Active Packaging Based on Hydroxypropyl Methyl Cellulose/Fungal Chitin Nanofibers Films for Controlled Release of Ferulic Acid
Abstract
1. Introduction
2. Materials and Methods
2.1. Film Preparation
2.2. Physicochemical and Mechanical Characterization
2.2.1. FTIR-ATR
2.2.2. TGA
2.2.3. FESEM
2.2.4. Contact Angle
2.2.5. Mechanical Properties
2.2.6. Water Vapor Permeability
2.3. Biological Properties
2.3.1. Polyphenolic Release
2.3.2. Antioxidant Activity
2.3.3. Antibacterial Properties
Evaluation of Antimicrobial Capacity of Ferulic Acid
Evaluation of Antimicrobial Potency of Ferulic Acid
Evaluation of the Antimicrobial Capacity of Films
3. Results and Discussion
3.1. Film Preparation
3.2. Physicochemical and Mechanical Characterization
3.2.1. FTIR-ATR
3.2.2. TGA
3.2.3. Scanning Electron Microscopy
3.2.4. Contact Angle
3.2.5. Mechanical and Water Vapor Permeability Properties
3.3. Biological Properties
3.3.1. Polyphenolic Release and Antioxidant Properties
3.3.2. Antibacterial Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Du, H.; Sun, X.; Chong, X.; Yang, M.; Zhu, Z.; Wen, Y. A review on smart active packaging systems for food preservation: Applications and future trends. Trends Food Sci. Technol. 2023, 141, 104200. [Google Scholar] [CrossRef]
- Nešić, A.; Cabrera-Barjas, G.; Dimitrijević-Branković, S.; Davidović, S.; Radovanović, N.; Delattre, C. Prospect of Polysaccharide-Based Materials as Advanced Food Packaging. Molecules 2019, 25, 135. [Google Scholar] [CrossRef]
- Nath, P.C.; Sharma, R.; Mahapatra, U.; Mohanta, Y.K.; Rustagi, S.; Sharma, M.; Mahajan, S.; Nayak, P.K.; Sridhar, K. Sustainable production of cellulosic biopolymers for enhanced smart food packaging: An up-to-date review. Int. J. Biol. Macromol. 2024, 273, 133090. [Google Scholar] [CrossRef]
- Yao, L.; Man, T.; Xiong, X.; Wang, Y.; Duan, X.; Xiong, X. HPMC films functionalized by zein/carboxymethyl tamarind gum stabilized Pickering emulsions: Influence of carboxymethylation degree. Int. J. Biol. Macromol. 2023, 238, 124053. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.C. Sol-Gel Behavior of Hydroxypropyl Methylcellulose (HPMC) in Ionic Media Including Drug Release. Materials 2011, 4, 1861–1905. [Google Scholar] [CrossRef] [PubMed]
- Bigi, F.; Haghighi, H.; Siesler, H.W.; Licciardello, F.; Pulvirenti, A. Characterization of chitosan-hydroxypropyl methylcellulose blend films enriched with nettle or sage leaf extract for active food packaging applications. Food Hydrocoll. 2021, 120, 106979. [Google Scholar] [CrossRef]
- Majumder, T.; Biswas, G.R.; Majee, S.B. Hydroxy Propyl Methyl Cellulose: Different Aspects in Drug Delivery. J. Pharm. Pharmacol. 2016, 4, 381–385. [Google Scholar] [CrossRef]
- Deshmukh, K.; Basheer Ahamed, M.; Deshmukh, R.R.; Khadheer Pasha, S.K.; Bhagat, P.R.; Chidambaram, K. Biopolymer Composites with High Dielectric Performance: Interface Engineering. In Biopolymer Composites in Electronics; Elsevier: Amsterdam, The Netherlands, 2017; pp. 27–128. [Google Scholar]
- Klangmuang, P.; Sothornvit, R. Combination of beeswax and nanoclay on barriers, sorption isotherm and mechanical properties of hydroxypropyl methylcellulose-based composite films. LWT 2016, 65, 222–227. [Google Scholar] [CrossRef]
