
---|---|---|---|
1 | - | Unreinforced | Static load |
2 | 3 | Geogrid | |
3 | 3 | GSN | |
4 | - | Unreinforced | Fixed amplitude dynamic load (20,000 cycles) |
5 | 3 | Geogrid | |
6 | 3 | GSN |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, C.; Xu, Z.; Zhang, D.; Zhang, M. Model Test of Strip Footing Behavior on Embankment Reinforced with Geogrid with Strengthened Nodes Under Static and Dynamic Loadings. Polymers 2025, 17, 2331. https://doi.org/10.3390/polym17172331
Qiu C, Xu Z, Zhang D, Zhang M. Model Test of Strip Footing Behavior on Embankment Reinforced with Geogrid with Strengthened Nodes Under Static and Dynamic Loadings. Polymers. 2025; 17(17):2331. https://doi.org/10.3390/polym17172331
Chicago/Turabian StyleQiu, Chengchun, Zhuyi Xu, Dan Zhang, and Mengxi Zhang. 2025. "Model Test of Strip Footing Behavior on Embankment Reinforced with Geogrid with Strengthened Nodes Under Static and Dynamic Loadings" Polymers 17, no. 17: 2331. https://doi.org/10.3390/polym17172331
APA StyleQiu, C., Xu, Z., Zhang, D., & Zhang, M. (2025). Model Test of Strip Footing Behavior on Embankment Reinforced with Geogrid with Strengthened Nodes Under Static and Dynamic Loadings. Polymers, 17(17), 2331. https://doi.org/10.3390/polym17172331