Preservation Effect of Protein-Based Composite Coating Solution from Highland Barley Distillers’ Grains on Crown Pears
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction of Gliadin from Highland Barley Distillers’ Grains
2.3. Preparation of Protein-Based Composite Coating Liquid from Highland Barley Distillers’ Grains
2.4. Single-Factor Experiment
2.5. Response Surface Experiment
2.6. Measurement of Indicators
2.6.1. Weight Loss
2.6.2. Decay Rate
2.6.3. Hardness
2.6.4. Titratable Acid Content
2.6.5. Polyphenol Oxidase Activity
2.6.6. Total Number of Colonies
2.6.7. Statistical Analysis
3. Results and Discussion
3.1. Analysis of the Single-Factor Results
3.1.1. Effect of Different Gliadin Concentrations on the Weight Loss of Crown Pears
3.1.2. Effect of Different Glycerol Concentrations on the Weight Loss of Crown Pears
3.1.3. Effect of Different VC Concentrations on the Weight Loss of Crown Pears
3.1.4. Effect of Different Ethanol Concentrations on the Weight Loss of Crown Pears
3.2. Optimization of Response Surface Experiment
3.3. Optimization and Validation Tests
3.4. Measurement Results of Indicators
3.4.1. Changes in Weight Loss of Crown Pears
3.4.2. Changes in Decay Rate of Crown Pears
Storage Time (d) | Blank Group Decay Rate (%) | Experimental Group Decay Rate (%) |
---|---|---|
7 | 0 | 0 |
14 | 0 | 0 |
21 | 0 | 0 |
28 | 33.30% | 0 |
35 | 66.60% | 0 |
42 | 100% | 33.00% |
3.4.3. Changes in Hardness of Crown Pears
3.4.4. Changes in Titratable Acid Content of Crown Pears
3.4.5. Changes in PPO of Crown Pears
3.4.6. Changes in Total Number of Colonies of Crown Pears
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, X.; Liang, K.H.; Zhu, H.; Liu, L.; Wang, J. Comparative research on nutritional quality and flavor compounds of different pear varieties. J. Food Saf. Qual. 2020, 11, 7797–7805. [Google Scholar]
- Caballero, B.; Trugo, L.; Finglas, P. (Eds.) Encyclopedia of Food Sciences and Nutrition; Elsevier Science BV: Amsterdam, The Netherlands, 2003; Volumes 1–10. [Google Scholar]
- Abdel-Rahman, R.M.; Hrdina, R.; Abdel-Mohsen, A.; Fouda, M.M.; Soliman, A.; Mohamed, F.; Mohsin, K.; Pinto, T.D. Chitin and chitosan from Brazilian Atlantic Coast: Isolation, characterization and antibacterial activity. Int. J. Biol. Macromol. 2015, 80, 107–120. [Google Scholar] [CrossRef]
- Feng, Y.; Zou, T.; Zhang, Z. Study on the quality change of crown pear during storage. Bio Web Conf. 2023, 72, 01010. [Google Scholar] [CrossRef]
- Chu, Y.; Gao, C.; Liu, X.; Zhang, N.; Xu, T.; Feng, X.; Yang, Y.; Shen, C.; Tang, Z. Improvement of storage quality of strawberries by pullulan coatings incorporated with cinnamon essential oil nanoemulsion. LWT 2020, 122, 109054. [Google Scholar] [CrossRef]
- de Oliveira Filho, J.G.; Albiero, B.R.; Calisto, Í.H.; Bertolo, M.R.V.; Oldoni, F.C.A.; Egea, M.B.; Junior, S.B.; de Azeredo, H.M.C.; Ferreira, M.D. Bio-nanocomposite edible coatings based on arrowroot starch/cellulose nanocrystals/carnauba wax nanoemulsion containing essential oils to preserve quality and improve shelf life of strawberry. Int. J. Biol. Macromol. 2022, 219, 812–823. [Google Scholar] [CrossRef]