- Tohamy, H.-A.S.; Mohamed, S.A.A.; El-Sakhawy, M.; Elsayed, A.M.; Kamel, S. Potential application of hydroxypropyl methylcellulose/shellac embedded with graphene oxide/TiO2-Nps as natural packaging film. Int. J. Biol. Macromol. 2024, 257, 128589. [Google Scholar] [CrossRef]
- Wrona, M.; Cran, M.J.; Nerín, C.; Bigger, S.W. Development and characterisation of HPMC films containing PLA nanoparticles loaded with green tea extract for food packaging applications. Carbohydr. Polym. 2017, 156, 108–117. [Google Scholar] [CrossRef]
- Yu, X.; Yang, Y.; Liu, Q.; Jin, Z.; Jiao, A. A hydroxypropyl methylcellulose/hydroxypropyl starch nanocomposite film reinforced with chitosan nanoparticles encapsulating cinnamon essential oil: Preparation and characterization. Int. J. Biol. Macromol. 2023, 242, 124605. [Google Scholar] [CrossRef] [PubMed]
- Larsson, M.; Johnsson, A.; Gårdebjer, S.; Bordes, R.; Larsson, A. Swelling and mass transport properties of nanocellulose-HPMC composite films. Mater. Des. 2017, 122, 414–421. [Google Scholar] [CrossRef]
- Ragab, H.M.; Diab, N.S.; Aziz, R.A.; Elneim, E.A.A.; Alghamdi, A.M.; Al-Balawi, S.A.; Farea, M.O. Development and characterization of HPMC/NaAlg-CuO bio-nanocomposites: Enhanced optical, electrical, and antibacterial properties for sustainable packaging applications. Int. J. Biol. Macromol. 2024, 283, 137774. [Google Scholar] [CrossRef]
- Malagurski, I.; Levic, S.; Nesic, A.; Mitric, M.; Pavlovic, V.; Dimitrijevic-Brankovic, S. Mineralized agar-based nanocomposite films: Potential food packaging materials with antimicrobial properties. Carbohydr. Polym. 2017, 175, 55–62. [Google Scholar] [CrossRef]
- Cabrera-Barjas, G.; Radovanović, N.; Arrepol, G.B.; de la Torre, A.F.; Valdés, O.; Nešić, A. Valorization of food waste to produce intelligent nanofibrous β-chitin films. Int. J. Biol. Macromol. 2021, 186, 92–99. [Google Scholar] [CrossRef]
- Ren, G.; Cai, X.; He, Y.; Liu, L.; Hu, R.; Wang, J.; Jiao, Q.; Wu, Y.; Liu, J.; Huang, Y.; et al. Ferulic acid-regulated anthocyanin-based intelligent film: A promising strategy to improve stability, sensitivity, and biological activity. Int. J. Biol. Macromol. 2025, 305, 141237. [Google Scholar] [CrossRef]
- Xiang, C.; Teng, H.; Sheng, Z.; Zhao, C.; Deng, J.; Zhao, C.; He, B.; Chen, L.; Ai, C. Structural characterization and antioxidant activity mechanism of the ferulic acid-rich subfraction from sugar beet pectin. Carbohydr. Polym. 2025, 347, 122691. [Google Scholar] [CrossRef]
- Johnson, E.M.; Jayabalan, L.R.; Patra, S.K.; Suh, J.-W. Self-assembled fructo-oligosaccharide conjugated ferulic acid microparticle: Anticancer, anti-inflammatory and immunomodulatory effects. J. Drug Deliv. Sci. Technol. 2024, 92, 105339. [Google Scholar] [CrossRef]
- Halpani, C.G.; Mishra, S. Design, synthesis, characterization of ferulic acid and p-coumaric acid amide derivatives as an antibacterial/antioxidant agent. Pharm. Sci. Adv. 2024, 2, 100023. [Google Scholar] [CrossRef]
- Shukla, D.; Nandi, N.K.; Singh, B.; Singh, A.; Kumar, B.; Narang, R.K.; Singh, C. Ferulic acid-loaded drug delivery systems for biomedical applications. J. Drug Deliv. Sci. Technol. 2022, 75, 103621. [Google Scholar] [CrossRef]
