Differential Effects of Chitosan–Salicylic Acid Nanocomposite and Salicylic Acid on Cucumber Mosaic Virus in Cucumber
Abstract
1. Introduction
2. Materials and Methods
2.1. Virus Identification and Propagation
2.2. Impact of Chitosan Salicylic Acid Nanocomposite (Ch/SA NC) and Salicylic Acid (SA) on CMV Preparation In Vitro
2.3. Effect of Ch/SA NC and SA on CMV Infectivity In Vivo
2.4. Total RNA Extraction and RT-PCR
2.5. Preparation and Characterization of Chitosan/Salicylic Acid Nanocomposite (Ch/SA NC)
2.6. Effect of Ch/SA NC and SA on Physiological Parameters
2.6.1. Determination of Chlorophyll a and b and Carotenoid Content (mg/g FW) in Cucumber Leaves
2.6.2. Estimation of Total Phenolic Content
2.6.3. Estimation of Flavonoid Content
2.6.4. Determination of Total Protein and Carbohydrate
2.6.5. Effect of Ch/SA NC and SA on Antioxidant Enzyme Activity
2.7. Data Analysis
3. Results
3.1. Virus Detection and Propagation
3.2. Effect of Ch/SA NC and SA on In Vitro CMV Preparation
3.3. Effect of Ch/SA NC and Salicylic Acid (SA) on CMV Infectivity In Vivo
3.4. Total RNA Extraction and RT-PCR
3.5. Characterization of Chitosan/Salicylic Acid Nanocomposite (Ch/SA NC)
3.6. Impact of Ch/SA NCs and SA on Physiological Parameter: Chlorophyll a and b and Carotenoid Content in Cucumber Leaves
3.7. Determination of Phenolic and Flavonoid Content in Cucumber Leaves
3.8. Determination of Total Protein and Carbohydrate
3.9. Effect of Ch/SA NC and SA on Antioxidant Enzyme Activity
3.10. Impact of Foliar Treatment with Ch/SA NC and SA on Vegetative Growth
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; Sun, Y.; Wang, X.; Dong, X.; Zhang, T.; Yang, Y.; Chen, S. Relationship between Key Environmental Factors and Profiling of Volatile Compounds during Cucumber Fruit Development under Protected Cultivation. Food Chem. 2019, 290, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Istúriz-Zapata, M.A.; Hernández-López, M.; Correa-Pacheco, Z.N.; Barrera-Necha, L.L. Quality of Cold-Stored Cucumber as Affected by Nanostructured Coatings of Chitosan with Cinnamon Essential Oil and Cinnamaldehyde. LWT 2020, 123, 109089. [Google Scholar] [CrossRef]
- Roossinck, M.J. Cucumoviruses (Bromoviridiae) General Features. In Encyclopedia of Virology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 1999; pp. 315–320. ISBN 9780122270307. [Google Scholar]
- García-Arenal, F.; Palukaitis, P. Cucumber mosaic virus. In Encyclopedia of Virology, 3rd ed.; Academic Press: Oxford, UK, 2008; pp. 614–619. [Google Scholar]
- Sofy, A.R.; Sofy, M.R.; Hmed, A.A.; El-Dougdoug, N.K. Potential Effect of Plant Growth-Promoting Rhizobacteria (PGPR) on Enhancing Protection Against Viral Diseases. In Field Crops: Stustainable Management by PGPR; Maheshwari, D., Dheeman, S., Eds.; Sustainable Development and Biodeviersity; Springer: Cham, Switzerland, 2019; Volume 23, pp. 411–445. [Google Scholar]
