Development of Eco-Friendly Silane-Treated Rice Flour/PBS Biocomposites with ENR-50 as a Compatibilizer: A Study on Phase Morphology, Properties and Biodegradation
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Compounding and Specimen Preparation
2.3. Characterizations
3. Results and Discussion
3.1. FTIR Analysis of Rice Flour
3.2. Morphology
3.3. Physical and Mechanical Properties
3.4. Soil Burial Degradation Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Emadian, S.M.; Onay, T.T.; Demirel, B. Biodegradation of bioplastics in natural environments. Waste Manag. 2017, 59, 526–536. [Google Scholar] [CrossRef] [PubMed]
- Nath, D.; Misra, M.; Al-Daoud, F.; Mohanty, A.K. Studies on poly(butylene succinate) and poly(butylene succinate-co-adipate)-based biodegradable plastics for sustainable flexible packaging and agricultural applications: A comprehensive review. RSC Sustain. 2025, 3, 1267–1302. [Google Scholar] [CrossRef]
- Platnieks, O.; Gaidukovs, S.; Barkane, A.; Sereda, A.; Gaidukova, G.; Grase, L.; Thakur, V.K.; Filipova, I.; Fridrihsone, V.; Skute, M.; et al. Bio-based poly(butylene succinate)/microcrystalline cellulose/nanofibrillated cellulose-based sustainable polymer composites: Thermo mechanical and biodegradation studies. Polymers 2020, 12, 1472. [Google Scholar] [CrossRef]
- Pickeringa, K.L.; Aruan Efendy, M.G.; Le, T.M. A review of recent developments in natural fibre composites and their mechanical performance. Compos. Part. A Appl. Sci. Manuf. 2016, 83, 98–112. [Google Scholar] [CrossRef]
- Zaaba, N.F.; Ismail, H. A review on peanut shell powder reinforced polymer composites. Polym-Plast. Technol. Eng. 2019, 58, 1471720. [Google Scholar] [CrossRef]
- Pokhriyal, M.; Rakesh, P.K. Processing and characterization of novel Himalayacalamus falconeri fiber reinforced biodegradable composites. Biomass Convers. Biorefin. 2024, 14, 21245–21260. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Y.; Liang, W.; Wang, J.; Chen, Y. Effect of silane treatment on mechanical properties and thermal behavior of bamboo fibers reinforced polypropylene composites. J. Eng. Fibers Fabr. 2020, 15, 1–10. [Google Scholar] [CrossRef]
- Siakeng, R.; Jawaid, M.; Asim, M.; Siengchin, S. Accelerated weathering and soil burial effect on biodegradability, colour and texture of coir/pineapple leaf fibres/PLA biocomposites. Polymers 2020, 12, 458. [Google Scholar] [CrossRef]
- Rong-or, C.; Pongputthipat, W.; Ruksakulpiwat, Y.; Chumsamrong, P. Soil burial degradation of bio-composite films derived from poly(lactic acid), natural rubber and rice straw. Polym. Bull. 2024, 81, 10729–10746. [Google Scholar] [CrossRef]
- Laftah, W.A.; Wan Abdul Rahman, W.A. Rice waste–based polymer composites for packaging applications: A review. Polym. Polym. Compos. 2021, 29, S1621–S1629. [Google Scholar] [CrossRef]
- Khademieslam, H.; Kalagar, M.; Moridani, E.M.; Hosienpoor, R.; Tavakkoli, A. The influence of rice straw flour silane treatment on the physical and mechanical properties composite. World Appl. Sci. J. 2013, 27, 663–666. [Google Scholar]
- Then, Y.Y.; Ibrahim, N.A.; Zainuddin, N.; Ariffin, H.; Chieng, B.W.; Wan Yunus, W.M.Z. Influence of fiber content on properties of oil palm mesocarp fiber/poly(butylene succinate) biocomposites. BioResources 2015, 10, 2949–2968. [Google Scholar] [CrossRef]