- Maia, A.M.M.; Pessoa-Junior, A.; Roberto, I.C. Extraction of hydroxycinnamic acids (ferulic and p-coumaric) from rice straw alkaline black liquor using Pluronic F-127 for potential applications in the cosmetics industry. Ind. Crops Prod. 2023, 201, 116914. [Google Scholar] [CrossRef]
- Li, M.; Li, Q.; Lee, J.-K.; Kalia, V.C.; Gong, C. Metabolic engineering strategies for food additive ferulic acid production. Food Biosci. 2025, 65, 106108. [Google Scholar] [CrossRef]
- Ou, S.; Wang, Y.; Tang, S.; Huang, C.; Jackson, M.G. Role of ferulic acid in preparing edible films from soy protein isolate. J. Food Eng. 2005, 70, 205–210. [Google Scholar] [CrossRef]
- Mathew, S.; Abraham, T.E. Characterisation of ferulic acid incorporated starch–chitosan blend films. Food Hydrocoll. 2008, 22, 826–835. [Google Scholar] [CrossRef]
- Kasmi, S.; Gallos, A.; Beaugrand, J.; Paës, G.; Allais, F. Ferulic acid derivatives used as biobased powders for a convenient plasticization of polylactic acid in continuous hot-melt process. Eur. Polym. J. 2019, 110, 293–300. [Google Scholar] [CrossRef]
- Yu, J.Y.; Roh, S.H.; Park, H.J. Characterization of ferulic acid encapsulation complexes with maltodextrin and hydroxypropyl methylcellulose. Food Hydrocoll. 2021, 111, 106390. [Google Scholar] [CrossRef]
- Abdin, M.; Naeem, M.A.; Aly-Aldin, M.M. Enhancing the bioavailability and antioxidant activity of natamycin E235–ferulic acid loaded polyethylene glycol/carboxy methyl cellulose films as anti-microbial packaging for food application. Int. J. Biol. Macromol. 2024, 266, 131249. [Google Scholar] [CrossRef]
- Hassan, E.A.; Fadel, S.M.; Hassan, M.L. Influence of TEMPO-oxidized NFC on the mechanical, barrier properties and nisin release of hydroxypropyl methylcellulose bioactive films. Int. J. Biol. Macromol. 2018, 113, 616–622. [Google Scholar] [CrossRef]
- Dag, D.; Jung, J.; Zhao, Y. Development and characterization of cinnamon essential oil incorporated active, printable and heat sealable cellulose nanofiber reinforced hydroxypropyl methylcellulose films. Food Packag. Shelf Life 2023, 39, 101153. [Google Scholar] [CrossRef]
- Dag, D.; Jung, J.; Zhao, Y. Development and characterization of cellulose nanofiber reinforced hydroxypropyl methylcellulose films functionalized with propolis-loaded zein nanoparticles and its application for cheddar cheese storage. Int. J. Biol. Macromol. 2024, 261, 129790. [Google Scholar] [CrossRef]
- Aljawish, A.; Chevalot, I.; Paris, C.; Muniglia, L. Enzymatic Oxidation of Ferulic Acid as a Way of Preparing New Derivatives. BioTech 2022, 11, 55. [Google Scholar] [CrossRef]
- Prakash, Y.; Mahadevaiah, D.; Somashekarappa, H.; Demappa, T.; Somashekar, R. Microstructural Parameters of HPMC/PVP Polymer Blends Using Wide Angle X-Ray Technique. J. Res. Updat. Polym. Sci. 2012, 1, 24–31. [Google Scholar] [CrossRef]
- Cortés-Triviño, E.; Valencia, C.; Delgado, M.A.; Franco, J.M. Modification of Alkali Lignin with Poly(Ethylene Glycol) Diglycidyl Ether to Be Used as a Thickener in Bio-Lubricant Formulations. Polymers 2018, 10, 670. [Google Scholar] [CrossRef] [PubMed]
- Bratskaya, S.; Privar, Y.; Nesterov, D.; Modin, E.; Kodess, M.; Slobodyuk, A.; Marinin, D.; Pestov, A. Chitosan Gels and Cryogels Cross-Linked with Diglycidyl Ethers of Ethylene Glycol and Polyethylene Glycol in Acidic Media. Biomacromolecules 2019, 20, 1635–1643. [Google Scholar] [CrossRef] [PubMed]