- Balconi, C.; Stevanato, P.; Motto, M.; Biancardi, E. Breeding for Biotic Stress Resistance/Tolerance in Plants. In Crop Production for Agricultural Improvement; Springer: Dordrecht, The Netherlands, 2012; pp. 57–114. ISBN 9789400741164. [Google Scholar]
- Sofy, A.R.; Dawoud, R.A.; Sofy, M.R.; Mohamed, H.I.; Hmed, A.A.; El-Dougdoug, N.K. Improving Regulation of Enzymatic and Non-Enzymatic Antioxidants and Stress-Related Gene Stimulation in Cucumber mosaic cucumovirus-Infected Cucumber Plants Treated with Glycine Betaine, Chitosan and Combination. Molecules 2020, 25, 2341. [Google Scholar] [CrossRef]
- Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on Nanoparticles and Nanostructured Materials: History, Sources, Toxicity and Regulations. Beilstein J. Nanotechnol. 2018, 9, 1050–1074. [Google Scholar] [CrossRef] [PubMed]
- Dutta, P.; Das, G.; Boruah, S.; Kumari, A.; Mahanta, M. Nanoparticles as Nano-Priming Agent for Antifungal and Antibacterial Activity against Plant Pathogens. Biol. Forum—Int. J. 2021, 13, 476–482. [Google Scholar]
- Ahmad, P.; Nabi, G.; Ashraf, M. Cadmium-Induced Oxidative Damage in Mustard [Brassica juncea (L.) Czern. & Coss.] Plants Can Be Alleviated by Salicylic Acid. S. Afr. J. Bot. 2011, 77, 36–44. [Google Scholar] [CrossRef]
- Khan, M.I.R.; Fatma, M.; Per, T.S.; Anjum, N.A.; Khan, N.A. Salicylic Acid-Induced Abiotic Stress Tolerance and Underlying Mechanisms in Plants. Front. Plant Sci. 2015, 6, 462. [Google Scholar] [CrossRef]
- Khan, M.I.R.; Asgher, M.; Khan, N.A. Alleviation of Salt-Induced Photosynthesis and Growth Inhibition by Salicylic Acid Involves Glycinebetaine and Ethylene in Mungbean (Vigna radiata L.). Plant Physiol. Biochem. 2014, 80, 67–74. [Google Scholar] [CrossRef]
- Mayers, C.N.; Lee, K.C.; Moore, C.A.; Wong, S.M.; Carr, J.P. Salicylic Acid-Induced Resistance to Cucumber mosaic virus in Squash and Arabidopsis thaliana: Contrasting Mechanisms of Induction and Antiviral Action. Mol. Plant-Microbe Interact. 2005, 18, 428–434. [Google Scholar] [CrossRef]
- Maldonado-Cruz, E.; Ochoa-Martínez, D.L.; Tlapal-Bolaños, B. Effect of Acetyl Salicylic Acid and Bacillus subtilis on Cucumber mosaic virus Gourd Infection. Rev. Chapingo Ser. Hortic. 2008, 14, 55–59. [Google Scholar]
- Gholi-Tolouie, S.; Sokhandan-Bashir, N.; Davari, M.; Sedghi, M. The Effect of Salicylic and Jasmonic Acids on Tomato Physiology and Tolerance to Cucumber mosaic virus (CMV). Eur. J. Plant Pathol. 2017, 151, 101–116. [Google Scholar] [CrossRef]
- Shoala, T. Positive Impacts of Nanoparticles in Plant Resistance against Different Stimuli. In Nanotechnology Application in Plant Protection; Abd-Elsalam, K., Prasad, R., Eds.; Nanotechnology in the Life Sciences; Springer: Cham, Switzerland, 2018; pp. 267–279. [Google Scholar] [CrossRef]
