Transparent Wood and Bamboo for Next-Generation Flexible Electronics: A Review
Abstract
1. Introduction
2. Microstructure of Wood and Bamboo and Its Impact on Performance
3. Preparation Method of Flexible Transparent Bamboo and Wood
3.1. Delignification Process
3.1.1. Sodium Chlorite Process
3.1.2. Hydrogen Peroxide Process
3.1.3. Bio-Enzymatic Process
3.1.4. Lignin Modification Process
3.2. Polymer Impregnation Process
3.3. Other Emerging Preparation Methods
4. Application of TW and TB
4.1. Flexible Transparent Wood
4.1.1. Light-Emitting Electronic Components
4.1.2. Flexible Transparent Electrodes
4.1.3. Flexible Sensor Components
4.2. Flexible Transparent Bamboo
5. Critical Areas, Summary, and Outlook
- Developing FTW and FTB materials requires more environmentally sustainable delignification methods and lignin-preserving decolorization techniques. Conventional delignification processes utilize excessive chemical reagents and cause considerable environmental pollution. While some research has proposed greener delignification approaches, the resultant wood and bamboo still necessitate significant organic solvents to eliminate residual chemicals. Consequently, forthcoming research may enhance the sustainable development of these materials by recycling chemical waste or substituting current reagents with eco-friendly alternatives. Furthermore, lignin is essential for wood and bamboo’s adhesion and structural integrity. The delignification process frequently disrupts their inherent layered architecture, undermining mechanical properties. This challenge can be mitigated by judiciously modifying lignin while preserving its supportive role and implementing comprehensive material alterations. Future investigations may also examine lignin recycling, reinserting extracted lignin into the voids of wood and bamboo, optimizing raw material utilization for sustainable production and achieving a closed-loop production cycle.
- FTW and FTB materials possess considerable potential for functionalization. However, existing research predominantly focuses on augmenting singular functions, with limited investigations into multi-functional integration. This considerably constrains their applicability in flexible electronics and wearable devices. Future research should emphasize functional integration to create FTW and FTB materials with varied functionalities. Nonetheless, during the functionalization process, it is essential to mitigate interference among different functional components and to prevent detrimental effects on the material’s flexibility and transparency. For example, in flexible electronics, TW and TB are promising as wearable sensors. However, their comprehensive properties, such as conductivity, mechanical stability, and transparency, require meticulous assessment before practical implementation. The requirements of wearable devices can be adequately fulfilled by attaining high conductivity and substantial mechanical stability through functional modifications while maintaining material transparency. Thus, the advancement of multifunctional TW becomes a crucial research focus for the future.
- Future research may concentrate on broadening the utilization of flexible and TW and TB materials in optoelectronic devices and wearable technologies. This includes the advancement of flexible screens with integrated light-emitting and display capabilities and wearable devices for health monitoring, such as real-time tracking of heart rate, body temperature, and other physiological signals. At the same time, the materials’ durability and environmental adaptability must be enhanced to address the diverse challenges presented by complex environments, ensuring long-term stability and reliability. It may also investigate its use in domains such as intelligent apparel and environmental monitoring sensors to advance the evolution of associated technologies further. These applications involve physical contact, mechanical friction, and intricate operating environments. Extended use can lead to surface degradation and internal structural damage, especially in contexts characterized by human movement, temperature variations, and humidity fluctuations. Consequently, it is imperative to enhance these materials’ durability, mechanical stability, and environmental adaptability to ensure their reliability and longevity in practical applications. Moreover, given the prospective uses of TW and TB in flexible electronics, their environmental stability is crucial. It is essential to systematically assess the performance of these materials under diverse environmental conditions, including humidity, temperature fluctuations, and ultraviolet exposure. Enhancing their environmental stability through the incorporation of functional components or the application of functional coatings could broaden their applicability in intricate environments. Future research should prioritize these properties and examine the performance of FTW and FTB under complex conditions to fulfil the requirements of diverse applications.