- Rahmi; Lelifajri; Nurfatimah, R. Preparation of polyethylene glycol diglycidyl ether (PEDGE) crosslinked chitosan/activated carbon composite film for Cd2+ removal. Carbohydr. Polym. 2018, 199, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Prasathkumar, M.; George, A.; Sadhasivam, S. Influence of chitosan and hydroxyethyl cellulose modifications towards the design of cross-linked double networks hydrogel for diabetic wound healing. Int. J. Biol. Macromol. 2024, 265, 130851. [Google Scholar] [CrossRef]
- Cabrera-Barjas, G.; Albornoz, K.; Belchi, M.D.L.; Giordano, A.; Bravo-Arrepol, G.; Moya-Elizondo, E.; Martin, J.S.; Valdes, O.; Nesic, A. Influence of chitin nanofibers and gallic acid on physical-chemical and biological performances of chitosan-based films. Int. J. Biol. Macromol. 2024, 263, 130159. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, S.; Chen, Y.; Qiu, D.; Weng, Y. Synthesis and Characterization of a Novel Composite Edible Film Based on Hydroxypropyl Methyl Cellulose Grafted with Gelatin. Gels 2023, 9, 332. [Google Scholar] [CrossRef]
- Cabrera-Barjas, G.; Nesic, A.; Bravo-Arrepol, G.; Rodríguez-Llamazares, S.; Valdés, O.; Banerjee, A.; Castaño, J.; Delattre, C. Bioactive Pectin-Murta (Ugni molinae T.) Seed Extract Films Reinforced with Chitin Fibers. Molecules 2021, 26, 7477. [Google Scholar] [CrossRef]
- Yin, P.; Liu, J.; Zhou, W.; Li, P. Preparation and Properties of Corn Starch/Chitin Composite Films Cross-Linked by Maleic Anhydride. Polymers 2020, 12, 1606. [Google Scholar] [CrossRef]
- Smirnova, N.V.; Kolbe, K.A.; Dresvyanina, E.N.; Grebennikov, S.F.; Dobrovolskaya, I.P.; Yudin, V.E.; Luxbacher, T.; Morganti, P. Effect of Chitin Nanofibrils on Biocompatibility and Bioactivity of the Chitosan-Based Composite Film Matrix Intended for Tissue Engineering. Materials 2019, 12, 1874. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Chang, X.; Fu, X.; Kong, H.; Yu, Y.; Xu, H.; Shan, Y.; Ding, S. Fabrication and characterization of pullulan-based composite films incorporated with bacterial cellulose and ferulic acid. Int. J. Biol. Macromol. 2022, 219, 121–137. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Zhu, J.; Guan, G.; Wu, H. Preparation of chitosan-sodium alginate films through layer-by-layer assembly and ferulic acid crosslinking: Film properties, characterization, and formation mechanism. Int. J. Biol. Macromol. 2019, 122, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Jaiswal, A.K.; Duffy, B.; Jaiswal, S. Ferulic acid incorporated active films based on poly(lactide)/poly(butylene adipate-co-terephthalate) blend for food packaging. Food Packag. Shelf Life 2020, 24, 100491. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Zeng, J.; Gao, H.; Qi, J. Barrier properties characterization and release kinetics study of citrus fibers-reinforced functional starch composites. Food Hydrocoll. 2025, 164, 111195. [Google Scholar] [CrossRef]
- Nasution, H.; Harahap, H.; Julianti, E.; Safitri, A.; Jaafar, M. Properties of active packaging of PLA-PCL film integrated with chitosan as an antibacterial agent and syzygium cumini seed extract as an antioxidant agent. Heliyon 2024, 10, e23952. [Google Scholar] [CrossRef]