- El-Ganainy, S.M.; Soliman, A.M.; Ismail, A.M.; Sattar, M.N.; Farroh, K.Y.; Shafie, R.M. Antiviral Activity of Chitosan Nanoparticles and Chitosan Silver Nanocomposites against Alfalfa mosaic virus. Polymers 2023, 15, 2961. [Google Scholar] [CrossRef] [PubMed]
- Shoala, T.; Al-Karmalawy, A.; Germoush, M.; ALshamrani, S.; Abdein, M.; Awad, N. Nanobiotechnological Approaches to Enhance Potato Resistance against Potato leafroll virus (PLRV) Using Glycyrrhizic Acid Ammonium Salt and Salicylic Acid Nanoparticles. Horticulturae 2021, 7, 402. [Google Scholar] [CrossRef]
- Ahmed, E.A.; Shoala, T.; Abdelkhalik, A.; El-Garhy, H.A.S.; Ismail, I.A.; Farrag, A.A. Nanoinhibitory Impacts of Salicylic Acid, Glycyrrhizic Acid Ammonium Salt, and Boric Acid Nanoparticles against Phytoplasma Associated with Faba Bean. Molecules 2022, 27, 1467. [Google Scholar] [CrossRef] [PubMed]
- Nandini, T.; Sudhalakshmi, C.; Sivakumar, K.; Parameswari, E.; Thangamani, C. A Review-Chitosan Nanoparticles towards Enhancing Nutrient Use Efficiency in Crops. Int. J. Biol. Macromol. 2025, 306, 141433. [Google Scholar] [CrossRef]
- Mahfouze, H.A.; Farroh, K.Y.; ElSayed, O.E. Effectiveness of Chitosan Nanoparticles in Suppression of Late Blight in Potato. Egypt. J. Phytopathol. 2025, 53, 77–92. [Google Scholar] [CrossRef]
- Aazami, M.A.; Maleki, M.; Rasouli, F.; Gohari, G. Protective Effects of Chitosan Based Salicylic Acid Nanocomposite (CS-SA NCs) in Grape (Vitis vinifera Cv. ‘Sultana’) under Salinity Stress. Sci. Rep. 2023, 13, 883. [Google Scholar] [CrossRef]
- Choudhary, R.C.; Kumaraswamy, R.V.; Kumari, S.; Sharma, S.S.; Pal, A.; Raliya, R.; Biswas, P.; Saharan, V. Cu-Chitosan Nanoparticle Boost Defense Responses and Plant Growth in Maize (Zea mays L.). Sci. Rep. 2017, 7, 9754. [Google Scholar] [CrossRef]
- Liao, H.; Wang, J.; Chen, F.; Ya, L.; Fan, N.; Shu, Y.; Xiao, Z.; Wang, Z. Salicylic Acid Functionalized Chitosan Nanocomposite Increases Bioactive Components and Insect Resistance of Agastache rugosa. Pestic. Biochem. Physiol. 2024, 205, 106131. [Google Scholar] [CrossRef]
- Kuhn, C.W. Separation of Cowpea virus Mixtures. Phytopathology 1964, 54, 739. [Google Scholar]
- Lin, M.T. Partial Purification and Some Properties of Bamboo Mosaic Virus. Phytopathology 1977, 77, 1439. [Google Scholar] [CrossRef]
- Devi, P.R.; Doraiswamy, S.; Nakkeeran, S.; Rabindran, R.; Ganapathy, T.; Ramiah, M.; Mathiyazhagan, S. Antiviral Action of Harpulia cupanioides and Mirabilis jalapa against Tomato Spotted Wilt Virus (TSWV) Infecting Tomato. Arch. Phytopathol. Plant Prot. 2004, 37, 245–259. [Google Scholar] [CrossRef]
- Yang, X.; Kang, L.; Tien, P. Resistance of Tomato Infected with Cucumber mosaic virus Satellite RNA to Potato Spindle Tuber Viroid. Ann. Appl. Biol. 1996, 129, 543–551. [Google Scholar] [CrossRef]
- Wylie, S.; Wilson, C.R.; Jones, R.A.C.; Jones, M.G.K. A Polymerase Chain Reaction Assay for Cucumber Mosaic Virus in Lupin Seeds. Aust. J. Agric. Res. 1993, 44, 41–51. [Google Scholar] [CrossRef]
