Progressive Hydrogel Applications in Diabetic Foot Ulcer Management: Phase-Dependent Healing Strategies
Abstract
1. Introduction
2. Normal Versus Dysregulated Wound Healing
2.1. Hemostasis
2.2. Inflammatory Phase
2.3. Proliferative Phase
2.4. Remodeling Phase
3. The Complex Microenvironment of DFU
4. Hydrogels
4.1. Types of Hydrogels for DFU
4.1.1. Natural Polymer Hydrogels for DFU
4.1.2. Synthetic Polymer Hydrogels for DFU
4.1.3. Composite-Polymer Hydrogels
4.2. Self-Healing Hydrogels
4.3. Stimuli-Responsive Hydrogels
4.3.1. Thermo-Responsive Hydrogels
4.3.2. pH-Responsive Hydrogels
4.3.3. Magnetic-Stimuli Responsive Hydrogel
4.3.4. Photoresponsive Hydrogels
5. Hydrogels for DFU Treatment Targeting Phases of Wound Healing
5.1. Hydrogels for Inducing Hemostasis
5.2. Hydrogels Targeting Inflammation
5.3. Hydrogels Promoting the Proliferation of Cells in the Wound Site
5.4. Hydrogels Promoting the Remodeling of Wound Tissue
Therapeutic Phase | Material Composition | Hydrogel Type | Preclinical/ Clinical Data | Therapeutic Efficacy | Reference |
---|---|---|---|---|---|
Inflammatory, Proliferative | Bletilla striata polysaccharide (BSP) + Berberine + Borax | Self-healing injectable hydrogel | In vivo (DFU mouse) ~95% healing in 14 days | - Hemolysis rates < 5%, - Cell mobility rate of 48.17 ± 1.68% - Anti-inflammatory (BSP/BER10 hydrogel reduced MCP-1 by 85.5%, IL-6 by 40.5%, and TNF-α by 83.7%) | [155] |
Inflammatory | Chitosan + β-CD + Trans-Cinnamaldehyde | Injectable hydrogel | In vitro only (antibacterial, antibiofilm) | - Injectable, cytocompatible - 99.99% antibacterial - 58–60% antibiofilm | [156] |
Inflammatory, Early Proliferation | Carboxymethylcellulose (CMC) + Green-synthesized AgNPs | pH-responsive hydrogel | In vitro: ~75% wound closure; ex vivo enzyme inhibition | - Biocompatible - Sustained AgNP release - 84% MPO and 73% collagenase inhibition - Angiogenesis and collagen promotion | [157] |
Hemostasis, Inflammation | Alginate + Hyaluronic Acid + Zn2+ + Polydopamine (Alg–HA–Zn–PDA) | Photosensitive hydrogel | In vivo (rat tail-amputation and infected full-thickness wound model) and in vitro BCI and scratch assay; ~69% cell migration, accelerated wound closure | - Hemostatic time (<30 s vs ~5 min untreated) - Blood loss (0.3 g vs 1.5 g untreated) - Antioxidant (DPPH scavenging ~80%) - Enhanced fibroblast migration (69.15%) | [158] |
Inflammation, Proliferation | Chitosan + Ag+ + EGF-loaded nanoparticles | pH-responsive | In vivo (diabetic rat): 97% healing | - Multifunctional: antibacterial, healing, anti-inflammatory - Oxygen delivery (PFC) - Sustained release in wound environment | [159] |
Inflammation, Proliferation, Remodeling | Chitosan + PVA + PHMB + EGF-loaded NPs + Perfluorocarbon emulsions | pH-responsive | In vivo (diabetic rat): 95% healing in 15 days | - Multifunctional: antibacterial, healing, anti-inflammatory - Oxygen delivery (PFC) - Sustained release | [160] |
6. Challenges and Future Perspectives
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, A.; Gangwar, R.; Zargar, A.A.; Kumar, R.; Sharma, A. Prevalence of Diabetes in India: A Review of IDF Diabetes Atlas 10th Edition. Curr. Diabetes Rev. 2024, 20, e130423215752. [Google Scholar] [CrossRef] [PubMed]
- Arokiasamy, P.; Salvi, S.; Selvamani, Y. Global Burden of Diabetes Mellitus. In Handbook of Global Health; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–44. ISBN 978-3-030-45009-0. [Google Scholar]
- Noor, S.; Khan, R.U.; Ahmad, J. Understanding Diabetic Foot Infection and Its Management. Diabetes Metab. Syndr. Clin. Res. Rev. 2017, 11, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Kim, J. The Pathophysiology of Diabetic Foot: A Narrative Review. J. Yeungnam Med. Sci. 2023, 40, 328–334. [Google Scholar] [CrossRef]
- Huang, F.; Lu, X.; Yang, Y.; Yang, Y.; Li, Y.; Kuai, L.; Li, B.; Dong, H.; Shi, J. Microenvironment-Based Diabetic Foot Ulcer Nanomedicine. Adv. Sci. 2023, 10, 2203308. [Google Scholar] [CrossRef]
- Mahinroosta, M.; Farsangi, Z.J.; Allahverdi, A.; Shakoori, Z. Hydrogels as Intelligent Materials: A Brief Review of Synthesis, Properties and Applications. Mater. Today Chem. 2018, 8, 42–55. [Google Scholar] [CrossRef]
- Gao, D.; Zhang, Y.; Bowers, D.T.; Liu, W.; Ma, M. Functional Hydrogels for Diabetic Wound Management. APL Bioeng. 2021, 5, 31503. [Google Scholar] [CrossRef]
- Mabrouk, M.; Kumar, P.; Choonara, Y.E.; du Toit, L.C.; Pillay, V. Artificial, Triple-Layered, Nanomembranous Wound Patch for Potential Diabetic Foot Ulcer Intervention. Materials 2018, 11, 2128. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, Q.; Wei, Z.; Ou, Y.; Cao, Y.; Zhou, H.; Wang, M.; Yu, K.; Liang, B. Advanced Polymer Hydrogels That Promote Diabetic Ulcer Healing: Mechanisms, Classifications, and Medical Applications. Biomater. Res. 2023, 27, 36. [Google Scholar] [CrossRef]
- Firlar, I.; Altunbek, M.; McCarthy, C.; Ramalingam, M.; Camci-Unal, G. Functional Hydrogels for Treatment of Chronic Wounds. Gels 2022, 8, 127. [Google Scholar] [CrossRef]
- Deng, H.; Li, B.; Shen, Q.; Zhang, C.; Kuang, L.; Chen, R.; Wang, S.; Ma, Z.; Li, G. Mechanisms of Diabetic Foot Ulceration: A Review. J. Diabetes 2023, 15, 299–312. [Google Scholar] [CrossRef] [PubMed]
- Shaw, T.J.; Martin, P. Wound Repair at a Glance. J. Cell Sci. 2009, 122, 3209–3213. [Google Scholar] [CrossRef]
- Gurtner, G.C.; Werner, S.; Barrandon, Y.; Longaker, M.T. Wound Repair and Regeneration. Nature 2008, 453, 314–321. [Google Scholar] [CrossRef]
- Perez-Favila, A.; Martinez-Fierro, M.L.; Rodriguez-Lazalde, J.G.; Cid-Baez, M.A.; Zamudio-Osuna, M.d.J.; Martinez-Blanco, M.d.R.; Mollinedo-Montaño, F.E.; Rodriguez-Sanchez, I.P.; Castañeda-Miranda, R.; Garza-Veloz, I. Current Therapeutic Strategies in Diabetic Foot Ulcers. Medicina 2019, 55, 714. [Google Scholar] [CrossRef] [PubMed]