- The dimensions of TW and TB predominantly range from 1 to 10 cm. Although some research has achieved advancements in producing larger sizes, the current dimensions remain inadequate for the stringent requirements of various emerging sectors, such as flexible electronic displays. The developmental trajectory in these areas necessitates larger TW and TB materials to accommodate the demands of large-scale, integrated devices and to enhance display quality. However, as size and thickness increase, the efficacy of delignification and polymer impregnation diminishes, adversely affecting the materials’ essential optical and mechanical properties. To mitigate this challenge, integrating photocatalytic oxidative modification with multilayer TW processing technology offers a partial remedy. In addition, the variability in raw material sources and microstructural heterogeneity can influence product quality stability. To address these issues, sustainable sourcing systems may be implemented to guarantee a reliable supply of high-quality raw materials. Continuous delignification processes can be refined to enhance productivity and stability. Roll-to-roll technology can implement functional treatments to enhance material durability and environmental resilience. Furthermore, standardized testing methodologies and quality control systems can guarantee consistent performance across batches. Through these integrated strategies, the mass production of flexible and transparent wood and bamboo materials can be significantly advanced to facilitate their extensive application in optoelectronic devices and wearable technologies.
- Life-cycle assessment (LCA) is an essential instrument for assessing the environmental impact of materials, providing a detailed analysis of the ecological effects of FTW and FTB throughout their lifecycle, encompassing raw material extraction, production, usage, and disposal. Future investigations should utilize LCA to establish a scientific basis for these materials’ eco-friendly design and sustainable advancement. This methodology reduces the environmental impact during production and promotes the wider utilization of FTW and FTB across diverse sectors. By comprehensively evaluating their environmental consequences, sustainable production and development objectives for these materials can be more effectively achieved.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Berardi, U. A cross-country comparison of the building energy consumptions and their trends. Resour. Conserv. Recycl. 2017, 123, 230–241. [Google Scholar] [CrossRef]
- Yu, K.; Fan, T.; Lou, S.; Zhang, D. Biomimetic optical materials: Integration of nature’s design for manipulation of light. Prog. Mater. Sci. 2013, 58, 825–873. [Google Scholar] [CrossRef]
- Ding, Y.; Pang, Z.; Lan, K.; Yao, Y.; Panzarasa, G.; Xu, L.; Lo Ricco, M.; Rammer, D.R.; Zhu, J.Y.; Hu, M.; et al. Emerging engineered wood for building applications. Chem. Rev. 2022, 123, 1843–1888. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Hu, L.; Ren, Z.J. Engineered wood for a sustainable future. Matter 2022, 5, 1326–1329. [Google Scholar] [CrossRef]
- Sun, D.; Yamada, Y.; Sato, S.; Ueda, W. Glycerol as a potential renewable raw material for acrylic acid production. Green Chem. 2017, 19, 3186–3213. [Google Scholar] [CrossRef]
- Someya, T.; Bao, Z.; Malliaras, G.G. The rise of plastic bioelectronics. Nature 2016, 540, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Zhang, W.; Hughes, M.; Wu, M.; Zhang, S.; Li, J. Various polymeric monomers derived from renewable rosin for the modification of fast-growing poplar wood. Compos. Part B Eng. 2019, 174, 106902. [Google Scholar] [CrossRef]
- Chen, C.; Berglund, L.; Burgert, I.; Hu, L. Wood nanomaterials and nanotechnologies. Adv. Mater. 2021, 33, 2006207. [Google Scholar] [CrossRef] [PubMed]