- MojtabaTaghizadeh, S.; Javan, R.S. Preparation and Investigation of Chitosan Nanoparticles Including Salicylic Acid as a Model for an Oral Drug Delivery System. E-Polymers 2010, 10, 036. [Google Scholar] [CrossRef]
- Saric, M.; Kostrori, R.; Cupina, T.; Geric, I. Chlorophyll Determination; University of Novi Sad: Novi Sad, Serbia, 1967. [Google Scholar]
- Malik, C.P.; Singh, M.B. Estimation of Total Phenols in Plant Enzymology and Histoenzymology; Kalyani Publishers: New Delhi, India, 1980. [Google Scholar]
- Ghosh, S.; Derle, A.; Ahire, M.; More, P.; Jagtap, S.; Phadatare, S.D.; Patil, A.B.; Jabgunde, A.M.; Sharma, G.K.; Shinde, V.S.; et al. Phytochemical Analysis and Free Radical Scavenging Activity of Medicinal Plants Gnidia glauca and Dioscorea bulbifera. PLoS ONE 2013, 8, e82529. [Google Scholar] [CrossRef]
- Bradford, M.M.A. Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Maxwell, D.P.; Bateman, D.F. Changes in the Activities of Some Oxidases in Extracts of Rhizoctonia-Infected Bean Hypocotyls in Relation to Lesion Maturation. Phytopathology 1967, 57, 132–136. [Google Scholar]
- Kumar, K.B.; Khan, P.A. Peroxidase and Polyphenol Oxidase in Excised Ragi (Eleusine coracana Cv. PR 202) Leaves during Senescence. Indian J. Exp. Biol. 1982, 20, 412–416. [Google Scholar]
- Beauchamp, C.; Fridovich, I. Superoxide Dismutase: Improved Assays and an Assay Applicable to Acrylamide Gels. Anal. Biochem. 1971, 44, 276–287. [Google Scholar] [CrossRef]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research, 2nd ed.; John Wiley & Sons: Chichester, UK, 1984; ISBN 978-0-471-87092-0. [Google Scholar]
- Kumari, R.; Bhardwaj, P.; Singh, L.; Zaidi, A.A.; Hallan, V. Biological and Molecular Characterization of Cucumber mosaic virus Subgroup II Isolate Causing Severe Mosaic in Cucumber. Indian J. Virol. 2013, 24, 27–34. [Google Scholar] [CrossRef]
- Mahmoud, S.Y.M. Detection of Cucumber mosaic virus in Some Ornamental Plants and Elimination of Nonspecific ELISA Reactions. Arch. Phytopathol. Plant Prot. 2011, 44, 1410–1424. [Google Scholar] [CrossRef]
- Bald-Blume, N.; Bergervoet, J.H.W.; Maiss, E. Development of a Molecular Assay for the Detection of Cucumber mosaic virus and the Discrimination of Its Subgroups I and II. J. Virol. Methods 2017, 243, 35–43. [Google Scholar] [CrossRef] [PubMed]
- El-Dougdoug, N.K.; Bondok, A.M.; El-Dougdoug, K.A. Evaluation of Silver Nanoparticles as Antiviral Agent against ToMV and PVY in Tomato Plants. Middle East J. Appl. Sci. 2018, 8, 100–111. [Google Scholar]
- Farkas, K.; Varsani, A.; Pang, L. Adsorption of Rotavirus, MS2 Bacteriophage and Surface-Modified Silica Nanoparticles to Hydrophobic Matter. Food Environ. Virol. 2014, 7, 261–268. [Google Scholar] [CrossRef]
- El-Sayed, N.A.R. Comparative Studies Between Blackeye Cowpea mosaic virus and Cucumber mosaic virus on Cowpea Plant in Egypt; Faculty of Agriculture, Cairo University: Cairo, Egypt, 2023. [Google Scholar]