- Santoro, M.M.; Gaudino, G. Cellular and Molecular Facets of Keratinocyte Reepithelization during Wound Healing. Exp. Cell Res. 2005, 304, 274–286. [Google Scholar] [CrossRef] [PubMed]
- Zawani, M.; Fauzi, M.B. Injectable Hydrogels for Chronic Skin Wound Management: A Concise Review. Biomedicines 2021, 9, 527. [Google Scholar] [CrossRef] [PubMed]
- Baltzis, D.; Eleftheriadou, I.; Veves, A. Pathogenesis and Treatment of Impaired Wound Healing in Diabetes Mellitus: New Insights. Adv. Ther. 2014, 31, 817–836. [Google Scholar] [CrossRef]
- Greenhalgh, D.G. Wound Healing and Diabetes Mellitus. Clin. Plast. Surg. 2003, 30, 37–45. [Google Scholar] [CrossRef]
- Pradhan, L.; Nabzdyk, C.; Andersen, N.D.; LoGerfo, F.W.; Veves, A. Inflammation and Neuropeptides: The Connection in Diabetic Wound Healing. Expert Rev. Mol. Med. 2009, 11, e2. [Google Scholar] [CrossRef]
- Shaabani, E.; Sharifiaghdam, M.; Lammens, J.; De Keersmaecker, H.; Vervaet, C.; De Beer, T.; Motevaseli, E.; Ghahremani, M.H.; Mansouri, P.; De Smedt, S.; et al. Increasing Angiogenesis Factors in Hypoxic Diabetic Wound Conditions by SiRNA Delivery: Additive Effect of LbL-Gold Nanocarriers and Desloratadine-Induced Lysosomal Escape. Int. J. Mol. Sci. 2021, 22, 9216. [Google Scholar] [CrossRef]
- Okonkwo, U.A.; DiPietro, L.A. Diabetes and Wound Angiogenesis. Int. J. Mol. Sci. 2017, 18, 1419. [Google Scholar] [CrossRef]
- Lan, C.-C.E.; Liu, I.-H.; Fang, A.-H.; Wen, C.-H.; Wu, C.-S. Hyperglycaemic Conditions Decrease Cultured Keratinocyte Mobility: Implications for Impaired Wound Healing in Patients with Diabetes. Br. J. Dermatol. 2008, 159, 1103–1115. [Google Scholar] [CrossRef]
- Wallace, H.A.; Basehore, B.M.; Zito, P.M. Wound Healing Phases; StatPearls: Treasure Island, FL, USA, 2025. [Google Scholar]
- Rosique, R.G.; Rosique, M.J.; Farina Junior, J.A. Curbing Inflammation in Skin Wound Healing: A Review. Int. J. Inflam. 2015, 2015, 316235. [Google Scholar] [CrossRef] [PubMed]
- Minossi, J.G.; Lima, F.d.O.; Caramori, C.A.; Hasimoto, C.N.; Ortolan, E.V.P.; Rodrigues, P.A.; Spadella, C.T. Alloxan Diabetes Alters the Tensile Strength, Morphological and Morphometric Parameters of Abdominal Wall Healing in Rats. Acta Cir. Bras. 2014, 29, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Berlanga-Acosta, J.; Schultz, G.S.; López-Mola, E.; Guillen-Nieto, G.; García-Siverio, M.; Herrera-Martínez, L. Glucose Toxic Effects on Granulation Tissue Productive Cells: The Diabetics’ Impaired Healing. Biomed Res. Int. 2013, 2013, 256043. [Google Scholar] [CrossRef]
- Maione, A.G.; Smith, A.; Kashpur, O.; Yanez, V.; Knight, E.; Mooney, D.J.; Veves, A.; Tomic-Canic, M.; Garlick, J.A. Altered ECM Deposition by Diabetic Foot Ulcer-Derived Fibroblasts Implicates Fibronectin in Chronic Wound Repair. Wound Repair Regen. 2016, 24, 630–643. [Google Scholar] [CrossRef]
- Dworzański, J.; Strycharz-Dudziak, M.; Kliszczewska, E.; Kiełczykowska, M.; Dworzańska, A.; Drop, B.; Polz-Dacewicz, M. Glutathione Peroxidase (GPx) and Superoxide Dismutase (SOD) Activity in Patients with Diabetes Mellitus Type 2 Infected with Epstein-Barr Virus. PLoS ONE 2020, 15, e0230374. [Google Scholar] [CrossRef]
- Obrosova, I.G. Update on the Pathogenesis of Diabetic Neuropathy. Curr. Diab. Rep. 2003, 3, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Giacco, F.; Brownlee, M. Oxidative Stress and Diabetic Complications. Circ. Res. 2010, 107, 1058–1070. [Google Scholar] [CrossRef]
- Zhang, J.; Luo, Q.; Hu, Q.; Zhang, T.; Shi, J.; Kong, L.; Fu, D.; Yang, C.; Zhang, Z. An Injectable Bioactive Dressing Based on Platelet-Rich Plasma and Nanoclay: Sustained Release of Deferoxamine to Accelerate Chronic Wound Healing. Acta Pharm. Sin. B 2023, 13, 4318–4336. [Google Scholar] [CrossRef]
- Mirza, R.E.; Fang, M.M.; Novak, M.L.; Urao, N.; Sui, A.; Ennis, W.J.; Koh, T.J. Macrophage PPARγ and Impaired Wound Healing in Type 2 Diabetes. J. Pathol. 2015, 236, 433–444. [Google Scholar] [CrossRef]
- Lobmann, R.; Ambrosch, A.; Schultz, G.; Waldmann, K.; Schiweck, S.; Lehnert, H. Expression of Matrix-Metalloproteinases and Their Inhibitors in the Wounds of Diabetic and Non-Diabetic Patients. Diabetologia 2002, 45, 1011–1016. [Google Scholar] [CrossRef]
- Rey, S.; Semenza, G.L. Hypoxia-Inducible Factor-1-Dependent Mechanisms of Vascularization and Vascular Remodelling. Cardiovasc. Res. 2010, 86, 236–242. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Wei, X.; Tan, Y.S.; Tong, L.; Chang, R.; Ghanamah, M.S.; Reinblatt, M.; Marti, G.P.; Harmon, J.W.; et al. Impaired Angiogenesis and Mobilization of Circulating Angiogenic Cells in HIF-1α Heterozygous-Null Mice after Burn Wounding. Wound Repair Regen. 2010, 18, 193–201. [Google Scholar] [CrossRef]
- Guan, Y.; Niu, H.; Liu, Z.; Dang, Y.; Shen, J.; Zayed, M.; Ma, L.; Guan, J. Sustained Oxygenation Accelerates Diabetic Wound Healing by Promoting Epithelialization and Angiogenesis and Decreasing Inflammation. Sci. Adv. 2021, 7, eabj0153. [Google Scholar] [CrossRef] [PubMed]
- Sim, P.; Strudwick, X.L.; Song, Y.; Cowin, A.J.; Garg, S. Influence of Acidic PH on Wound Healing In Vivo: A Novel Perspective for Wound Treatment. Int. J. Mol. Sci. 2022, 23, 13655. [Google Scholar] [CrossRef]
- Hunt, T.K.; Beckert, S. Therapeutical and Practical Aspects of Oxygen in Wound Healing. In The Wound Management Manual; McGraw-Hill Medical: New York, NY, USA, 2005. [Google Scholar]
- Leveen, H.H.; Falk, G.; Borek, B.; Diaz, C.; Lynfield, Y.; Wynkoop, B.J.; Mabunda, G.A.; Rubricius, J.L.; Christoudias, G.C. Chemical Acidification of Wounds. An Adjuvant to Healing and the Unfavorable Action of Alkalinity and Ammonia. Ann. Surg. 1973, 178, 745–753. [Google Scholar] [CrossRef]