- Woranuch, S.; Pangon, A.; Puagsuntia, K.; Subjalearndee, N.; Intasanta, V. Rice flour-based nanostructures via a water-based system: Transformation from powder to electrospun nanofibers under hydrogen-bonding induced viscosity, crystallinity and improved mechanical property. RSC Adv. 2017, 7, 19960–19966. [Google Scholar] [CrossRef]
- D’Souza, R.L.; Unnikrishnan, G. Preparation and study of mechanical and biodegradable properties of PVA based bioplastic blends derived from broken rice flour. Res. J. Agric. Sci. 2021, 12, 2281–2284. [Google Scholar]
- Rajakumar, I.P.T.; Raguraman, D.; Isaac, J.S.; Suthan, R.; Bhattacharya, S.; Seikh, A.H.; Khan, S.M.A.; Raghavan, I.K. Mechanical properties of polymer composites reinforced with alkaline-treated natural fibre. Adv. Polym. Technol. 2022, 2022, 1458547. [Google Scholar] [CrossRef]
- Bikiaris, D.; Panayiotou, C. LDPE/starch blends compatibilized with PE-g-MA copolymers. J. Appl. Polym. Sci. 1998, 70, 1503–1521. [Google Scholar] [CrossRef]
- Kampeerapappun, P.; O-Charoen, N.; Dhamvithee, P.; Jansri, E. Biocomposite based on polylactic acid and rice straw for food packaging products. Polymers 2024, 16, 1038. [Google Scholar] [CrossRef]
- Sam, S.T.; Ismail, H.; Ahmad, Z. Effect of epoxidized natural rubber on the processing behavior, tensile properties, morphology, and thermal properties of linear-low-density polyethylene/soya powder blends. J. Vinyl Addit. Technol. 2010, 16, 238–245. [Google Scholar] [CrossRef]
- Yew, G.H.; Mohd Yusof, A.M.; Mohd Ishak, Z.A.; Ishiaku, U.S. Water absorption and enzymatic degradation of poly(lactic acid)/rice starch composites. Polym. Degrad. Stab. 2005, 90, 488–500. [Google Scholar] [CrossRef]
- Sapsrithong, P.; Sritapunya, T.; Tuampoemsab, S.; Rattanapan, A.; Nithitanakul, M. Morphology and mechanical properties of polyamide 6 and polybutylene terephthalate blends compatibilized with epoxidized natural rubber. IOP Conf. Ser. Mater. Sci. Eng. 2020, 811, 012019. [Google Scholar] [CrossRef]
- Liu, K.; Stadlbauer, W.; Zitzenbacher, G.; Paulik, C.; Burgstaller, C. Effects of surface modification of talc on mechanical properties of polypropylene/talc composites. AIP Conf. Proc. 2016, 1713, 120008. [Google Scholar] [CrossRef]
- Sun, J.; Pang, Y.; Yang, Y.; Zhao, J.; Xia, R.; Li, Y.; Liu, Y.; Guo, H. Improvement of rice husk/HDPE bio-composites interfacial properties by silane coupling agent and compatibilizer complementary modification. Polymers 2019, 11, 1928. [Google Scholar] [CrossRef]
- ASTM D792-13; Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement, American Society for Testing and Materials. ASTM International: West Conshohocken, PA, USA, 2013. [CrossRef]
- ASTM D570-22; Standard Test Method for Water Absorption of Plastics, American Society for Testing and Materials. ASTM International: West Conshohocken, PA, USA, 2022. [CrossRef]
- ASTM D882-18; Standard Test Method for Tensile Properties of Thin Plastic Sheeting, American Society for Testing and Materials. ASTM International: West Conshohocken, PA, USA, 2018. [CrossRef]
- ASTM D790-15; Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, American Society for Testing and Materials. ASTM International: West Conshohocken, PA, USA, 2015. [CrossRef]
- ASTM D2240-15; Standard Test Method for Rubber Property—Durometer Hardness, American Society for Testing and Materials. ASTM International: West Conshohocken, PA, USA, 2015. [CrossRef]
- Takarini, V.; Asri, L.A.T.W.; Djustiana, N.; Hadi, B.K. Simple precipitation method to reduce the particle size of glutinous rice flour: Physicochemical evaluation. Mater. Res. Express. 2022, 9, 025301. [Google Scholar] [CrossRef]