- Mishra, S.; Roychowdhury, R.; Ray, S.; Hada, A.; Kumar, A.; Sarker, U.; Aftab, T.; Das, R. Salicylic Acid (SA)-Mediated Plant Immunity against Biotic Stresses: An Insight on Molecular Components and Signaling Mechanism. Plant Stress 2024, 11, 100427. [Google Scholar] [CrossRef]
- Tripathi, D.; Raikhy, G.; Kumar, D. Chemical Elicitors of Systemic Acquired Resistance—Salicylic Acid and Its Functional Analogs. Curr. Plant Biol. 2019, 17, 48–59. [Google Scholar] [CrossRef]
- Ali, S.; Ganai, B.A.; Kamili, A.N.; Bhat, A.A.; Mir, Z.A.; Bhat, J.A.; Tyagi, A.; Islam, S.T.; Mushtaq, M.; Yadav, P. Pathogenesis-Related Proteins and Peptides as Promising Tools for Engineering Plants with Multiple Stress Tolerance. Microbiol. Res. 2018, 212, 29–37. [Google Scholar] [CrossRef]
- Murphy, A.M.; Carr, J.P. Salicylic Acid Has Cell-Specific Effects on Tobacco mosaic virus Replication and Cell-to-Cell Movement. Plant Physiol. 2002, 128, 552–563. [Google Scholar] [CrossRef]
- Alazem, M.; Kim, K.-H.; Lin, N.-S. Effects of Abscisic Acid and Salicylic Acid on Gene Expression in the Antiviral RNA Silencing Pathway in Arabidopsis. Int. J. Mol. Sci. 2019, 20, 2538. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Crespo, E.; Navarro, J.A.; Serra-Soriano, M.; Finiti, I.; García-Agustín, P.; Pallás, V.; González-Bosch, C. Hexanoic Acid Treatment Prevents Systemic MNSV Movement in Cucumis melo Plants by Priming Callose Deposition Correlating SA and OPDA Accumulation. Front. Plant Sci. 2017, 8, 1793. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Vásquez, A.; Salinas, P.; Holuigue, L. Salicylic Acid and Reactive Oxygen Species Interplay in the Transcriptional Control of Defense Genes Expression. Front. Plant Sci. 2015, 6, 171. [Google Scholar] [CrossRef]
- Li, Z.; Xu, X.; Leng, X.; He, M.; Wang, J.; Cheng, S.; Wu, H. Roles of Reactive Oxygen Species in Cell Signaling Pathways and Immune Responses to Viral Infections. Arch. Virol. 2016, 162, 603–610. [Google Scholar] [CrossRef]
- Sattar, M.N.; Naqqash, M.N.; Rezk, A.A.; Mehmood, K.; Bakhsh, A.; Elshafie, H.; Al-Khayri, J.M. Sprayable RNAi for Silencing of Important Genes to Manage Red Palm Weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae). PLoS ONE 2024, 19, e0308613. [Google Scholar] [CrossRef]
- Incarbone, M.; Bradamante, G.; Pruckner, F.; Wegscheider, T.; Rozhon, W.; Nguyen, V.; Gutzat, R.; Mérai, Z.; Lendl, T.; MacFarlane, S.; et al. Salicylic Acid and RNA Interference Mediate Antiviral Immunity of Plant Stem Cells. Proc. Natl. Acad. Sci. USA 2023, 120, e2302069120. [Google Scholar] [CrossRef]
- Kumaraswamy, R.V.; Kumari, S.; Choudhary, R.C.; Sharma, S.S.; Pal, A.; Raliya, R.; Biswas, P.; Saharan, V. Salicylic Acid Functionalized Chitosan Nanoparticle: A Sustainable Biostimulant for Plant. Int. J. Biol. Macromol. 2019, 123, 59–69. [Google Scholar] [CrossRef]