- Percival, S.L.; McCarty, S.; Hunt, J.A.; Woods, E.J. The Effects of PH on Wound Healing, Biofilms, and Antimicrobial Efficacy. Wound Repair Regen. 2014, 22, 174–186. [Google Scholar] [CrossRef]
- Schultz, G.S.; Mast, B.A. Molecular Analysis of the Environments of Healing and Chronic Wounds: Cytokines, Proteases and Growth Factors. Prim. Intent. 1999, 7, 7–15. [Google Scholar]
- Banu, A.; Hassan, M.M.N.; Rajkumar, J.; Srinivasa, S. Prospective Study of Multidrug Resistant Bacteria Causing Diabetic Foot Ulcers in South India. J. Sci. 2015, 5, 626–629. [Google Scholar]
- Pouget, C.; Dunyach-Remy, C.; Pantel, A.; Schuldiner, S.; Sotto, A.; Lavigne, J.-P. Biofilms in Diabetic Foot Ulcers: Significance and Clinical Relevance. Microorganisms 2020, 8, 1580. [Google Scholar] [CrossRef] [PubMed]
- Hitam, S.A.S.; Hassan, S.A.; Maning, N. The Significant Association between Polymicrobial Diabetic Foot Infection and Its Severity and Outcomes. Malays. J. Med. Sci. 2019, 26, 107–114. [Google Scholar] [CrossRef]
- Lipsky, B.A.; Berendt, A.R.; Cornia, P.B.; Pile, J.C.; Peters, E.J.G.; Armstrong, D.G.; Deery, H.G.; Embil, J.M.; Joseph, W.S.; Karchmer, A.W.; et al. 2012 Infectious Diseases Society of America Clinical Practice Guideline for the Diagnosis and Treatment of Diabetic Foot Infections. Clin. Infect. Dis. 2012, 54, e132–e173. [Google Scholar] [CrossRef]
- Alves, P.M.; Barrias, C.; Gomes, P.; Martins, M.C. Smart Biomaterial-Based Systems for Intrinsic Stimuli-Responsive Chronic Wound Management. Mater. Today Chem. 2021, 22, 100623. [Google Scholar] [CrossRef]
- Fu, K.; Zheng, X.; Chen, Y.; Wu, L.; Yang, Z.; Chen, X.; Song, W. Role of Matrix Metalloproteinases in Diabetic Foot Ulcers: Potential Therapeutic Targets. Front. Pharmacol. 2022, 13, 1050630. [Google Scholar] [CrossRef] [PubMed]
- Izzo, V.; Meloni, M.; Vainieri, E.; Giurato, L.; Ruotolo, V.; Uccioli, L. High Matrix Metalloproteinase Levels Are Associated with Dermal Graft Failure in Diabetic Foot Ulcers. Int. J. Low. Extrem. Wounds 2014, 13, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Muller, M.; Trocme, C.; Lardy, B.; Morel, F.; Halimi, S.; Benhamou, P.Y. Matrix Metalloproteinases and Diabetic Foot Ulcers: The Ratio of MMP-1 to TIMP-1 Is a Predictor of Wound Healing. Diabet. Med. 2008, 25, 419–426. [Google Scholar] [CrossRef] [PubMed]
- López-López, N.; González-Curiel, I.; Treviño-Santa Cruz, M.B.; Rivas-Santiago, B.; Trujillo-Paez, V.; Enciso-Moreno, J.A.; Serrano, C.J. Expression and Vitamin D-Mediated Regulation of Matrix Metalloproteinases (MMPs) and Tissue Inhibitors of Metalloproteinases (TIMPs) in Healthy Skin and in Diabetic Foot Ulcers. Arch. Dermatol. Res. 2014, 306, 809–821. [Google Scholar] [CrossRef]
- Saco, M.; Howe, N.; Nathoo, R.; Cherpelis, B. Comparing the Efficacies of Alginate, Foam, Hydrocolloid, Hydrofiber, and Hydrogel Dressings in the Management of Diabetic Foot Ulcers and Venous Leg Ulcers: A Systematic Review and Meta-Analysis Examining How to Dress for Success. Dermatol. Online J. 2016, 22. [Google Scholar] [CrossRef]
- Hutchinson, J.J.; Lawrence, J.C. Wound Infection under Occlusive Dressings. J. Hosp. Infect. 1991, 17, 83–94. [Google Scholar] [CrossRef]
- Helfman, T.; Ovington, L.; Falanga, V. Occlusive Dressings and Wound Healing. Clin. Dermatol. 1994, 12, 121–127. [Google Scholar] [CrossRef]
- Dumville, J.C.; Deshpande, S.; O’Meara, S.; Speak, K. Foam Dressings for Healing Diabetic Foot Ulcers. Cochrane Database Syst. Rev. 2013, 2013, CD009111. [Google Scholar] [CrossRef]
- Fonder, M.A.; Lazarus, G.S.; Cowan, D.A.; Aronson-Cook, B.; Kohli, A.R.; Mamelak, A.J. Treating the Chronic Wound: A Practical Approach to the Care of Nonhealing Wounds and Wound Care Dressings. J. Am. Acad. Dermatol. 2008, 58, 185–206. [Google Scholar] [CrossRef] [PubMed]
- Ding, R.; Yu, X.; Wang, P.; Zhang, J.; Zhou, Y.; Cao, X.; Tang, H.; Ayres, N.; Zhang, P. Hybrid Photosensitizer Based on Amphiphilic Block Copolymer Stabilized Silver Nanoparticles for Highly Efficient Photodynamic Inactivation of Bacteria. RSC Adv. 2016, 6, 20392–20398. [Google Scholar] [CrossRef]
- Lee, K.Y.; Mooney, D.J. Hydrogels for Tissue Engineering. Chem. Rev. 2001, 101, 1869–1880. [Google Scholar] [CrossRef]
- Cui, H.; Zhuang, X.; He, C.; Wei, Y.; Chen, X. High Performance and Reversible Ionic Polypeptide Hydrogel Based on Charge-Driven Assembly for Biomedical Applications. Acta Biomater. 2015, 11, 183–190. [Google Scholar] [CrossRef]
- Li, N.; Bai, R. Copper Adsorption on Chitosan–Cellulose Hydrogel Beads: Behaviors and Mechanisms. Sep. Purif. Technol. 2005, 42, 237–247. [Google Scholar] [CrossRef]
- Chang, C.; Na, N. Cellulose-Based Hydrogels: Present Status and Application Prospects. Carbohydr. Polym. 2011, 84, 40–53. [Google Scholar] [CrossRef]
- kumar Kesavan, S.; Selvaraj, D.; Perumal, S.; Arunachalakasi, A.; Ganesan, N.; Chinnaiyan, S.K.; Balaraman, M. Fabrication of Hybrid Povidone-Iodine Impregnated Collagen-Hydroxypropyl Methylcellulose Composite Scaffolds for Wound-Healing Application. J. Drug Deliv. Sci. Technol. 2022, 70, 103247. [Google Scholar] [CrossRef]
- Da Silva, J.G.M.; de Melo, I.M.F.; Alves, É.R.; de Oliveira, G.M.; da Silva, A.A.; Pinto, F.C.M.; Aguiar, J.L.d.A.; Araújo, D.N.; Teixeira, V.W.; Teixeira, Á.A.C. Melatonin Associated with Bacterial Cellulose-Based Hydrogel Improves Healing of Skin Wounds in Diabetic Rats. Acta Cir. Bras. 2024, 39, e399024. [Google Scholar] [CrossRef]
- Mu, M.; Li, X.; Tong, A.; Guo, G. Multi-Functional Chitosan-Based Smart Hydrogels Mediated Biomedical Application. Expert Opin. Drug Deliv. 2019, 16, 239–250. [Google Scholar] [CrossRef]
- Chen, H.; Ma, X.; Wu, S.; Tian, H. A Rapidly Self-Healing Supramolecular Polymer Hydrogel with Photostimulated Room-Temperature Phosphorescence Responsiveness. Angew. Chem. Int. Ed. 2014, 53, 14149–14152. [Google Scholar] [CrossRef]