- Wu, X.; Liu, Z.; He, S.; Liu, J.; Shao, W. Development of an edible food packaging gelatin/zein based nanofiber film for the shelf-life extension of strawberries. Food Chem. 2023, 426, 136652. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, S.; Kumar, S.; Kumar, V.; Sharma, R. Chitosan nanoemulsions as advanced edible coatings for fruits and vegetables: Composition, fabrication and developments in the last decade. Int. J. Biol. Macromol. 2020, 152, 154–170. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.Y.; Mu, Y.; Zhu, A.F.; Zhang, B.H. Evaluation of the preparation and preservation effects of zein film. Mod. Food Sci. Technol. 2022, 38, 141–147. (In Chinese) [Google Scholar] [CrossRef]
- Gol, N.B.; Rao, T.R. Influence of zein and gelatin coatings on the postharvest quality and shelf life extension of mango (Mangifera indica L.). Fruits 2014, 69, 101–115. [Google Scholar] [CrossRef]
- Baraiya, N.S.; Rao, T.V.R.; Thakkar, V.R. Improvement of postharvest quality and storability of jamun fruit (Syzygium cumini L. var. Paras) by zein coating enriched with antioxidants. Food Bioprocess Technol. 2015, 8, 2225–2234. [Google Scholar] [CrossRef]
- Rico, D.; Peñas, E.; García, M.D.C.; Martínez-Villaluenga, C.; Rai, D.K.; Birsan, R.I.; Martín-Diana, A.B. Sprouted barley flour as a nutritious and functional ingredient. Foods 2020, 9, 296. [Google Scholar] [CrossRef]
- Wang, J.J.; Wang, Y.; Wang, Q.; Yang, J.; Hu, S.Q.; Chen, L. Mechanically strong and highly tough prolamin protein hydrogels designed from double-cross-linked assembled networks. ACS Appl. Polym. Mater. 2019, 1, 1272–1279. [Google Scholar] [CrossRef]
- Zeng, X.; Guo, Y.; Xu, Q.; Mascher, M.; Guo, G.; Li, S.; Mao, L.; Liu, Q.; Xia, Z.; Zhou, J.; et al. Origin and evolution of qingke barley in Tibet. Nat. Commun. 2018, 9, 5433. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.M.; Liu, H.; Ouyang, J.Y.; Liu, L.; You, X.Y.; Su, J.T.; Xiao, H.W. Extraction technology of protein from highland barley distiller’s grains. Hubei Agric. Sci. 2022, 61, 169–172. [Google Scholar] [CrossRef]
- Chen, M.; Runge, T.; Wang, L.; Li, R.; Feng, J.; Shu, X.-L.; Shi, Q.-S. Hydrogen bonding impact on chitosan plasticization. Carbohydr. Polym. 2018, 200, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Monte, M.L.; Moreno, M.L.; Senna, J.; Arrieche, L.S.; Pinto, L.A. Moisture sorption isotherms of chitosan-glycerol films: Thermodynamic properties and microstructure. Food Biosci. 2018, 22, 170–177. [Google Scholar] [CrossRef]
- Pavinatto, A.V.; de Almeida Mattos, A.V.; Malpass, A.C.G.; Okura, M.H.; Balogh, D.T.; Sanfelice, R.C. Coating with chitosan-based edible films for mechanical/biological protection of strawberries. Int. J. Biol. Macromol. 2020, 151, 1004–1011. [Google Scholar] [CrossRef]
- Xylia, P.; Chrysargyris, A.; Tzortzakis, N. The combined and single effect of marjoram essential oil, ascorbic acid, and chitosan on fresh-cut lettuce preservation. Foods 2021, 10, 575. [Google Scholar] [CrossRef]
- Sogvar, O.B.; Saba, M.K.; Emamifar, A. Aloe vera and ascorbic acid coatings maintain postharvest quality and reduce microbial load of strawberry fruit. Postharvest Biol. Technol. 2016, 114, 29–35. [Google Scholar] [CrossRef]
- Yan, S.; Luo, Y.; Zhou, B.; Ingram, D.T. Dual effectiveness of ascorbic acid and ethanol combined treatment to inhibit browning and inactivate pathogens on fresh-cut apples. LWT-Food Sci. Technol. 2017, 80, 311–320. [Google Scholar] [CrossRef]
- Guo, L. Preparation and properties of zein from corn gluten meal. Food Sci. Technol. 2021, 46, 234–241. [Google Scholar] [CrossRef]