- Polyakov, V.; Bauer, T.; Butova, V.; Minkina, T.; Rajput, V.D. Nanoparticles-Based Delivery Systems for Salicylic Acid as Plant Growth Stimulator and Stress Alleviation. Plants 2023, 12, 1637. [Google Scholar] [CrossRef]
- Abdelkader, H.S.; Kheder, A.A.; Amin, H.A.; Shafie, R.M. A Comparative Study of the Antiviral Effects of Biogenic Silver Nanoparticles and Nanosilica (NSiO2) against Leek yellow stripe virus on Allium sativum L. Eur. J. Plant Pathol. 2025, 171, 509–530. [Google Scholar] [CrossRef]
- Sati, A.; Ranade, T.N.; Mali, S.N.; Yasin, H.K.A.; Samdani, N.; Satpute, N.N.; Yadav, S.; Pratap, A.P. Silver Nanoparticles (AgNPs) as Potential Antiviral Agents: Synthesis, Biophysical Properties, Safety, Challenges and Future Directions─ Update Review. Molecules 2025, 30, 2004. [Google Scholar] [CrossRef]
- Elsharkawy, M.M. Nanoparticles in Phytovirus Management. In Nanoparticles in Plant Biotic Stress Management; Springer: Singapore, 2024; pp. 181–206. ISBN 9789819708512. [Google Scholar]
- Narasimha, G.; Khadri, H.; Alzohairy, M. Antiviral Properties of Silver Nanoparticles Synthesized by Aspergillus Spp. Pharm. Lett. 2012, 4, 649–651. [Google Scholar]
- El-Shazly, M.A.; Attia, Y.A.; Kabil, F.F.; Anis, E.; Hazman, M. Inhibitory Effects of Salicylic Acid and Silver Nanoparticles on Potato Virus Y–Infected Potato Plants in Egypt. Middle East J. Agric. Res. 2017, 6, 835–848. [Google Scholar]
- Tian, M.; Sasvari, Z.; Gonzalez, P.A.; Friso, G.; Rowland, E.; Liu, X.M.; Van Wijk, K.J.; Nagy, P.D.; Klessig, D.F. Salicylic Acid Inhibits the Replication of Tomato bushy stunt virus by Directly Targeting a Host Component in the Replication Complex. Mol. Plant-Microbe Interact. 2015, 28, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Momol, T.; Pernezny, K.L. Specific Common Diseases BT—Florida Plant Disease Management Guide; University of Florida, IFAS Cooperative Extension Service: Belle Glade, FL, USA; Quincy, FL, USA, 2006. [Google Scholar]
- Chatterjee, A.; Ghosh, S.K. Alterations in Biochemical Components in Mesta Plants Infected with Yellow Vein Mosaic Disease. Braz. J. Plant Physiol. 2008, 20, 267–275. [Google Scholar] [CrossRef]
- Raithak, P.V.; Cachande, B.D. Changes in Pigment Contents of Virus Infected Tomato Plant. Asian J. Biol. Biotechnol. 2012, 1, 1–4. [Google Scholar]
- Ismail, G.S.; Omar, S.M.; Fattouh, F.A. Enhanced Tolerance to Cowpea mosaic virus in Vigna unguiculata L. Plants Pretreated with Salicylic Acid. Egypt. J. Bot. 2022, 62, 305–318. [Google Scholar] [CrossRef]
- Akyol, H.; Riciputi, Y.; Capanoglu, E.; Caboni, M.F.; Verardo, V. Phenolic Compounds in the Potato and Its Byproducts: An Overview. Int. J. Mol. Sci. 2016, 17, 835. [Google Scholar] [CrossRef]