- Shu, Q.-H.; Zuo, R.-T.; Chu, M.; Shi, J.-J.; Ke, Q.-F.; Guan, J.-J.; Guo, Y.-P. Fiber-Reinforced Gelatin/β-Cyclodextrin Hydrogels Loaded with Platelet-Rich Plasma-Derived Exosomes for Diabetic Wound Healing. Biomater. Adv. 2023, 154, 213640. [Google Scholar] [CrossRef]
- Jia, Y.-G.; Zhu, X. Self-Healing Supramolecular Hydrogel Made of Polymers Bearing Cholic Acid and β-Cyclodextrin Pendants. Chem. Mater. 2015, 27, 387–393. [Google Scholar] [CrossRef]
- Segneanu, A.-E.; Bejenaru, L.E.; Bejenaru, C.; Blendea, A.; Mogoşanu, G.D.; Biţă, A.; Boia, E.R. Advancements in Hydrogels: A Comprehensive Review of Natural and Synthetic Innovations for Biomedical Applications. Polymers 2025, 17, 2026. [Google Scholar] [CrossRef]
- Bao, Z.; Xian, C.; Yuan, Q.; Liu, G.; Wu, J. Natural Polymer-Based Hydrogels with Enhanced Mechanical Performances: Preparation, Structure, and Property. Adv. Healthc. Mater. 2019, 8, 1900670. [Google Scholar] [CrossRef]
- Hina, M.; Bashir, S.; Kamran, K.; Ramesh, S.; Kasi, R. Synthesis and Characterization of Self-Healable Poly (Acrylamide) Hydrogel Electrolytes and Their Application in Fabrication of Aqueous Supercapacitors. Polymer 2020, 210, 123020. [Google Scholar] [CrossRef]
- Wang, Y.J.; Li, C.Y.; Wang, Z.J.; Zhao, Y.; Chen, L.; Wu, Z.L.; Zheng, Q. Hydrogen Bond-Reinforced Double-Network Hydrogels with Ultrahigh Elastic Modulus and Shape Memory Property. J. Polym. Sci. Part B Polym. Phys. 2018, 56, 1281–1286. [Google Scholar] [CrossRef]
- Nesrinne, S.; Djamel, A. Synthesis, Characterization and Rheological Behavior of PH Sensitive Poly(Acrylamide-Co-Acrylic Acid) Hydrogels. Arab. J. Chem. 2017, 10, 539–547. [Google Scholar] [CrossRef]
- Matzelle, T.; Geuskens, G.; Kruse, N. Elastic Properties of Poly(N-Isopropylacrylamide) and Poly(Acrylamide) Hydrogels Studied by Scanning Force Microscopy. Macromolecules 2003, 36, 2926–2931. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, S.; Waterhouse, G.; Zhang, Q.; Li, L. Poly(N-isopropylacrylamide)/Mesoporous Silica Thermosensitive Composite Hydrogels for Drug Loading and Release. J. Appl. Polym. Sci. 2019, 137, 48391. [Google Scholar] [CrossRef]
- Xi, T.F.; Fan, C.X.; Feng, X.M.; Wan, Z.Y.; Wang, C.R.; Chou, L.L. Cytotoxicity and Altered C-Myc Gene Expression by Medical Polyacrylamide Hydrogel. J. Biomed. Mater. Res. A 2006, 78, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Suh, K.D. Amphiphilic Urethane Acrylate Hydrogels Having Heterophasic Gel Structure: Swelling Behaviors and Mechanical Properties. Colloid Polym. Sci. 1998, 276, 342–348. [Google Scholar] [CrossRef]
- Rana, M.M.; De la Hoz Siegler, H. Evolution of Hybrid Hydrogels: Next-Generation Biomaterials for Drug Delivery and Tissue Engineering. Gels 2024, 10, 216. [Google Scholar] [CrossRef]
- dos Santos, J.-F.R.; Couceiro, R.; Concheiro, A.; Torres-Labandeira, J.-J.; Alvarez-Lorenzo, C. Poly(Hydroxyethyl Methacrylate-Co-Methacrylated-Beta-Cyclodextrin) Hydrogels: Synthesis, Cytocompatibility, Mechanical Properties and Drug Loading/Release Properties. Acta Biomater. 2008, 4, 745–755. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, D.; Ma, G.; Tan, H.; Jin, Y.; Nie, J. A PH-sensitive Water-soluble N-carboxyethyl Chitosan/Poly(Hydroxyethyl Methacrylate) Hydrogel as a Potential Drug Sustained Release Matrix Prepared by Photopolymerization Technique. Polym. Adv. Technol. 2008, 19, 1133–1141. [Google Scholar] [CrossRef]
- Mahmoudian, M.; Ganji, F. Vancomycin-Loaded HPMC Microparticles Embedded within Injectable Thermosensitive Chitosan Hydrogels. Prog. Biomater. 2017, 6, 49–56. [Google Scholar] [CrossRef]
- Boateng, J.S.; Matthews, K.H.; Stevens, H.N.E.; Eccleston, G.M. Wound Healing Dressings and Drug Delivery Systems: A Review. J. Pharm. Sci. 2008, 97, 2892–2923. [Google Scholar] [CrossRef]
- Sun, X.; Ding, H.; Li, X.; Wu, Y.; Huang, X. Disulfiram-Loaded Nanovesicles Hydrogel Promotes Healing of Diabetic Wound. J. Transl. Med. 2024, 22, 1066. [Google Scholar] [CrossRef]
- Cai, C.; Li, W.; Zhang, X.; Cheng, B.; Chen, S.; Zhang, Y. Natural Polymer-Based Hydrogel Dressings for Wound Healing. Adv. Wound Care 2024, 14, 295–322. [Google Scholar] [CrossRef] [PubMed]
- Hamedi, H.; Moradi, S.; Hudson, S.M.; Tonelli, A.E. Chitosan Based Hydrogels and Their Applications for Drug Delivery in Wound Dressings: A Review. Carbohydr. Polym. 2018, 199, 445–460. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Vermani, K.; Garg, S. Hydrogels: From Controlled Release to PH-Responsive Drug Delivery. Drug Discov. Today 2002, 7, 569–579. [Google Scholar] [CrossRef]
- Annabi, N.; Zhang, Y.-N.; Assmann, A.; Sani, E.S.; Cheng, G.; Lassaletta, A.D.; Vegh, A.; Dehghani, B.; Ruiz-Esparza, G.U.; Wang, X.; et al. Engineering a Highly Elastic Human Protein-Based Sealant for Surgical Applications. Sci. Transl. Med. 2017, 9, eaai7466. [Google Scholar] [CrossRef]
- Liu, Z.; Ma, X.; Liu, J.; Zhang, H.; Fu, D. Advances in the Application of Natural/Synthetic Hybrid Hydrogels in Tissue Engineering and Delivery Systems: A Comprehensive Review. Int. J. Pharm. 2025, 672, 125323. [Google Scholar] [CrossRef] [PubMed]
- Devi, V.K.A.; Shyam, R.; Palaniappan, A.; Jaiswal, A.K.; Oh, T.-H.; Nathanael, A.J. Self-Healing Hydrogels: Preparation, Mechanism and Advancement in Biomedical Applications. Polymers 2021, 13, 3782. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Li, Z.; Huang, Y.; Yu, R.; Guo, B. Dual-Dynamic-Bond Cross-Linked Antibacterial Adhesive Hydrogel Sealants with On-Demand Removability for Post-Wound-Closure and Infected Wound Healing. ACS Nano 2021, 15, 7078–7093. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Hui, P.C. Stimuli-Responsive Hydrogels: An Interdisciplinary Overview. In Hydrogels: Smart Materials for Biomedical Applications; IntechOpen: London, UK, 2018; pp. 1–23. [Google Scholar]