- Toumpanaki, E.; Shah, D.U.; Eichhorn, S.J. Beyond what meets the eye: Imaging and imagining wood mechanical–structural properties. Adv. Mater. 2021, 33, 2001613. [Google Scholar] [CrossRef] [PubMed]
- Burgert, I.; Cabane, E.; Zollfrank, C.; Berglund, L. Bio-inspired functional wood-based materials–hybrids and replicates. Int. Mater. Rev. 2015, 60, 431–450. [Google Scholar] [CrossRef]
- Liu, C.; Luan, P.; Li, Q.; Cheng, Z.; Xiang, P.; Liu, D.; Hou, Y.; Yang, Y.; Zhu, H. Biopolymers derived from trees as sustainable multifunctional materials: A review. Adv. Mater. 2021, 33, 2001654. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Koubaa, A.; Xing, D.; Wang, H.; Wang, Y.; Liu, W.; Zhang, Z.; Wang, X.; Wang, Q. Conversion of lignocellulose into biochar and furfural through boron complexation and esterification reactions. Bioresour. Technol. 2020, 312, 123586. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Zhao, Y.; Li, Z.; Li, L. Emerging polymeric electrospun fibers: From structural diversity to application in flexible bioelectronics and tissue engineering. Exploration 2022, 2, 20210029. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Du, H.; Liu, H.; Liu, W.; Zhang, X.; Si, C.; Liu, P.; Zhang, K. Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv. Mater. 2021, 33, 2101368. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, D.; Chu, F. Wood-derived functional polymeric materials. Adv. Mater. 2021, 33, 2001135. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Gong, A.S.; Zhu, M.; Chen, G.; Lacey, S.D.; Jiang, F.; Li, Y.; Wang, Y.; Dai, J.; Yao, Y.; et al. Mesoporous, three-dimensional wood membrane decorated with nanoparticles for highly efficient water treatment. ACS Nano 2017, 11, 4275–4282. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Chen, C.; Mi, R.; Gan, W.; Dai, J.; Jiao, M.; Xie, H.; Yao, Y.; Xiao, S.; Hu, L. A strong, tough, and scalable structural material from fast-growing bamboo. Adv. Mater. 2020, 32, 1906308. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Zou, M.; Chang, L.; Guo, W. A super-flexible and transparent wood film/silver nanowire electrode for optical and capacitive dual-mode sensing wood-based electronic skin. Chem. Eng. J. 2022, 430, 132152. [Google Scholar] [CrossRef]
- Li, T.; Zhang, X.; Lacey, S.D.; Mi, R.; Zhao, X.; Jiang, F.; Song, J.; Liu, Z.; Chen, G.; Dai, J. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. Nat. Mater. 2019, 18, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Guan, H.; Cheng, Z.; Wang, X. Highly compressible wood sponges with a spring-like lamellar structure as effective and reusable oil absorbents. ACS Nano 2018, 12, 10365–10373. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Li, R.; Chen, G.; Zhou, S.; Feng, X.; Chen, Y.; He, M.; Liu, D.; Song, T.; Qi, H. Highly stretchable, transparent, and conductive wood fabricated by in situ photopolymerization with polymerizable deep eutectic solvents. ACS Appl. Mater. Interfaces 2019, 11, 14313–14321. [Google Scholar] [CrossRef] [PubMed]
- Gan, W.; Gao, L.; Sun, Q.; Jin, C.; Lu, Y.; Li, J. Multifunctional wood materials with magnetic, superhydrophobic and anti-ultraviolet properties. Appl. Surf. Sci. 2015, 332, 565–572. [Google Scholar] [CrossRef]
- Yang, L.; Wu, Y.; Yang, F.; Wang, W. Study on the preparation process and performance of a conductive, flexible, and transparent wood. J. Mater. Res. Technol. 2021, 15, 5396–5404. [Google Scholar] [CrossRef]
- Zhu, M.; Li, T.; Davis, C.S.; Yao, Y.; Dai, J.; Wang, Y.; AlQatari, F.; Gilman, J.W.; Hu, L. Transparent and haze wood composites for highly efficient broadband light management in solar cells. Nano Energy 2016, 26, 332–339. [Google Scholar] [CrossRef]