- Zu, W.X.; Liang, Y.Q.; Li, C. Preservation effect of composite emulsion coating containing prolamin from baijiu distiller’s grains on Kyoho grape. Food Res. Dev. 2022, 43, 70–76. [Google Scholar]
- Cunniff, P. Official Methods of Analysis of the Association of Official Analytical Chemists; Chemists, Association Official Analytical: Washington, DC, USA, 1990. [Google Scholar]
- Khodaei, D.; Hamidi-Esfahani, Z.; Rahmati, E. Effect of edible coatings on the shelf-life of fresh strawberries: A comparative study using TOPSIS-Shannon entropy method. NFS J. 2021, 23, 17–23. [Google Scholar] [CrossRef]
- Meng, L.W.; Wang, H.J.; Liu, W.; Zhang, D.J. Research of preservation effect of zein coating liquid on Nanguo pear. J. Heilongjiang Bayi Agric. Univ. 2018, 30, 63–66+97. [Google Scholar] [CrossRef]
- Assis, O.B.; Scramin, J.A.; Correa, T.A.; de Britto, D.; Forato, L.A. A comparative evaluation of integrity and colour preservation of sliced apples protected by chitosan and zein edible coatings. Rev. Iberoam. Tecnol. Postcosecha. 2012, 13, 76–85. [Google Scholar]
- Soleha, I.; Ng, K.S.; Mamat, S.E. Maintaining the storage quality of tropical dried fruit mix with glycerol. J. Food Qual. 1991, 14, 219–228. [Google Scholar] [CrossRef]
- Ouyang, X.Y.; Wu, Z.Q.; Wan, D.J.; Sun, W.; Ma, C. Film forming of zein and its application in citrus preservation. J. Hubei Univ. Technol. 2015, 30, 20–23. [Google Scholar]
- Zhang, M.M.; Lu, D.; Yan, Q.; Guo, X.P.; Li, W.J. Research progress on effect of cell membrane on ethanol tolerance of Saccharomyces cerevisiae. China Brew. 2016, 35, 16–19. [Google Scholar] [CrossRef]
- Liu, L.; Tao, L.; Chen, J.; Zhang, T.; Xu, J.; Ding, M.; Zhong, J. Fish oil-gelatin core-shell electrospun nanofibrous membranes as promising edible films for the encapsulation of hydrophobic and hydrophilic nutrients. LWT 2021, 146, 111500. [Google Scholar] [CrossRef]
- Ali, S.; Khan, A.S.; Malik, A.U.; Anwar, R.; Anjum, M.A.; Nawaz, A.; Naz, S. Combined application of ascorbic and oxalic acids delays postharvest browning of litchi fruits under controlled atmosphere conditions. Food Chem. 2021, 350, 129277. [Google Scholar] [CrossRef]
- Zhang, H.C.; Li, Y.Y.; Jin, M.M.; Zhang, M. Effects of ethanol fumigation on preservation quality of Agaricus bisporus. Food Ferment. Ind. 2018, 44, 187–194. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, H.; Zhang, H.Y.; Zhang, K.; Wang, L.J. Effects of ethanol treatment on fruit quality during postharvest storage of table grape (Vitis vinifera L.). J. Jilin Agric. Univ. 2019, 41, 676–680. [Google Scholar]
- Raybaudi-Massilia, R.M.; Mosqueda-Melgar, J.; Sobrino-Lopez, A.; Soliva-Fortuny, R.; Martin-Belloso, O. Shelf-life extension of fresh-cut “Fuji” apples at different ripeness stages using natural substances. Postharvest Biol. Technol. 2007, 45, 265–275. [Google Scholar] [CrossRef]
- Villalobos-Carvajal, R.; Hernández-Muñoz, P.; Albors, A.; Chiralt, A. Barrier and optical properties of edible hydroxypropyl methylcellulose coatings containing surfactants applied to fresh cut carrot slices. Food Hydrocoll. 2009, 23, 526–535. [Google Scholar] [CrossRef]
- Xin, Y.; Chen, F.; Lai, S.; Yang, H. Influence of chitosan-based coatings on the physicochemical properties and pectin nanostructure of Chinese cherry. Postharvest Biol. Technol. 2017, 133, 64–71. [Google Scholar] [CrossRef]