- Rial-Hermida, M.I.; Rey-Rico, A.; Blanco-Fernandez, B.; Carballo-Pedrares, N.; Byrne, E.M.; Mano, J.F. Recent Progress on Polysaccharide-Based Hydrogels for Controlled Delivery of Therapeutic Biomolecules. ACS Biomater. Sci. Eng. 2021, 7, 4102–4127. [Google Scholar] [CrossRef] [PubMed]
- Sood, N.; Bhardwaj, A.; Mehta, S.; Mehta, A. Stimuli-Responsive Hydrogels in Drug Delivery and Tissue Engineering. Drug Deliv. 2016, 23, 748–770. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Xue, K.; Loh, X.J. Thermo-Responsive Hydrogels: From Recent Progress to Biomedical Applications. Gels 2021, 7, 77. [Google Scholar] [CrossRef]
- Liow, S.S.; Dou, Q.; Kai, D.; Karim, A.A.; Zhang, K.; Xu, F.; Loh, X.J. Thermogels: In Situ Gelling Biomaterial. ACS Biomater. Sci. Eng. 2016, 2, 295–316. [Google Scholar] [CrossRef]
- Halperin, A.; Kröger, M.; Winnik, F.M. Poly(N-Isopropylacrylamide) Phase Diagrams: Fifty Years of Research. Angew. Chem. Int. Ed. Engl. 2015, 54, 15342–15367. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, A.; Paul, A.; Sen, S.O.; Sen, K.K. Studies on Thermoresponsive Polymers: Phase Behaviour, Drug Delivery and Biomedical Applications. Asian J. Pharm. Sci. 2015, 10, 99–107. [Google Scholar] [CrossRef]
- Li, J.; Mooney, D.J. Designing Hydrogels for Controlled Drug Delivery. Nat. Rev. Mater. 2016, 1, 16071. [Google Scholar] [CrossRef]
- Klumb, L.A.; Horbett, T.A. Design of Insulin Delivery Devices Based on Glucose Sensitive Membranes. J. Control. Release 1992, 18, 59–80. [Google Scholar] [CrossRef]
- Song, C.; Lv, Y.; Qian, K.; Chen, Y.; Qian, X. Preparation of Konjac Glucomannan–Borax Hydrogels with Good Self-Healing Property and PH-Responsive Behavior. J. Polym. Res. 2019, 26, 52. [Google Scholar] [CrossRef]
- Li, Q.; Dong, M.; Han, Q.; Zhang, Y.; Yang, D.; Wei, D.; Yang, Y. Enhancing Diabetic Wound Healing with a PH-Responsive Nanozyme Hydrogel Featuring Multi-Enzyme-like Activities and Oxygen Self-Supply. J. Control. Release 2024, 365, 905–918. [Google Scholar] [CrossRef]
- Jia, Y.; Zhang, X.; Yang, W.; Lin, C.; Tao, B.; Deng, Z.; Gao, P.; Yang, Y.; Cai, K. A PH-Responsive Hyaluronic Acid Hydrogel for Regulating the Inflammation and Remodeling of the ECM in Diabetic Wounds. J. Mater. Chem. B 2022, 10, 2875–2888. [Google Scholar] [CrossRef]
- Messing, R.; Frickel, N.; Belkoura, L.; Strey, R.; Rahn, H.; Odenbach, S.; Schmidt, A.M. Cobalt Ferrite Nanoparticles as Multifunctional Cross-Linkers in PAAm Ferrohydrogels. Macromolecules 2011, 44, 2990–2999. [Google Scholar] [CrossRef]
- Liu, H.; Wang, C.; Gao, Q.; Liu, X.; Tong, Z. Magnetic Hydrogels with Supracolloidal Structures Prepared by Suspension Polymerization Stabilized by Fe(2)O(3) Nanoparticles. Acta Biomater. 2010, 6, 275–281. [Google Scholar] [CrossRef]
- Veloso, S.R.S.; Ferreira, P.M.T.; Martins, J.A.; Coutinho, P.J.G.; Castanheira, E.M.S. Magnetogels: Prospects and Main Challenges in Biomedical Applications. Pharmaceutics 2018, 10, 145. [Google Scholar] [CrossRef] [PubMed]
- Santhosh, M.; Choi, J.-H.; Choi, J.-W. Magnetic-Assisted Cell Alignment within a Magnetic Nanoparticle-Decorated Reduced Graphene Oxide/Collagen 3D Nanocomposite Hydrogel. Nanomaterials 2019, 9, 1293. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, Y.; Chen, C.; Cheng, Y. Magnetic-Responsive Hydrogels: From Strategic Design to Biomedical Applications. J. Control. release Off. J. Control. Release Soc. 2021, 335, 541–556. [Google Scholar] [CrossRef]
- He, D.; Liu, X.; Jia, J.; Peng, B.; Xu, N.; Zhang, Q.; Wang, S.; Li, L.; Liu, M.; Huang, Y.; et al. Magnetic Field-Directed Deep Thermal Therapy via Double-Layered Microneedle Patch for Promoting Tissue Regeneration in Infected Diabetic Skin Wounds. Adv. Funct. Mater. 2024, 34, 2306357. [Google Scholar] [CrossRef]
- Wang, P.; LV, C.; Zhou, X.; Wu, Z.; Wang, Z.; Wang, Y.; Wang, L.; Zhu, Y.; Guo, M.; Zhang, P. Tannin-Bridged Magnetic Responsive Multifunctional Hydrogel for Enhanced Wound Healing by Mechanical Stimulation-Induced Early Vascularization. J. Mater. Chem. B 2022, 10, 7808–7826. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Scheiger, J.M.; Levkin, P.A. Design and Applications of Photoresponsive Hydrogels. Adv. Mater. 2019, 31, e1807333. [Google Scholar] [CrossRef] [PubMed]
- Ji, W.; Wu, Q.; Han, X.; Zhang, W.; Wei, W.; Chen, L.; Li, L.; Huang, W. Photosensitive Hydrogels: From Structure, Mechanisms, Design to Bioapplications. Sci. China. Life Sci. 2020, 63, 1813–1828. [Google Scholar] [CrossRef] [PubMed]
- Patnaik, S.; Sharma, A.K.; Garg, B.S.; Gandhi, R.P.; Gupta, K.C. Photoregulation of Drug Release in Azo-Dextran Nanogels. Int. J. Pharm. 2007, 342, 184–193. [Google Scholar] [CrossRef]
- Chen, L.; Yao, X.; Gu, Z.; Zheng, K.; Zhao, C.; Lei, W.; Rong, Q.; Lin, L.; Wang, J.; Jiang, L.; et al. Covalent Tethering of Photo-Responsive Superficial Layers on Hydrogel Surfaces for Photo-Controlled Release. Chem. Sci. 2017, 8, 2010–2016. [Google Scholar] [CrossRef]
- Qi, X.; Xiang, Y.; Li, Y.; Wang, J.; Chen, Y.; Lan, Y.; Liu, J.; Shen, J. An ATP-Activated Spatiotemporally Controlled Hydrogel Prodrug System for Treating Multidrug-Resistant Bacteria-Infected Pressure Ulcers. Bioact. Mater. 2025, 45, 301–321. [Google Scholar] [CrossRef]
- Kang, Y.; Xu, L.; Dong, J.; Yuan, X.; Ye, J.; Fan, Y.; Liu, B.; Xie, J.; Ji, X. Programmed Microalgae-Gel Promotes Chronic Wound Healing in Diabetes. Nat. Commun. 2024, 15, 1042. [Google Scholar] [CrossRef]
- Qi, X.; Cai, E.; Xiang, Y.; Zhang, C.; Ge, X.; Wang, J.; Lan, Y.; Xu, H.; Hu, R.; Shen, J. An Immunomodulatory Hydrogel by Hyperthermia-Assisted Self-Cascade Glucose Depletion and ROS Scavenging for Diabetic Foot Ulcer Wound Therapeutics. Adv. Mater. 2023, 35, 2306632. [Google Scholar] [CrossRef]