- Zhu, S.; Biswas, S.K.; Qiu, Z.; Yue, Y.; Fu, Q.; Jiang, F.; Han, J. Transparent wood-based functional materials via a top-down approach. Prog. Mater. Sci. 2023, 132, 101025. [Google Scholar] [CrossRef]
- Wang, Y.; Heim, L.O.; Xu, Y.; Buntkowsky, G.; Zhang, K. Transparent, stimuli-responsive films from cellulose-based organogel nanoparticles. Adv. Funct. Mater. 2015, 25, 1434–1441. [Google Scholar] [CrossRef]
- Jia, C.; Chen, C.; Mi, R.; Li, T.; Dai, J.; Yang, Z.; Pei, Y.; He, S.; Bian, H.; Jang, S.-H. Clear wood toward high-performance building materials. ACS Nano 2019, 13, 9993–10001. [Google Scholar] [CrossRef] [PubMed]
- Mi, R.; Chen, C.; Keplinger, T.; Pei, Y.; He, S.; Liu, D.; Li, J.; Dai, J.; Hitz, E.; Yang, B. Scalable aesthetic transparent wood for energy efficient buildings. Nat. Commun. 2020, 11, 3836. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, Y.; Zhan, X.; Luo, D.; Sun, X. Photochromic transparent wood for photo-switchable smart window applications. J. Mater. Chem. C 2019, 7, 8649–8654. [Google Scholar] [CrossRef]
- Qiu, Z.; Wang, S.; Wang, Y.; Li, J.; Xiao, Z.; Wang, H.; Liang, D.; Xie, Y. Transparent wood with thermo-reversible optical properties based on phase-change material. Compos. Sci. Technol. 2020, 200, 108407. [Google Scholar] [CrossRef]
- Li, Y.; Fu, Q.; Yang, X.; Berglund, L. Transparent wood for functional and structural applications. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2018, 376, 20170182. [Google Scholar] [CrossRef] [PubMed]
- Foster, K.E.; Hess, K.M.; Miyake, G.M.; Srubar III, W.V. Optical properties and mechanical modeling of acetylated transparent wood composite laminates. Materials 2019, 12, 2256. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, A.; Zhu, T.; Chen, Z.; Wu, Y.; Gao, Y. Transparent wood composites fabricated by impregnation of epoxy resin and W-doped VO2 nanoparticles for application in energy-saving windows. ACS Appl. Mater. Interfaces 2020, 12, 34777–34783. [Google Scholar] [CrossRef] [PubMed]
- Montanari, C.; Li, Y.; Chen, H.; Yan, M.; Berglund, L.A. Transparent wood for thermal energy storage and reversible optical transmittance. ACS Appl. Mater. Interfaces 2019, 11, 20465–20472. [Google Scholar] [CrossRef] [PubMed]
- Lang, A.W.; Li, Y.; De Keersmaecker, M.; Shen, D.E.; Österholm, A.M.; Berglund, L.; Reynolds, J.R. Transparent Wood Smart Windows: Polymer Electrochromic Devices Based on Poly (3, 4-Ethylenedioxythiophene): Poly (Styrene Sulfonate) Electrodes. ChemSusChem 2018, 11, 854–863. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Jyske, T.; Petrič, M. Delignified wood from understanding the hierarchically aligned cellulosic structures to creating novel functional materials: A review. Adv. Sustain. Syst. 2021, 5, 2000251. [Google Scholar] [CrossRef]
- Jiang, F.; Li, T.; Li, Y.; Zhang, Y.; Gong, A.; Dai, J.; Hitz, E.; Luo, W.; Hu, L. Wood-based nanotechnologies toward sustainability. Adv. Mater. 2018, 30, 1703453. [Google Scholar] [CrossRef] [PubMed]
- Kadumudi, F.B.; Trifol, J.; Jahanshahi, M.; Zsurzsan, T.G.; Mehrali, M.; Zeqiraj, E.; Shaki, H.; Alehosseini, M.; Gundlach, C.; Li, Q.; et al. Flexible and green electronics manufactured by origami folding of nanosilicate-reinforced cellulose paper. ACS Appl. Mater. Interfaces 2020, 12, 48027–48039. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, S.; Nakagaito, A.N.; Yano, H.; Nogi, M. Optically transparent composites reinforced with plant fiber-based nanofibers. Appl. Phys. A 2005, 81, 1109–1112. [Google Scholar] [CrossRef]
- Nogi, M.; Yano, H. Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv. Mater. 2008, 20, 1849–1852. [Google Scholar] [CrossRef]
- Fink, S. Transparent wood–a new approach in the functional study of wood structure. Holzforschung 1992, 46, 403–408. [Google Scholar] [CrossRef]