- Coles, R.; McDowell, D.; Kirwan, M.J. (Eds.) Food Packaging Technology; Blackwell Publishing Ltd.: Oxford, UK, 2003. [Google Scholar]
- Li, Z.; Khan, M.R.; Ahmad, N.; Zhang, W.; Goksen, G. Preparation of polysaccharide-based films synergistically reinforced by tea polyphenols and graphene oxide. Food Chem. X 2025, 27, 102414. [Google Scholar] [CrossRef]
- Abdul Khalil, H.P.S.; Chong, E.W.N.; Owolabi, F.A.T.; Asniza, M.; Tye, Y.Y.; Rizal, S.; Nurul Fazita, M.R.; Mohamad Haafiz, M.K.; Nurmiati, Z.; Paridah, M.T. Enhancement of basic properties of polysaccharide-based composites with organic and inorganic fillers: A review. J. Appl. Polym. Sci. 2019, 136, 47251. [Google Scholar] [CrossRef]
- Sung, S.-Y.; Sin, L.T.; Tee, T.-T.; Bee, S.-T.; Rahmat, A.R.; Rahman, W.A.W.A.; Tan, A.-C.; Vikhraman, M. Antimicrobial agents for food packaging applications. Trends Food Sci. Technol. 2013, 33, 110–123. [Google Scholar] [CrossRef]
- Pinheiro, P.G.; Santiago, G.M.P.; da Silva, F.E.F.; de Araújo, A.C.J.; de Oliveira, C.R.T.; Freitas, P.R.; Rocha, J.E.; Neto, J.B.d.A.; da Silva, M.M.C.; Tintino, S.R.; et al. Ferulic acid derivatives inhibiting Staphylococcus aureus tetK and MsrA efflux pumps. Biotechnol. Rep. 2022, 34, e00717. [Google Scholar] [CrossRef]
- Song, W.; Xin, J.; Yu, C.; Xia, C.; Pan, Y. Alkyl ferulic acid esters: Evaluating their structure and antibacterial properties. Front. Microbiol. 2023, 14, 1135308. [Google Scholar] [CrossRef]
- Borges, A.; Ferreira, C.; Saavedra, M.J.; Simões, M. Antibacterial Activity and Mode of Action of Ferulic and Gallic Acids Against Pathogenic Bacteria. Microb. Drug Resist. 2013, 19, 256–265. [Google Scholar] [CrossRef]
- Lubaina, A.S.; Raveendran, R.; Nair, R.R.; Kumar, P. In vivo anti-inflammatory potential, minimum inhibitory concentration and minimum bactericidal concentration of ferulic acid, isolated from pineapple waste. Appl. Biol. Res. 2023, 25, 36–43. [Google Scholar] [CrossRef]
- Ramasamy, M.; Ponnusamy, M.; Venugopal, S.; Vetrivel, A.; Murugesan, R. Antioxidant and Antibiofilm Activity of Laccase-Mediated Oxidized Products of Ferulic Acid. Russ. J. Bioorg. Chem. 2024, 50, 2529–2539. [Google Scholar] [CrossRef]
- Moll, E.; Chiralt, A. Active PHBV films with ferulic acid or rice straw extracts for food preservation. LWT 2025, 228, 118115. [Google Scholar] [CrossRef]
- Ordoñez, R.; Atarés, L.; Chiralt, A. Physicochemical and antimicrobial properties of cassava starch films with ferulic or cinnamic acid. LWT 2021, 144, 111242. [Google Scholar] [CrossRef]
Sample | HPMC (w/w%) | ChNF (w/w%) | Glycerol (w/w%) * | Ferulic Acid (w/w%) * |
---|---|---|---|---|
Control | 100 | 0 | 30 | 0 |
100/0 | 100 | 0 | 4 | |
95/5 | 95 | 5 | ||
90/10 | 90 | 10 | ||
80/20 | 80 | 20 |
Sample | Temperature (°C) | Weight Loss (%) | ||
---|---|---|---|---|
Onset | Peak | End | ||
Control | 88.8 | 173.6 | 225.2 | 13.6 |
273.5/285 | 333.8 | 432.9 | 76.3/75.5 | |
100/0 | 24.0 | 56.9 | 96.1 | 2.1 |
96.1 | 189.8 | 260.7 | 17.4 | |
260.7 | 334.3 | 445.4 | 65.5 | |
95/5 90/10 | 98.2 | 201.6 | 253.3 | 18.4 |
253.3 | 338.6 | 438.7 | 67.3 | |
24.0 | 60.6 | 100.5 | 2.5 | |
100.5 | 188.3 | 239.9 | 18.7 | |
239.9 | 332.5 | 446.1 | 63.9 | |
24 | 68 | 110.0 | 4.1 | |