- Güiza-Argüello, V.R.; Solarte-David, V.A.; Pinzón-Mora, A.V.; Ávila-Quiroga, J.E.; Becerra-Bayona, S.M. Current Advances in the Development of Hydrogel-Based Wound Dressings for Diabetic Foot Ulcer Treatment. Polymers 2022, 14, 2764. [Google Scholar] [CrossRef]
- Huang, Q.; Wu, T.; Guo, Y.; Wang, L.; Yu, X.; Zhu, B.; Fan, L.; Xin, J.H.; Yu, H. Platelet-Rich Plasma-Loaded Bioactive Chitosan@sodium Alginate@gelatin Shell-Core Fibrous Hydrogels with Enhanced Sustained Release of Growth Factors for Diabetic Foot Ulcer Healing. Int. J. Biol. Macromol. 2023, 234, 123722. [Google Scholar] [CrossRef] [PubMed]
- Koïtka, A.; Abraham, P.; Bouhanick, B.; Sigaudo-Roussel, D.; Demiot, C.; Saumet, J.L. Impaired Pressure-Induced Vasodilation at the Foot in Young Adults with Type 1 Diabetes. Diabetes 2004, 53, 721–725. [Google Scholar] [CrossRef]
- Park, Y.G.; Lee, I.H.; Park, E.S.; Kim, J.Y. Hydrogel and Platelet-Rich Plasma Combined Treatment to Accelerate Wound Healing in a Nude Mouse Model. Arch. Plast. Surg. 2017, 44, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Ekblad, T.; Faxälv, L.; Andersson, O.; Wallmark, N.; Larsson, A.; Lindahl, T.L.; Liedberg, B. Patterned Hydrogels for Controlled Platelet Adhesion from Whole Blood and Plasma. Adv. Funct. Mater. 2010, 20, 2396–2403. [Google Scholar] [CrossRef]
- El-Sharkawy, H.; Kantarci, A.; Deady, J.; Hasturk, H.; Liu, H.; Alshahat, M.; Van Dyke, T.E. Platelet-Rich Plasma: Growth Factors and pro- and Anti-Inflammatory Properties. J. Periodontol. 2007, 78, 661–669. [Google Scholar] [CrossRef]
- Chicharro-Alcántara, D.; Rubio-Zaragoza, M.; Damiá-Giménez, E.; Carrillo-Poveda, J.M.; Cuervo-Serrato, B.; Peláez-Gorrea, P.; Sopena-Juncosa, J.J. Platelet Rich Plasma: New Insights for Cutaneous Wound Healing Management. J. Funct. Biomater. 2018, 9, 10. [Google Scholar] [CrossRef]
- Qian, Z.; Wang, H.; Bai, Y.; Wang, Y.; Tao, L.; Wei, Y.; Fan, Y.; Guo, X.; Liu, H. Improving Chronic Diabetic Wound Healing through an Injectable and Self-Healing Hydrogel with Platelet-Rich Plasma Release. ACS Appl. Mater. Interfaces 2020, 12, 55659–55674. [Google Scholar] [CrossRef]
- Shah, S.A.; Sohail, M.; Khan, S.A.; Kousar, M. Improved Drug Delivery and Accelerated Diabetic Wound Healing by Chondroitin Sulfate Grafted Alginate-Based Thermoreversible Hydrogels. Mater. Sci. Eng. C 2021, 126, 112169. [Google Scholar] [CrossRef]
- Wolf, S.J.; Melvin, W.J.; Gallagher, K. Macrophage-Mediated Inflammation in Diabetic Wound Repair. Semin. Cell Dev. Biol. 2021, 119, 111–118. [Google Scholar] [CrossRef]
- Wei, S.; Xu, P.; Yao, Z.; Cui, X.; Lei, X.; Li, L.; Dong, Y.; Zhu, W.; Guo, R.; Cheng, B. A Composite Hydrogel with Co-Delivery of Antimicrobial Peptides and Platelet-Rich Plasma to Enhance Healing of Infected Wounds in Diabetes. Acta Biomater. 2021, 124, 205–218. [Google Scholar] [CrossRef]
- Garcia-Orue, I.; Santos-Vizcaino, E.; Sanchez, P.; Gutierrez, F.B.; Aguirre, J.J.; Hernandez, R.M.; Igartua, M. Bioactive and Degradable Hydrogel Based on Human Platelet-Rich Plasma Fibrin Matrix Combined with Oxidized Alginate in a Diabetic Mice Wound Healing Model. Mater. Sci. Eng. C Mater. Biol. Appl. 2022, 135, 112695. [Google Scholar] [CrossRef]
- Qi, X.; Ge, X.; Chen, X.; Cai, E.; Xiang, Y.; Xu, H.; Li, Y.; Lan, Y.; Shi, Y.; Deng, H.; et al. An Immunoregulation Hydrogel with Controlled Hyperthermia-Augmented Oxygenation and ROS Scavenging for Treating Diabetic Foot Ulcers. Adv. Funct. Mater. 2024, 34, 2400489. [Google Scholar] [CrossRef]
- Mao, L.; Hu, S.; Gao, Y.; Wang, L.; Zhao, W.; Fu, L.; Cheng, H.; Xia, L.; Xie, S.; Ye, W.; et al. Biodegradable and Electroactive Regenerated Bacterial Cellulose/MXene (Ti3C2T) Composite Hydrogel as Wound Dressing for Accelerating Skin Wound Healing under Electrical Stimulation. Adv. Healthc. Mater. 2020, 9, 2000872. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Lv, Y.; Yu, C.; Zhang, W.; Song, S.; Li, Y.; Chong, Y.; Huang, J.; Zhang, Z. Au–Pt Nanozyme-Based Multifunctional Hydrogel Dressing for Diabetic Wound Healing. Biomater. Adv. 2022, 137, 212869. [Google Scholar] [CrossRef]
- Hwang, C.; Choi, M.-H.; Kim, H.-J.; Jeong, S.-H.; Park, J.U. Reactive Oxygen Species-Generating Hydrogel Platform for Enhanced Antibacterial Therapy. NPG Asia Mater. 2022, 14, 72. [Google Scholar] [CrossRef]
- Hsieh, H.-T.; Chang, H.-M.; Lin, W.-J.; Hsu, Y.-T.; Mai, F.-D. Poly-Methyl Methacrylate/Polyvinyl Alcohol Copolymer Agents Applied on Diabetic Wound Dressing. Sci. Rep. 2017, 7, 9531. [Google Scholar] [CrossRef]
- Zhang, S.; Ge, G.; Qin, Y.; Li, W.; Dong, J.; Mei, J.; Ma, R.; Zhang, X.; Bai, J.; Zhu, C.; et al. Recent Advances in Responsive Hydrogels for Diabetic Wound Healing. Mater. Today. Bio 2023, 18, 100508. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, Y.; Ma, R.; Chen, J.; Qiu, J.; Du, S.; Li, C.; Wu, Z.; Yang, X.; Chen, Z.; et al. Thermosensitive Hydrogel Incorporating Prussian Blue Nanoparticles Promotes Diabetic Wound Healing via ROS Scavenging and Mitochondrial Function Restoration. ACS Appl. Mater. Interfaces 2022, 14, 14059–14071. [Google Scholar] [CrossRef]
- Tang, J.; Jia, X.; Li, Q.; Cui, Z.; Liang, A.; Ke, B.; Yang, D.; Yao, C. A DNA-Based Hydrogel for Exosome Separation and Biomedical Applications. Proc. Natl. Acad. Sci. USA 2023, 120, e2303822120. [Google Scholar] [CrossRef]
- Huang, L.; Shi, Y.; Li, M.; Wang, T.; Zhao, L. Plasma Exosomes Loaded PH-Responsive Carboxymethylcellulose Hydrogel Promotes Wound Repair by Activating the Vascular Endothelial Growth Factor Signaling Pathway in Type 1 Diabetic Mice. J. Biomed. Nanotechnol. 2021, 17, 2021–2033. [Google Scholar] [CrossRef]
