Silicified Wood with Dual Fire Retardancy and Thermal Management Functionalities
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of SiO2@wood
2.3. Characterization
2.3.1. Morphology
2.3.2. Chemical Structure Characterization
2.3.3. Fire-Retardant Characterization
2.3.4. Mechanical Characterization
2.3.5. Thermal Management Characterization
3. Results and Discussion
3.1. Surface Morphology
3.2. Chemical Composition Analysis
3.3. Fire Retardancy and Mechanical Performance Evaluation
3.4. Thermal Management Performance Assessment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lin, H.; Yao, Z.; Zhang, G.; Yang, X. Dual-Functional Flame-Retardant Composite Phase Change Material for Thermal Management and Thermal Runaway Suppression. ACS Appl. Energy Mater. 2025, 8, 10707–10716. [Google Scholar] [CrossRef]
- Zhou, S.Y.; Apostolopoulou-Kalkavoura, V.; da Costa, M.V.T.; Bergstrom, L.; Stromme, M.; Xu, C. Elastic Aerogels of Cellulose Nanofibers@Metal-Organic Frameworks for Thermal Insulation and Fire Retardancy. Nano-Micro Lett. 2020, 12, 9. [Google Scholar] [CrossRef] [PubMed]
- Mandal, J.; Fu, Y.; Overvig, A.C.; Jia, M.; Sun, K.; Shi, N.N.; Zhou, H.; Xiao, X.; Yu, N.; Yang, Y. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 2018, 362, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Wi, S.; Kim, Y.U.; Chang, S.J.; Berardi, U.; Kim, S. Novel exterior insulation finishing: Enhancing building energy efficiency and flame-retardancy through thermal storage and fire propagation prevention. Case Stud. Therm. Eng. 2024, 59, 104541. [Google Scholar] [CrossRef]
- Chen, C.; Kuang, Y.; Zhu, S.; Burgert, I.; Keplinger, T.; Gong, A.; Li, T.; Berglund, L.; Eichhorn, S.J.; Hu, L. Structure–property–function relationships of natural and engineered wood. Nat. Rev. Mater. 2020, 5, 642–666. [Google Scholar] [CrossRef]
- Ding, Y.; Pang, Z.; Lan, K.; Yao, Y.; Panzarasa, G.; Xu, L.; Lo Ricco, M.; Rammer, D.R.; Zhu, J.Y.; Hu, M.; et al. Emerging Engineered Wood for Building Applications. Chem. Rev. 2023, 123, 1843–1888. [Google Scholar] [CrossRef]
- Mao, Y.; Hu, L.; Ren, Z.J. Engineered wood for a sustainable future. Matter 2022, 5, 1326–1329. [Google Scholar] [CrossRef]
- Yan, L.; Xu, Z.; Wang, X. Synergistic flame-retardant and smoke suppression effects of zinc borate in transparent intumescent fire-retardant coatings applied on wood substrates. J. Therm. Anal. Calorim. 2019, 136, 1563–1574. [Google Scholar] [CrossRef]
- Yan, L.; Xu, Z.; Liu, D. Synthesis and application of novel magnesium phosphate ester flame retardants for transparent intumescent fire-retardant coatings applied on wood substrates. Prog. Org. Coat. 2019, 129, 327–337. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, J.; Xu, C.; Chen, C. Wood-Based and Wood-Inspired Thermal Management Materials. Chin. J. Chem. 2025, 43, 1691–1706. [Google Scholar] [CrossRef]
- Lee, Y.X.; Wang, W.; Lei, Y.; Xu, L.; Agarwal, V.; Wang, C.; Yeoh, G.H. Flame-retardant coatings for wooden structures. Prog. Org. Coat. 2025, 198, 108903. [Google Scholar] [CrossRef]
- Rong, Y.; Zhou, X.; Jiang, S.; Zhu, W.; Wang, H.; Dang, B.; Sun, Q.; Ma, X. MOFs meets wood: Renewable, self-supporting carbon-based composites for electromagnetic interference shielding with heat-resistant and electrothermal management. Chem. Eng. J. 2025, 503, 158556. [Google Scholar] [CrossRef]
- Temiz, A.; Hekimoğlu, G.; Köse Demirel, G.; Sarı, A.; Mohamad Amini, M.H. Phase change material impregnated wood for passive thermal management of timber buildings. Int. J. Energy Res. 2020, 44, 10495–10505. [Google Scholar] [CrossRef]