80/20 | 110 | 195.7 | 247.6 | 19.5 |
247.6 | 323.5 | 452.6 | 55.9 |
Sample | E (MPa) | σ (MPa) | ε (%) | WVP × 109 (g m−1 Pa−1 s−1) |
---|---|---|---|---|
Control | 304 ± 24 e | 24.7 ± 0.5 c | 59.8 ± 4.8 c | 0.94 ± 0.04 b |
100/0 | 87.9 ± 8.2 a | 17.5± 0.2 b | 60.7 ± 1.0 c | 0.92 ± 0.05 b |
95/5 | 180 ±24 b | 15.4 ± 0.7 b | 52.2 ± 0.6 b | 0.68 ± 0.06 a |
90/10 | 217 ± 25 d | 11.5± 2.0 a | 19.1 ± 0.9 a | 0.71 ± 0.1 a |
80/20 | 199± 15 c | 10.8 ± 1.0 a | 17.8 ± 1.5 a | 0.88 ± 0.3 c |
Sample | Release of Ferulic Acid After 24 h (mg GAE/g) | Release of Ferulic Acid After 3 Weeks, % | DPPH (µM Trolox eq/g) |
---|---|---|---|
Control | 0 a | Dissolved | 0 a |
100/0 | 3.43 ± 0.06 b | Dissolved | 0.27 ± 0.02 b |
95/5 | 5.74 ± 0.09 c | 91.9 ± 1.8 a | 0.41 ± 0.01 c |
90/10 | 8.94 ± 0.12 d | 95.7 ± 2.9 b | 0.56 ± 0.03 d |
80/20 | 8.71 ± 0.15 d | 97.7 ± 2.5 c | 0.57 ± 0.02 d |
Bacterial Species | Ferulic Acid | ||
---|---|---|---|
Diameters of Inhibitory Halos (mm) | MIC (mg/mL) | MBC (mg/mL) | |
E. coli | 52.0 ± 3.5 b | 0.024 ± 0.001 a | 0.999 ± 0.021 b |
S. enteritidis | 12.6 ± 1.5 a | 0.055 ± 0.001 b | 1.032 ± 0.014 b |
p. aeuroginosa | ne * | ne * | ne * |
S. aureus | 16.2 ± 2.2 a | 0.068 ± 0.001 c | 0.724 ± 0.008 a |
Film Sample | Inhibition Halos after 24 h in Agar Plate (mm) | Antimicrobial Activity After 36 h of Incubation in Trypticase Soy Broth, % | ||
---|---|---|---|---|
E. coli | S. aureus | E. coli | S. aureus | |
Control | ne * | ne * | ne * | ne * |
100/0 | ne * | ne * | 90.23 ± 0.3 a | 83.95 ± 0.3 a |
95/5 | 5.2 ± 0.8 a | 4.5 ± 1.2 a | 92.97 ± 0.2 b | 88.09 ± 0.5 b |
90/10 | 12.2 ± 1.9 b | 11.5 ± 3.2 b | 98.84 ± 0.3 c | 95.20 ± 0.2 c |
80/20 | 12.6 ± 2.2 b | 12.2 ± 1.1 b | 99.25 ± 0.3 c | 97.62 ± 0.3 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabrera-Barjas, G.; González, M.; Benavides-Valenzuela, S.; Preza, X.; Paredes-Padilla, Y.A.; Castaño-Rivera, P.; Segura, R.; Duran-Lara, E.F.; Nesic, A. Active Packaging Based on Hydroxypropyl Methyl Cellulose/Fungal Chitin Nanofibers Films for Controlled Release of Ferulic Acid. Polymers 2025, 17, 2113. https://doi.org/10.3390/polym17152113
Cabrera-Barjas G, González M, Benavides-Valenzuela S, Preza X, Paredes-Padilla YA, Castaño-Rivera P, Segura R, Duran-Lara EF, Nesic A. Active Packaging Based on Hydroxypropyl Methyl Cellulose/Fungal Chitin Nanofibers Films for Controlled Release of Ferulic Acid. Polymers. 2025; 17(15):2113. https://doi.org/10.3390/polym17152113
Chicago/Turabian StyleCabrera-Barjas, Gustavo, Maricruz González, Sergio Benavides-Valenzuela, Ximena Preza, Yeni A. Paredes-Padilla, Patricia Castaño-Rivera, Rodrigo Segura, Esteban F. Duran-Lara, and Aleksandra Nesic. 2025. "Active Packaging Based on Hydroxypropyl Methyl Cellulose/Fungal Chitin Nanofibers Films for Controlled Release of Ferulic Acid" Polymers 17, no. 15: 2113. https://doi.org/10.3390/polym17152113
APA StyleCabrera-Barjas, G., González, M., Benavides-Valenzuela, S., Preza, X., Paredes-Padilla, Y. A., Castaño-Rivera, P., Segura, R., Duran-Lara, E. F., & Nesic, A. (2025). Active Packaging Based on Hydroxypropyl Methyl Cellulose/Fungal Chitin Nanofibers Films for Controlled Release of Ferulic Acid. Polymers, 17(15), 2113. https://doi.org/10.3390/polym17152113