- Yuan, M.; Liu, K.; Jiang, T.; Li, S.; Chen, J.; Wu, Z.; Li, W.; Tan, R.; Wei, W.; Yang, X.; et al. GelMA/PEGDA Microneedles Patch Loaded with HUVECs-Derived Exosomes and Tazarotene Promote Diabetic Wound Healing. J. Nanobiotechnol. 2022, 20, 147. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Chen, L.; Liu, P.; Yu, T.; Lin, C.; Yan, C.; Hu, Y.; Zhou, W.; Sun, Y.; Panayi, A.C.; et al. All-in-One: Multifunctional Hydrogel Accelerates Oxidative Diabetic Wound Healing through Timed-Release of Exosome and Fibroblast Growth Factor. Small 2022, 18, 2104229. [Google Scholar] [CrossRef] [PubMed]
- Tipa, C.; Cidade, M.T.; Borges, J.P.; Costa, L.C.; Silva, J.C.; Soares, P.I.P. Clay-Based Nanocomposite Hydrogels for Biomedical Applications: A Review. Nanomaterials 2022, 12, 3308. [Google Scholar] [CrossRef]
- Stealey, S.T.; Gaharwar, A.K.; Zustiak, S.P. Laponite-Based Nanocomposite Hydrogels for Drug Delivery Applications. Pharmaceuticals 2023, 16, 821. [Google Scholar] [CrossRef]
- Afghah, F.; Altunbek, M.; Dikyol, C.; Koc, B. Preparation and Characterization of Nanoclay-Hydrogel Composite Support-Bath for Bioprinting of Complex Structures. Sci. Rep. 2020, 10, 5257. [Google Scholar] [CrossRef] [PubMed]
- Morariu, S.; Bercea, M.; Gradinaru, L.M.; Rosca, I.; Avadanei, M. Versatile Poly(Vinyl Alcohol)/Clay Physical Hydrogels with Tailorable Structure as Potential Candidates for Wound Healing Applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 109, 110395. [Google Scholar] [CrossRef]
- Howell, D.W.; Peak, C.W.; Bayless, K.J.; Gaharwar, A.K. 2D Nanosilicates Loaded with Proangiogenic Factors Stimulate Endothelial Sprouting. Adv. Biosyst. 2018, 2, 1800092. [Google Scholar] [CrossRef]
- Gaharwar, A.K.; Avery, R.K.; Assmann, A.; Paul, A.; McKinley, G.H.; Khademhosseini, A.; Olsen, B.D. Shear-Thinning Nanocomposite Hydrogels for the Treatment of Hemorrhage. ACS Nano 2014, 8, 9833–9842. [Google Scholar] [CrossRef]
- Kokabi, M.; Sirousazar, M.; Hassan, Z.M. PVA–Clay Nanocomposite Hydrogels for Wound Dressing. Eur. Polym. J. 2007, 43, 773–781. [Google Scholar] [CrossRef]
- Yoon, D.S.; Lee, Y.; Ryu, H.A.; Jang, Y.; Lee, K.-M.; Choi, Y.; Choi, W.J.; Lee, M.; Park, K.M.; Park, K.D.; et al. Cell Recruiting Chemokine-Loaded Sprayable Gelatin Hydrogel Dressings for Diabetic Wound Healing. Acta Biomater. 2016, 38, 59–68. [Google Scholar] [CrossRef]
- Chen, H.; Guo, L.; Wicks, J.; Ling, C.; Zhao, X.; Yan, Y.; Qi, J.; Cui, W.; Deng, L. Quickly Promoting Angiogenesis by Using a DFO-Loaded Photo-Crosslinked Gelatin Hydrogel for Diabetic Skin Regeneration. J. Mater. Chem. B 2016, 4, 3770–3781. [Google Scholar] [CrossRef]
- Zulkiflee, I.; Masri, S.; Zawani, M.; Salleh, A.; Amirrah, I.N.; Wee, M.F.M.R.; Yusop, S.M.; Fauzi, M.B. Silicon-Based Scaffold for Wound Healing Skin Regeneration Applications: A Concise Review. Polymers 2022, 14, 4219. [Google Scholar] [CrossRef] [PubMed]
- Sadat, Z.; Farrokhi, F.; Lalebeigi, F.; Naderi, N.; Ghafori-Gorab, M.; Ahangari Cohan, R.; Eivazzadeh-Keihan, R.; Maleki, A. A Comprehensive Review about Applications of Carbon-Based Nanostructures in Wound Healing: From Antibacterial Aspects to Cell Growth Stimulation. Biomater. Sci. 2022, 10, 6911–6938. [Google Scholar] [CrossRef] [PubMed]
- Patil, T.; Patel, D.; Dutta, S.; Ganguly, K.; Randhawa, A.; Lim, K.-T. Carbon Nanotubes-Based Hydrogels for Bacterial Eradiation and Wound-Healing Applications. Appl. Sci. 2021, 11, 9550. [Google Scholar] [CrossRef]
- Alcantar, N.A.; Aydil, E.S.; Israelachvili, J.N. Polyethylene Glycol-Coated Biocompatible Surfaces. J. Biomed. Mater. Res. 2000, 51, 343–351. [Google Scholar] [CrossRef]
- Beamish, J.A.; Zhu, J.; Kottke-Marchant, K.; Marchant, R.E. The Effects of Monoacrylated Poly(Ethylene Glycol) on the Properties of Poly(Ethylene Glycol) Diacrylate Hydrogels Used for Tissue Engineering. J. Biomed. Mater. Res. A 2010, 92, 441–450. [Google Scholar] [CrossRef]
- Xu, Q.; Sigen, A.; Gao, Y.; Guo, L.; Creagh-Flynn, J.; Zhou, D.; Greiser, U.; Dong, Y.; Wang, F.; Tai, H.; et al. A Hybrid Injectable Hydrogel from Hyperbranched PEG Macromer as a Stem Cell Delivery and Retention Platform for Diabetic Wound Healing. Acta Biomater. 2018, 75, 63–74. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, J.; Xiong, J.; Sun, S.; Xia, J.; Yang, L.; Liang, Y. Stem Cell-Derived Nanovesicles: A Novel Cell-Free Therapy for Wound Healing. Stem Cells Int. 2021, 2021, 1285087. [Google Scholar] [CrossRef]
- Tan, Q.-W.; Tang, S.-L.; Zhang, Y.; Yang, J.-Q.; Wang, Z.-L.; Xie, H.-Q.; Lv, Q. Hydrogel from Acellular Porcine Adipose Tissue Accelerates Wound Healing by Inducing Intradermal Adipocyte Regeneration. J. Investig. Dermatol. 2019, 139, 455–463. [Google Scholar] [CrossRef]
- Chen, X.; Hu, Z.; Zhao, K.; Rao, X.; Shen, C.; Chen, Y.; Ye, X.; Fang, C.; Zhou, F.; Ding, Z.; et al. Microenvironment-Responsive, Multimodulated Herbal Polysaccharide Hydrogel for Diabetic Foot Ulcer Healing. Sci. Rep. 2024, 14, 22135. [Google Scholar] [CrossRef] [PubMed]
- Chijcheapaza-Flores, H.; Tabary, N.; Chai, F.; Maton, M.; Staelens, J.-N.; Cazaux, F.; Neut, C.; Martel, B.; Blanchemain, N.; Garcia-Fernandez, M.J. Injectable Chitosan-Based Hydrogels for Trans-Cinnamaldehyde Delivery in the Treatment of Diabetic Foot Ulcer Infections. Gels 2023, 9, 262. [Google Scholar] [CrossRef] [PubMed]
- Ruffo, M.; Parisi, O.I.; Dattilo, M.; Patitucci, F.; Malivindi, R.; Pezzi, V.; Tzanov, T.; Puoci, F. Synthesis and Evaluation of Wound Healing Properties of Hydro-Diab Hydrogel Loaded with Green-Synthetized AGNPS: In Vitro and in Ex Vivo Studies. Drug Deliv. Transl. Res. 2022, 12, 1881–1894. [Google Scholar] [CrossRef] [PubMed]
- Alinezhad, V.; Ghodsi, R.; Bagheri, H.; Beram, F.M.; Zeighami, H.; Kalantari-Hesari, A.; Salarilak, L.; Mostafavi, E.; Ahmadian, Z.; Shahbazi, M.-A.; et al. Antioxidant, Hemostatic, and Injectable Hydrogels with Photothermal Antibacterial Activity to Accelerate Full-Thickness Wound Regeneration. New J. Chem. 2024, 48, 7761–7778. [Google Scholar] [CrossRef]