- Ilieva, A.; Kiryakova, D. Determination of physico-mechanical and rheological properties of silane-treated wood flour polypropylene composites. J. Chem. Technol. Metall. 2023, 58, 291–301. [Google Scholar] [CrossRef]
- Srisuwan, L.; Jarukumjorn, K.; Suppakarn, N. Effect of silane treatment methods on physical properties of rice husk flour/natural rubber composites. Adv. Mater. Sci. Eng. 2018, 2018, 4583974. [Google Scholar] [CrossRef]
- Moe, A.K.; Chungprempree, J.; Preechawong, J.; Sapsrithong, P.; Nithitanakul, M. The development of environmentally sustainable poly(vinyl chloride) composite from waste non-metallic printed circuit board with interfacial agents. Polymers 2022, 15, 2938. [Google Scholar] [CrossRef]
- Moe, A.K.; Chungprempree, J.; Preechawong, J.; Sapsrithong, P.; Nithitanakul, M. Recycling waste nonmetallic printed circuit boards for polyvinyl chloride composites. Polymers 2022, 14, 3531. [Google Scholar] [CrossRef] [PubMed]
- Masoodi, R.; Pillai, K.M. A study on moisture absorption and swelling in bio-based jute-epoxy composites. J. Reinf. Plast. Compos. 2012, 31, 285–294. [Google Scholar] [CrossRef]
- Dulebova, L.; Garbacz, T. The effect of particulate fillers on hardness of polymer composite. Adv. Sci. Technol. Res. J. 2017, 11, 66–71. [Google Scholar] [CrossRef]
- Hammadi, A.F.; Oleiwi, A.H.; Abbas, A.T.; Al-Obaidi, A.J. Effect of alumina particles on the mechanical and physical properties of polypropylene whisker reinforced lamination 80:20 resin composite. Rev. Compos. Mater. Av. 2023, 33, 7–12. [Google Scholar] [CrossRef]
- Kim, H.-S.; Kim, H.-J.; Lee, J.-W.; Choi, I.-G. Biodegradability of bio-flour filled biodegradable poly(butylene succinate) bio-composites in natural and compost soil. Polym. Degrad. Stab. 2006, 91, 1117–1127. [Google Scholar] [CrossRef]
Materials for PBS/RF Biocomposites | ||
---|---|---|
RF treated with silane [phr] | ENR-50 [phr] | Code |
0 | 0 | Neat PBS |
10 | 1 | PBS/RF: 10 phr |
20 | 1 | PBS/RF: 20 phr |
30 | 1 | PBS/RF: 30 phr |
40 | 1 | PBS/RF: 40 phr |
50 | 1 | PBS/RF: 50 phr |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sritapunya, T.; Rattanapan, A.; Tuampoemsab, S.; Sapsrithong, P. Development of Eco-Friendly Silane-Treated Rice Flour/PBS Biocomposites with ENR-50 as a Compatibilizer: A Study on Phase Morphology, Properties and Biodegradation. Polymers 2025, 17, 2213. https://doi.org/10.3390/polym17162213
Sritapunya T, Rattanapan A, Tuampoemsab S, Sapsrithong P. Development of Eco-Friendly Silane-Treated Rice Flour/PBS Biocomposites with ENR-50 as a Compatibilizer: A Study on Phase Morphology, Properties and Biodegradation. Polymers. 2025; 17(16):2213. https://doi.org/10.3390/polym17162213
Chicago/Turabian StyleSritapunya, Thritima, Apaipan Rattanapan, Surakit Tuampoemsab, and Pornsri Sapsrithong. 2025. "Development of Eco-Friendly Silane-Treated Rice Flour/PBS Biocomposites with ENR-50 as a Compatibilizer: A Study on Phase Morphology, Properties and Biodegradation" Polymers 17, no. 16: 2213. https://doi.org/10.3390/polym17162213
APA StyleSritapunya, T., Rattanapan, A., Tuampoemsab, S., & Sapsrithong, P. (2025). Development of Eco-Friendly Silane-Treated Rice Flour/PBS Biocomposites with ENR-50 as a Compatibilizer: A Study on Phase Morphology, Properties and Biodegradation. Polymers, 17(16), 2213. https://doi.org/10.3390/polym17162213