- Li, T.; Zhai, Y.; He, S.; Gan, W.; Wei, Z.; Heidarinejad, M.; Dalgo, D.; Mi, R.; Zhao, X.; Song, J.; et al. A radiative cooling structural material. Science 2019, 364, 760–763. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, Y.; Zhang, J.; Yang, H.; Wang, F.; Bin, F.; Noor, N. Sonochemically-coated transparent wood with ZnO: Passive radiative cooling materials for energy saving applications. Renew. Energy 2022, 193, 398–406. [Google Scholar] [CrossRef]
- Sun, H.; Hou, C.; Ji, T.; Zhou, X.; Ren, Z.; Song, Y. Processing bulk wood into a light-permeable passive radiative cooling material for energy-efficient building. Compos. Part B Eng. 2023, 250, 110426. [Google Scholar] [CrossRef]
- Garemark, J.; Perea-Buceta, J.E.; Rico del Cerro, D.; Hall, S.; Berke, B.; Kilpeläinen, I.; Berglund, L.A.; Li, Y. Nanostructurally Controllable Strong Wood Aerogel toward Efficient Thermal Insulation. ACS Appl. Mater. Interfaces 2022, 14, 24697–24707. [Google Scholar] [CrossRef]
- Li, T.; Song, J.; Zhao, X.; Yang, Z.; Pastel, G.; Xu, S.; Jia, C.; Dai, J.; Chen, C.; Gong, A.; et al. Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose. Sci. Adv. 2018, 4, eaar3724. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liu, Y.; Zhao, L.; Yazdkhasti, A.; Mao, Y.; Siciliano, A.P.; Dai, J.; Jing, S.; Xie, H.; Li, Z.; et al. A scalable high-porosity wood for sound absorption and thermal insulation. Nat. Sustain. 2023, 6, 306–315. [Google Scholar] [CrossRef]
- Liu, Y.; Lv, Z.; Zhou, J.; Cui, Z.; Li, W.; Yu, J.; Chen, L.; Wang, X.; Wang, M.; Liu, K.; et al. Muscle-Inspired Formable Wood-Based Phase Change Materials. Adv. Mater. 2024, 36, 2406915. [Google Scholar] [CrossRef]
- She, Y.; Wang, J.; Zhu, C.; Tian, F.; Jin, Y.; Mao, W.; Wu, Y.; Chen, K.; Xu, X. From nature back to nature: Spectrally modified poplar and its all-day passive radiative cooling. Ind. Crops Prod. 2023, 193, 116242. [Google Scholar] [CrossRef]
- Gan, W.; Chen, C.; Wang, Z.; Song, J.; Kuang, Y.; He, S.; Mi, R.; Sunderland, P.B.; Hu, L. Dense, Self-Formed Char Layer Enables a Fire-Retardant Wood Structural Material. Adv. Funct. Mater. 2019, 29, 1807444. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, D.; Li, T.; Jiang, J.; Bai, H.; Wang, S.; Wang, Y.; Dong, W. Multifunctional Flame-Retardant, Thermal Insulation, and Antimicrobial Wood-Based Composites. Biomacromolecules 2023, 24, 957–966. [Google Scholar] [CrossRef] [PubMed]
- Ramage, M.H.; Burridge, H.C.; Busse-Wicher, M.; Fereday, G.; Reynolds, T.; Shah, D.U.; Wu, G.; Yu, L.; Fleming, P.; Densley-Tingley, D.; et al. The wood from the trees: The use of timber in construction. Renew. Sustain. Energy Rev. 2017, 68, 333–359. [Google Scholar] [CrossRef]
- Li, G.; Huang, J.; Zhou, J.; Zhang, Y.; Zhang, C.; Rao, Z.; Fei, L. A flame-retardant wood-based composite with magnesium–aluminium layered double hydroxides for efficient daytime radiative cooling. J. Mater. Chem. A 2024, 12, 1609–1616. [Google Scholar] [CrossRef]
- Kong, L.; Tu, K.; Guan, H.; Wang, X. Growth of high-density ZnO nanorods on wood with enhanced photostability, flame retardancy and water repellency. Appl. Surf. Sci. 2017, 407, 479–484. [Google Scholar] [CrossRef]
- Merk, V.; Chanana, M.; Gaan, S.; Burgert, I. Mineralization of wood by calcium carbonate insertion for improved flame retardancy. Holzforschung 2016, 70, 867–876. [Google Scholar] [CrossRef]
- Merk, V.; Chanana, M.; Keplinger, T.; Gaan, S.; Burgert, I. Hybrid wood materials with improved fire retardance by bio-inspired mineralisation on the nano- and submicron level. Green Chem. 2015, 17, 1423–1428. [Google Scholar] [CrossRef]
- Rodríguez, G.E.; Bustos Ávila, C.; Cloutier, A. Use of phase change materials in wood and wood-based composites for thermal energy storage: A Review. BioResources 2023, 18, 8781–8805. [Google Scholar] [CrossRef]