- Lee, Y.H.; Hong, Y.L.; Wu, T.L. Novel Silver and Nanoparticle-Encapsulated Growth Factor Co-Loaded Chitosan Composite Hydrogel with Sustained Antimicrobility and Promoted Biological Properties for Diabetic Wound Healing. Mater. Sci. Eng. C 2021, 118, 111385. [Google Scholar] [CrossRef]
- Lee, Y.H.; Lin, S.J. Chitosan/PVA Hetero-Composite Hydrogel Containing Antimicrobials, Perfluorocarbon Nanoemulsions, and Growth Factor-Loaded Nanoparticles as a Multifunctional Dressing for Diabetic Wound Healing: Synthesis, Characterization, and In Vitro/In Vivo Evaluation. Pharmaceutics 2022, 14, 537. [Google Scholar] [CrossRef]
Product | Company | Targeting Phases | Polymers Used |
---|---|---|---|
SERIDERM® | Serigen Mediproducts Private Limited, Pune, India | Inflammatory phase (Absorption of exudate) | Silk protein |
AQUACEL® Hydrofiber® Dressing | ConvaTec Group Public Limited Company, London, UK | Inflammatory phase (Absorption of exudate) | Sodium carboxymethylcellulose |
RMD-G1 (a hydrogel containing erythropoietin) | Remedor Biomed Limited, Nof HaGalil, Israel | Proliferative phase (Rapid development of granulation tissue) | Carbopol-based hydrogel |
NanoDOX™ Hydrogel | Nanopharmaceutics, Inc., Alachua, FL, USA | Proliferative phase, Proangiogenic phase (Growth of new blood vessels) | PEG, Polyvinyl alcohol (PVA), Natural polymers (Chitosan, gelatin, and alginate). |
Cadexomer iodine gel | Smith and Nephew, Watford, UK | Infection stage (Release of iodine) | Starch-derived polymer beads, Iodine iodophore |
Regranex® | Smith and Nephew, Watford, UK | Apoptosis, Proliferative stage. Angiogenesis | Carboxymethylcellulose Sodium, Methylparaben. |
ConvaTec DuoDERM Hydroactive Gel | ConvaTec Group Public Limited Company, London, UK | Proliferative stage (Granulation Tissue Formation) | Carboxymethyl cellulose, Pectin, Gelatin, Methylparaben, and Propylparaben |
IZN-6D4 Gel | Izun Pharmaceuticals, New York, NY, USA | Proliferative Stage | Carboxymethyl cellulose and PVA. |
XCell® | Xylos Corporation, Langhorne, PA, USA | Inflammatory and proliferative stage. | Bacterial nanocellulose |
Dermafill™ | Cellulose Solutions, LLC, Daphne, AL, USA | Inflammatory stage | Bacterial Nanocellulose |
Type | Advantages | Disadvantages | References |
---|---|---|---|
Natural Hydrogels (e.g., Alginate, chitosan, collagen, hyaluronic acid, gelatin, fibrin) | - Imitates native extracellular matrix, Supporting cell adhesion, proliferation, and migration. - Intrinsic bioactivity promotes angiogenesis and tissue repair - Is biocompatible and biodegradable - Has the ability to recruit and modulate immune cells for wound healing - Generally low to no cytotoxicity | - Poor mechanical strength, prone to degradation under stress. - Variability from batch to batch due to biological origin - Shorter shelf life and limited storage stability - Immune response and contamination risk | [67,80,82,83] |
Synthetic Hydrogels (e.g., PEG, PVA, polyacrylamide, PLA, PLGA, Pluronic F127) | - Tunable chemical and mechanical characteristics allowing customization for different wound environments. - Stable and highly reproducible with controlled composition. - Longer shelf life and better storage stability. - Can be functionalized with bioactive molecules for drug delivery - Show high mechanical strength in hydrogels - Reduced risk of contamination - Has slower degradation | - Lack intrinsic bioactivity, often requiring functionalization to promote cell adhesion - Possible cytotoxicity from unreacted monomers or degradation of polymer - Have limited integration with the host tissue without modification | [70,74,84] |
Composite Hydrogels (Natural + Synthetic e.g., Chitosan-PEG, alginate-PVA, collagen-PLC, Nanoclay, Nanofibers) | - Combines the stability and mechanical strength of a synthetic polymer with the bioactivity of a natural hydrogel. - Improved mechanical strength and elasticity - Improved ECM mimicry, enhancing cell proliferation and migration. - Enables controlled release of therapeutic agents - Suitable for stimuli-responsive hydrogels | - Complex fabrication - High production cost and time-consuming optimization - May require expensive or time-consuming optimization - Stability issues during storage - Require extensive validation for regulatory approval (safety, quality, and efficiency) | [85,86] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mallanagoudra, P.; M Ramakrishna, S.S.; Jaiswal, S.; Keshava Prasanna, D.; Seetharaman, R.; Palaniappan, A.; Kini, S. Progressive Hydrogel Applications in Diabetic Foot Ulcer Management: Phase-Dependent Healing Strategies. Polymers 2025, 17, 2303. https://doi.org/10.3390/polym17172303
Mallanagoudra P, M Ramakrishna SS, Jaiswal S, Keshava Prasanna D, Seetharaman R, Palaniappan A, Kini S. Progressive Hydrogel Applications in Diabetic Foot Ulcer Management: Phase-Dependent Healing Strategies. Polymers. 2025; 17(17):2303. https://doi.org/10.3390/polym17172303
Chicago/Turabian StyleMallanagoudra, Priyanka, Sai Samanvitha M Ramakrishna, Sowmya Jaiswal, Dhruthi Keshava Prasanna, Rithika Seetharaman, Arunkumar Palaniappan, and Sudarshan Kini. 2025. "Progressive Hydrogel Applications in Diabetic Foot Ulcer Management: Phase-Dependent Healing Strategies" Polymers 17, no. 17: 2303. https://doi.org/10.3390/polym17172303
APA StyleMallanagoudra, P., M Ramakrishna, S. S., Jaiswal, S., Keshava Prasanna, D., Seetharaman, R., Palaniappan, A., & Kini, S. (2025). Progressive Hydrogel Applications in Diabetic Foot Ulcer Management: Phase-Dependent Healing Strategies. Polymers, 17(17), 2303. https://doi.org/10.3390/polym17172303