- Hu, X.; Yu, R.; Wang, F.; Liu, Z.; Yang, H.; Chen, C.; Li, Y.; Noor, N.; Fei, B. Fabrication, functionalities and applications of transparent wood: A review. Adv. Funct. Mater. 2023, 33, 2303278. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.F.; Kong, X.; Yao, J. Top-down fabrication of wood hydrogels: From preparation to application. Chem. Eng. J. 2024, 490, 151518. [Google Scholar] [CrossRef]
- Zhu, M.; Song, J.; Li, T.; Gong, A.; Wang, Y.; Dai, J.; Yao, Y.; Luo, W.; Henderson, D.; Hu, L. Highly Anisotropic, Highly Transparent Wood Composites. Adv. Mater. 2016, 28, 5181–5187. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fu, Q.; Yu, S.; Yan, M.; Berglund, L. Optically transparent wood from a nanoporous cellulosic template: Combining functional and structural performance. Biomacromolecules 2016, 17, 1358–1364. [Google Scholar] [CrossRef] [PubMed]
- Shams, M.I.; Nogi, M.; Berglund, L.A.; Yano, H. The transparent crab: Preparation and nanostructural implications for bioinspired optically transparent nanocomposites. Soft Matter 2012, 8, 1369–1373. [Google Scholar] [CrossRef]
- Wu, J.; Shen, T.; Li, S.; Wu, Y.; Cai, L.; Xia, C. Sustainable transparent wood focusing on lignin decolorization methods, polymer impregnation techniques and applications in functional buildings: A review. Int. J. Biol. Macromol. 2025, 302, 140554. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, U.P. Raman imaging to investigate ultrastructure and composition of plant cell walls: Distribution of lignin and cellulose in black spruce wood (Picea mariana). Planta 2006, 224, 1141–1153. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Yin, W.; Zhang, J.; Niu, S.; Ren, L. Active anti-erosion protection strategy in tamarisk (Tamarix aphylla). Sci. Rep. 2013, 3, 3429. [Google Scholar] [CrossRef] [PubMed]
- Sjostrom, E. Wood Chemistry: Fundamentals and Applications; Gulf Professional Publishing: Burlington, MA, USA, 1993. [Google Scholar]
- Marchessault, R.H. Wood Chemistry, Fundamentals and Applications, 2nd ed.; Sjöström, E., Ed.; Academic Press: New York, NY, USA, 1993; 250 pages of text and 42 pages of Bibliography and Index; ISBN 0-12-647481-8. [Google Scholar]
- Berglund, L.A.; Burgert, I. Bioinspired wood nanotechnology for functional materials. Adv. Mater. 2018, 30, 1704285. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, J.; Wang, Y.; Zhou, J. Properties of multilayer transparent bamboo materials. ACS Omega 2021, 6, 33747–33756. [Google Scholar] [CrossRef] [PubMed]
- Ling, S.; Kaplan, D.L.; Buehler, M.J. Nanofibrils in nature and materials engineering. Nat. Rev. Mater. 2018, 3, 18016. [Google Scholar] [CrossRef] [PubMed]
- Meyers, M.A.; Chen, P.Y.; Lin, A.Y.M.; Seki, Y. Biological materials: Structure and mechanical properties. Prog. Mater. Sci. 2008, 53, 1–206. [Google Scholar] [CrossRef]
- Xue, C.; He, W.M.; Nie, Y.H. Study on the material character and performance of eight kinds of bambo. China Pulp Pap. Ind. 2009, 30, 83–88. [Google Scholar]
- Liu, Y.; He, T.; Wu, A. Classification of Bamboo Fiber and Its Application. Pap. Pap. Mak. 2023, 42, 1–7. [Google Scholar]
- Tang, Q.; Zhang, L.; Zou, M. Transparent Wood and Transparent Bamboo: Research Progress and Difficulties in Industrialized Application. Chin. J. Wood Sci. Technol. 2022, 36, 0001–0012. [Google Scholar]
- Wu, Y.; Wang, Y.; Yang, F. Comparison of multilayer transparent wood and single layer transparent wood with the same thickness. Front. Mater. 2021, 8, 633345. [Google Scholar] [CrossRef]
- Chen, M.; An, X.; He, Y.; Cai, L.; Liu, R.; Fei, B. Ultra-microstructure analysis and model development of bamboo fiber cell walls. Int. J. Biol. Macromol. 2024, 280, 135986. [Google Scholar] [CrossRef] [PubMed]