- Leibnitz, O.; Dreimol, C.H.; Stucki, S.; Sanz-Pont, D.; Keplinger, T.; Burgert, I.; Ding, Y. Renewable wood-phase change material composites for passive temperature regulation of buildings. Next Mater. 2024, 2, 100132. [Google Scholar] [CrossRef]
- Zelinka, S.L.; Altgen, M.; Emmerich, L.; Guigo, N.; Keplinger, T.; Kymäläinen, M.; Thybring, E.E.; Thygesen, L.G. Review of Wood Modification and Wood Functionalization Technologies. Forests 2022, 13, 1004. [Google Scholar] [CrossRef]
- Kong, L.; Guan, H.; Wang, X. In Situ Polymerization of Furfuryl Alcohol with Ammonium Dihydrogen Phosphate in Poplar Wood for Improved Dimensional Stability and Flame Retardancy. ACS Sustain. Chem. Eng. 2018, 6, 3349–3357. [Google Scholar] [CrossRef]
- Wu, L.; Chen, M.; Xu, J.; Fang, F.; Li, S.; Zhu, W. Nano-SiO2-Modified Waterborne Acrylic Acid Resin Coating for Wood Wallboard. Coatings 2022, 12, 1453. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Liu, C. Surface Pattern over a Thick Silica Film to Realize Passive Radiative Cooling. Materials 2021, 14, 2637. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, B.; Han, J. Improving the Flame Retardancy and Smoke Suppression Properties of Polyurethane Foams with SiO2. Microcapsule and its Flame-Retardant Mechanism. Polym.-Plast. Technol. Eng. 2018, 57, 1139–1149. [Google Scholar] [CrossRef]
- Chang, H.; Tu, K.; Wang, X.; Liu, J. Fabrication of mechanically durable superhydrophobic wood surfaces using polydimethylsiloxane and silica nanoparticles. RSC Adv. 2015, 5, 30647–30653. [Google Scholar] [CrossRef]
- Chang, H.; Tu, K.; Wang, X.; Liu, J. Facile Preparation of Stable Superhydrophobic Coatings on Wood Surfaces using Silica-Polymer Nanocomposites. BioResources 2015, 10, 2585–2596. [Google Scholar] [CrossRef]
- Tu, K.; Wang, X.; Kong, L.; Chang, H.; Liu, J. Fabrication of robust, damage-tolerant superhydrophobic coatings on naturally micro-grooved wood surfaces. RSC Adv. 2016, 6, 701–707. [Google Scholar] [CrossRef]
- Donath, S.; Militz, H.; Mai, C. Wood modification with alkoxysilanes. Wood Sci. Technol. 2004, 38, 555–566. [Google Scholar] [CrossRef]
- Li, W.; Xu, X.; Hao, D.; Wang, Z.; Kang, Y.; Lai, J.; Zhang, F.; Jiang, L.; Wang, S. Superwetting-Enabled In Situ Silicification for Artificial Silicified Wood. Adv. Mater. 2025, 37, 2501520. [Google Scholar] [CrossRef]
- Li, Z.Q.; Zhang, J.; Lin, L.; Zhang, X.; Liu, Q.X.; Shi, J.Y. Layered laser-engraved wood-based composite capable of photothermal conversion and energy storage for indoor thermal management in buildings. Energy Build. 2024, 318, 114425. [Google Scholar] [CrossRef]
- Mawardi, I.; Aprilia, S.; Faisal, M.; Rizal, S. Characterization of Thermal Bio-Insulation Materials Based on Oil Palm Wood: The Effect of Hybridization and Particle Size. Polymers 2021, 13, 3287. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tu, K.; Liu, J.; Li, J.; Li, S.; Zhang, X.; Li, S. Silicified Wood with Dual Fire Retardancy and Thermal Management Functionalities. Polymers 2025, 17, 2293. https://doi.org/10.3390/polym17172293
Tu K, Liu J, Li J, Li S, Zhang X, Li S. Silicified Wood with Dual Fire Retardancy and Thermal Management Functionalities. Polymers. 2025; 17(17):2293. https://doi.org/10.3390/polym17172293
Chicago/Turabian StyleTu, Kunkun, Jinjing Liu, Jiayi Li, Suhao Li, Xu Zhang, and Shihang Li. 2025. "Silicified Wood with Dual Fire Retardancy and Thermal Management Functionalities" Polymers 17, no. 17: 2293. https://doi.org/10.3390/polym17172293
APA StyleTu, K., Liu, J., Li, J., Li, S., Zhang, X., & Li, S. (2025). Silicified Wood with Dual Fire Retardancy and Thermal Management Functionalities. Polymers, 17(17), 2293. https://doi.org/10.3390/polym17172293