- Chien, P.J.; Sheu, F.; Yang, F.H. Effects of edible chitosan coating on quality and shelf life of sliced mango fruit. J. Food Eng. 2007, 78, 225–229. [Google Scholar] [CrossRef]
- Wang, S.Y.; Gao, H. Effect of chitosan-based edible coating on antioxidants, antioxidant enzyme system, and postharvest fruit quality of strawberries (Fragaria × ananassa Duch.). LWT-Food Sci. Technol. 2013, 52, 71–79. [Google Scholar] [CrossRef]
- Bourtoom, T. Edible films and coatings: Characteristics and properties. Int. Food Res. J. 2008, 15, 237–248. [Google Scholar]
- Ebrahimi, H.; Abedi, B.; Bodaghi, H.; Davarynejad, G.; Haratizadeh, H.; Conte, A. Investigation of developed clay-nanocomposite packaging film on quality of peach fruit (Prunus persica Cv. Alberta) during cold storage. J. Food Process. Preserv. 2018, 42, e13466. [Google Scholar] [CrossRef]
- Maftoonazad, N.; Ramaswamy, H.S.; Marcotte, M. Shelf-life extension of peaches through sodium alginate and methyl cellulose edible coatings. Int. J. Food Sci. Technol. 2008, 43, 951–957. [Google Scholar] [CrossRef]
- Tilahun, S.; Park, D.S.; Solomon, T.; Choi, H.R.; Jeong, C.S. Maturity stages affect nutritional quality and storability of tomato cultivars. CyTA-J. Food 2019, 17, 87–95. [Google Scholar] [CrossRef]
- Tilahun, S.; Choi, H.R.; Lee, Y.M.; Choi, J.H.; Baek, M.W.; Hyok, K.; Jeong, C.S. Ripening quality of kiwifruit cultivars is affected by harvest time. Sci. Hortic. 2020, 261, 108936. [Google Scholar] [CrossRef]
- Yaman, O.; Bayındırli, L. Effects of an edible coating and cold storage on shelf-life and quality of cherries. LWT Food Sci. Technol. 2002, 35, 146–150. [Google Scholar] [CrossRef]
- Gol, N.B.; Ramana, T.V.R. Banana fruit ripening as influenced by edible coatings. Int. J. Fruit Sci. 2011, 11, 119–135. [Google Scholar] [CrossRef]
- Nguyen, T.B.T.; Ketsa, S.; Van Doorn, W.G. Relationship between browning and the activities of polyphenoloxidase and phenylalanine ammonia lyase in banana peel during low temperature storage. Postharvest Biol. Technol. 2003, 30, 187–193. [Google Scholar] [CrossRef]
- Altunkaya, A.; Gökmen, V. Effect of various inhibitors on enzymatic browning, antioxidant activity and total phenol content of fresh lettuce (Lactuca sativa). Food Chem. 2008, 107, 1173–1179. [Google Scholar] [CrossRef]
- Liu, J.; Lin, Y.; Lin, H.; Lin, M.; Fan, Z. Impacts of exogenous ROS scavenger ascorbic acid on the storability and quality attributes of fresh longan fruit. Food Chem. X 2021, 12, 100167. [Google Scholar] [CrossRef]
- Aminifard, M.H.; Mohammadi, S. Essential oils to control Botrytis cinerea in vitro and in vivo on plum fruits. J. Sci. Food Agric. 2013, 93, 348–353. [Google Scholar] [CrossRef]
- Gol, N.B.; Patel, P.R.; Rao, T.R. Improvement of quality and shelf-life of strawberries with edible coatings enriched with chitosan. Postharvest Biol. Technol. 2013, 85, 185–195. [Google Scholar] [CrossRef]
- Baysal, T.; Bilek, S.E.; Apaydin, E. The effect of corn zein edible film coating on intermediate moisture apricot (Prunus armeniaca L.) quality. Gida 2010, 35, 245–249. [Google Scholar]
- Romanazzi, G.; Gabler, F.M.; Margosan, D.A.; Mackey, B.E.; Smilanick, J.L. Effect of chitosan dissolved in different acids on its ability to control postharvest gray mold of table grape. Phytopathology 2009, 99, 1028–1036. [Google Scholar] [CrossRef]
Levels | Factors | |||
---|---|---|---|---|