- Abdelkhalek, A.; Qari, S.H.; Abu-Saied, M.A.A.-R.; Khalil, A.M.; Younes, H.A.; Nehela, Y.; Behiry, S.I. Chitosan Nanoparticles Inactivate Alfalfa Mosaic Virus Replication and Boost Innate Immunity in Nicotiana glutinosa Plants. Plants 2021, 10, 2701. [Google Scholar] [CrossRef]
- Kulbat, K. The Role of Phenolic Compounds in Plant Resistance. Biotechnol. Food Sci. 2016, 80, 97–108. [Google Scholar] [CrossRef]
- AL-Masoudi, Z.M.; AL-Abedy, A.N.; Farhood, A.N. Effect of Cucumber mosaic virus (CMV) on the Content of Some Cucumber Genotypes of Nitrogen, Protein, Phenols, and Flavonoids. Eur. J. Theor. Appl. Sci. 2023, 1, 970–977. [Google Scholar] [CrossRef]
- Tajik, S.; Zarinkamar, F.; Soltani, B.M.; Nazari, M. Induction of Phenolic and Flavonoid Compounds in Leaves of Saffron (Crocus sativus L.) by Salicylic Acid. Sci. Hortic. 2019, 257, 108751. [Google Scholar] [CrossRef]
- Khalili, N.; Oraei, M.; Gohari, G.; Panahirad, S.; Nourafcan, H.; Hano, C. Chitosan-Enriched Salicylic Acid Nanoparticles Enhanced Anthocyanin Content in Grape (Vitis vinifera L. Cv. Red Sultana) Berries. Polymers 2022, 14, 3349. [Google Scholar] [CrossRef] [PubMed]
- Dedejani, S.; Mozafari, A.a.; Ghaderi, N. Salicylic Acid and Iron Nanoparticles Application to Mitigate the Adverse Effects of Salinity Stress Under In Vitro Culture of Strawberry Plants. Iran. J. Sci. Technol. Trans. A Sci. 2021, 45, 821–831. [Google Scholar] [CrossRef]
- Kadam, P.M.; Prajapati, D.; Kumaraswamy, R.V.; Kumari, S.; Devi, K.A.; Pal, A.; Harish; Sharma, S.K.; Saharan, V. Physio-Biochemical Responses of Wheat Plant towards Salicylic Acid-Chitosan Nanoparticles. Plant Physiol. Biochem. 2021, 162, 699–705. [Google Scholar] [CrossRef]
- Abdelkhalek, A.; Al-Askar, A.A.; Elbeaino, T.; Moawad, H.; El-Gendi, H. Protective and Curative Activities of Paenibacillus polymyxa against Zucchini yellow mosaic virus Infestation in Squash Plants. Biology 2022, 11, 1150. [Google Scholar] [CrossRef]
- Yaseen, A.; Khailda, M.; Basim, S.; Wasan, M. Effect of Foliar Spray of Nano Silver and Organic Fertilizer (Algastar) and Salicylic Acid on Some Morphological Characteristics and Carbohydrate Content in (Helianthus annuus L.). J. Agric. Ecol. Res. Int. 2016, 9, 1–7. [Google Scholar] [CrossRef]
- Asghari, M.; Hasanlooe, A.R. Interaction Effects of Salicylic Acid and Methyl Jasmonate on Total Antioxidant Content, Catalase and Peroxidase Enzymes Activity in “Sabrosa” Strawberry Fruit during Storage. Sci. Hortic. 2015, 197, 490–495. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, X.; Du, T.; Shu, Y.; Tan, F.; Wang, J. Effects of Salicylic Acid Concentration and Post-Treatment Time on the Direct and Systemic Chemical Defense Responses in Maize (Zea mays L.) Following Exogenous Foliar Application. Molecules 2022, 27, 6917. [Google Scholar] [CrossRef]
- Jeffery, A.Y. Catalase Activity, Hydrogen Peroxide Content and Thermotolerance of Pepper Leaves. Sci. Hortic. Amst. 2002, 95, 277–284. [Google Scholar] [CrossRef]