A. Gliadin Concentration/(mg/mL) | B. Glycerol Concentration /% | C. VC Concentration /% | D. Ethanol Concentration /% | |
−1 | 15 | 1 | 2 | 75 |
0 | 20 | 1.5 | 2.5 | 80 |
1 | 25 | 2 | 3 | 85 |
NO. | A. Gliadin Concentration /(mg/mL) | B. Glycerol Concentration /% | C. Vc Concentration /% | D. Ethanol Concentration /% | WL /% |
---|---|---|---|---|---|
1 | 0 | 1 | 0 | −1 | 5.12 ± 0.05 |
2 | 0 | 0 | 0 | 0 | 3.30 ± 0.06 |
3 | 0 | −1 | 0 | 1 | 4.78 ± 0.02 |
4 | −1 | 0 | 1 | 0 | 4.41 ± 0.02 |
5 | 1 | 0 | 1 | 0 | 4.48 ± 0.06 |
6 | 0 | −1 | −1 | 0 | 4.56 ± 0.02 |
7 | −1 | 0 | 0 | −1 | 4.74 ± 0.03 |
8 | 0 | 0 | −1 | 1 | 4.58 ± 0.02 |
9 | 0 | 0 | 0 | 0 | 3.27 ± 0.02 |
10 | 1 | 0 | −1 | 0 | 4.41 ± 0.03 |
11 | 0 | 0 | 0 | 0 | 3.29 ± 0.06 |
12 | −1 | 0 | 0 | 1 | 4.47 ± 0.02 |
13 | 1 | 1 | 0 | 0 | 4.87 ± 0.04 |
14 | 0 | 0 | 0 | 0 | 3.32 ± 0.08 |
15 | 0 | 0 | 1 | −1 | 4.69 ± 0.02 |
16 | 0 | −1 | 0 | −1 | 5.04 ± 0.06 |
17 | 1 | 0 | 0 | −1 | 4.57 ± 0.11 |
18 | 0 | 0 | 1 | 1 | 4.56 ± 0.03 |
19 | 1 | −1 | 0 | 0 | 4.68 ± 0.02 |
20 | −1 | 1 | 0 | 0 | 4.86 ± 0.03 |
21 | 0 | 1 | 0 | 1 | 5.02 ± 0.11 |
22 | −1 | 0 | −1 | 0 | 4.36 ± 0.06 |
23 | 0 | 1 | 1 | 0 | 4.76 ± 0.08 |
24 | 0 | 1 | −1 | 0 | 4.85 ± 0.08 |
25 | 0 | 0 | 0 | 0 | 3.34 ± 0.03 |
26 | 1 | 0 | 0 | 1 | 4.73 ± 0.07 |
27 | −1 | −1 | 0 | 0 | 4.59 ± 0.06 |
28 | 0 | 0 | −1 | −1 | 4.69 ± 0.08 |
29 | 0 | −1 | 1 | 0 | 4.72 ± 0.05 |
Source | Sum of Squared Deviations | Df | Mean Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 8.87 | 14 | 0.63 | 456.10 | <0.0001 | ** |
A | 8.008 × 10−3 | 1 | 8.008 × 10−3 | 5.76 | 0.0308 | * |
B | 0.10 | 1 | 0.10 | 73.89 | <0.0001 | ** |
C | 2.408 × 10−3 | 1 | 2.408 × 10−3 | 1.73 | 0.2091 | |
D | 0.042 | 1 | 0.042 | 30.23 | <0.0001 | ** |
AB | 1.600 × 10−3 | 1 | 1.600 × 10−3 | 1.15 | 0.3014 | |
AC | 1.000 × 10−4 | 1 | 1.000 × 10−4 | 0.072 | 0.7924 | |
AD | 0.046 | 1 | 0.046 | 33.27 | <0.0001 | ** |
BC | 0.016 | 1 | 0.016 | 11.24 | 0.0047 | ** |
BD | 6.400 × 10−3 | 1 | 6.400 × 10−3 | 4.61 | 0.0499 | * |
CD | 1.000 × 10−4 | 1 | 1.000 × 10−4 | 0.072 | 0.7924 | |
A2 | 2.00 | 1 | 2.00 | 1438.33 | <0.0001 | ** |
B2 | 5.14 | 1 | 5.14 | 3698.32 | <0.0001 | ** |
C2 | 1.91 | 1 | 1.91 | 1374.28 | <0.0001 | ** |
D2 | 3.97 | 1 | 3.97 | 2858.94 | <0.0001 | ** |
Residual | 0.019 | 14 | 1.390 × 10−3 | |||
Lack-of-fit-term | 0.017 | 10 | 1.653 × 10−3 | 2.26 | 0.2238 | ns |
Pure error | 2.920 × 10−3 | 4 | 7.300 × 10−4 | |||
Sum | 8.89 | 28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, Q.; Zhao, J.; Zhang, Y. Preservation Effect of Protein-Based Composite Coating Solution from Highland Barley Distillers’ Grains on Crown Pears. Polymers 2025, 17, 2291. https://doi.org/10.3390/polym17172291
Lv Q, Zhao J, Zhang Y. Preservation Effect of Protein-Based Composite Coating Solution from Highland Barley Distillers’ Grains on Crown Pears. Polymers. 2025; 17(17):2291. https://doi.org/10.3390/polym17172291
Chicago/Turabian StyleLv, Qian, Jie Zhao, and Yiquan Zhang. 2025. "Preservation Effect of Protein-Based Composite Coating Solution from Highland Barley Distillers’ Grains on Crown Pears" Polymers 17, no. 17: 2291. https://doi.org/10.3390/polym17172291
APA StyleLv, Q., Zhao, J., & Zhang, Y. (2025). Preservation Effect of Protein-Based Composite Coating Solution from Highland Barley Distillers’ Grains on Crown Pears. Polymers, 17(17), 2291. https://doi.org/10.3390/polym17172291