- Almagro, L.; Gómez Ros, L.V.; Belchi-Navarro, S.; Bru, R.; Ros Barceló, A.; Pedreño, M.A. Class III Peroxidases in Plant Defence Reactions. J. Exp. Bot. 2008, 60, 377–390. [Google Scholar] [CrossRef]
- Boeckx, T.; Winters, A.L.; Webb, K.J.; Kingston-Smith, A.H. Polyphenol Oxidase in Leaves: Is There Any Significance to the Chloroplastic Localization? J. Exp. Bot. 2015, 66, 3571–3579. [Google Scholar] [CrossRef]
- Constabel, C.P.; Bergey, D.R.; Ryan, C.A. Systemin Activates Synthesis of Wound-Inducible Tomato Leaf Polyphenol Oxidase via the Octadecanoid Defense Signaling Pathway. Proc. Natl. Acad. Sci. USA 1995, 92, 407–411. [Google Scholar] [CrossRef]
- Maurya, R.; Namdeo, M. Superoxide Dismutase: A Key Enzyme for the Survival of Intracellular Pathogens in Host. In Reactive Oxygen Species; Ahmad, R., Ed.; IntechOpen: London, UK, 2022; ISBN 2632-0983. [Google Scholar]
- Mahjabeen; Akhtar, K.P.; Sarwar, N.; Saleem, M.Y.; Asghar, M.; Iqbal, Q.; Jamil, F.F. Effect of Cucumber mosaic virus Infection on Morphology, Yield and Phenolic Contents of Tomato. Arch. Phytopathol. Plant Prot. 2012, 45, 766–782. [Google Scholar] [CrossRef]
- Al-Duraid, M.H.; Al-Taey, K.A.; Al-Kikhani, A.H.J. Effect of Phenylalanine and Naphthalene Acetic Acid on Growth, Yield and Antioxidant Activity of Fenugreek Trigonella foenum-graecum. IOP Conf. Ser. Earth Environ. Sci. 2019, 388, 12073. [Google Scholar] [CrossRef]
- Khan, S.; Zahoor, M.; Sher Khan, R.; Ikram, M.; Islam, N.U. The Impact of Silver Nanoparticles on the Growth of Plants: The Agriculture Applications. Heliyon 2023, 9, e16928. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Ganainy, S.M.; Shafie, R.M.; Soliman, A.M.; Mazyad, A.A.; Sattar, M.N.; Kesba, H.H.; Chellappan, B.V.; Farroh, K.Y. Differential Effects of Chitosan–Salicylic Acid Nanocomposite and Salicylic Acid on Cucumber Mosaic Virus in Cucumber. Polymers 2025, 17, 2195. https://doi.org/10.3390/polym17162195
El-Ganainy SM, Shafie RM, Soliman AM, Mazyad AA, Sattar MN, Kesba HH, Chellappan BV, Farroh KY. Differential Effects of Chitosan–Salicylic Acid Nanocomposite and Salicylic Acid on Cucumber Mosaic Virus in Cucumber. Polymers. 2025; 17(16):2195. https://doi.org/10.3390/polym17162195
Chicago/Turabian StyleEl-Ganainy, Sherif Mohamed, Radwa M. Shafie, Ahmed M. Soliman, Amira A. Mazyad, Muhammad Naeem Sattar, Hosny H. Kesba, Biju V. Chellappan, and Khaled Yehia Farroh. 2025. "Differential Effects of Chitosan–Salicylic Acid Nanocomposite and Salicylic Acid on Cucumber Mosaic Virus in Cucumber" Polymers 17, no. 16: 2195. https://doi.org/10.3390/polym17162195
APA StyleEl-Ganainy, S. M., Shafie, R. M., Soliman, A. M., Mazyad, A. A., Sattar, M. N., Kesba, H. H., Chellappan, B. V., & Farroh, K. Y. (2025). Differential Effects of Chitosan–Salicylic Acid Nanocomposite and Salicylic Acid on Cucumber Mosaic Virus in Cucumber. Polymers, 17(16), 2195. https://doi.org/10.3390/polym17162195