- Xia, Q.; Chen, C.; Li, T.; He, S.; Gao, J.; Wang, X.; Hu, L. Solar-assisted fabrication of large-scale, patternable transparent wood. Sci. Adv. 2021, 7, eabd7342. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, Y.; Yang, X.; Ji, H.; Zhong, T.; Wang, G. A comparative study of the microstructure and water permeability between flattened bamboo and bamboo culm. J. Wood Sci. 2019, 65, 64. [Google Scholar] [CrossRef]
- Lin, Q.; Gao, R.; Li, D.; Lu, Y.; Liu, S.; Yu, Y.; Huang, Y.; Yu, W. Bamboo-inspired cell-scale assembly for energy device applications. NPJ Flex. Electron. 2022, 6, 13. [Google Scholar] [CrossRef]
- Zhang, J.; Koubaa, A.; Tao, Y.; Li, P.; Xing, D. The emerging development of transparent wood: Materials, characteristics, and applications. Curr. For. Rep. 2022, 8, 333–345. [Google Scholar] [CrossRef]
- Hu, K.; Huang, Y.; Fei, B.; Yao, C.; Zhao, C. Investigation of the multilayered structure and microfibril angle of different types of bamboo cell walls at the micro/nano level using a LC-PolScope imaging system. Cellulose 2017, 24, 4611–4625. [Google Scholar] [CrossRef]
- Abe, K.; Yano, H. Comparison of the characteristics of cellulose microfibril aggregates isolated from fiber and parenchyma cells of Moso bamboo (Phyllostachys pubescens). Cellulose 2010, 17, 271–277. [Google Scholar] [CrossRef]
- Fahlén, J.; Salmén, L. Cross-sectional structure of the secondary wall of wood fibers as affected by processing. J. Mater. Sci. 2003, 38, 119–126. [Google Scholar] [CrossRef]
- Müller, U.; Rätzsch, M.; Schwanninger, M.; Steiner, M.; Zöbl, H. Yellowing and IR-changes of spruce wood as result of UV-irradiation. J. Photochem. Photobiol. B Biol. 2003, 69, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, C.; Zhu, J.Y.; Ragauskas, A.J.; Hu, L. In situ wood delignification toward sustainable applications. Acc. Mater. Res. 2021, 2, 606–620. [Google Scholar] [CrossRef]
- Chen, H.; Montanari, C.; Shanker, R.; Marcinkevicius, S.; Berglund, L.A.; Sychugov, I. Photon walk in transparent wood: Scattering and absorption in hierarchically structured materials. Adv. Opt. Mater. 2022, 10, 2102732. [Google Scholar] [CrossRef]
- Chen, C.; Kuang, Y.; Zhu, S.; Burgert, I.; Keplinger, T.; Gong, A.; Li, T.; Berglund, L.; Eichhorn, S.J.; Hu, L. Structure–property–function relationships of natural and engineered wood. Nat. Rev. Mater. 2020, 5, 642–666. [Google Scholar] [CrossRef]
- Wu, J.; Wu, Y.; Yang, F.; Tang, C.; Huang, Q.; Zhang, J. Impact of delignification on morphological, optical and mechanical properties of transparent wood. Compos. Part A Appl. Sci. Manuf. 2019, 117, 324–331. [Google Scholar] [CrossRef]
- Chen, X.; Ge-Zhang, S.; Han, Y.; Yang, H.; Ou-Yang, W.; Zhu, H.; Hao, J.; Wang, J. Ultraviolet-assisted modified delignified wood with high transparency. Appl. Sci. 2022, 12, 7406. [Google Scholar] [CrossRef]
- Keplinger, T.; Wittel, F.K.; Rüggeberg, M.; Burgert, I. Wood derived cellulose scaffolds—Processing and mechanics. Adv. Mater. 2021, 33, 2001375. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Malyar, Y.; Kazachenko, A.; Xiang, Z. The effects of holocellulose treatments on the yield and structure of dimethylsulfoxide-extracted birchwood xylans. Ind. Crops Prod. 2023, 206, 117588. [Google Scholar] [CrossRef]
- Gierer, J. Chemistry of delignification: Part 2: Reactions of lignins during bleaching. Wood Sci. Technol. 1986, 20, 1–33. [Google Scholar] [CrossRef]
- Ma, R.; Xu, Y.; Zhang, X. Catalytic oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production. ChemSusChem 2015, 8, 24–51. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Li, X.; Shao, Y.; Shi, K.; Zhao, X.; Feng, T.; Hu, Y. Optimization of delignification process for efficient preparation of transparent wood with high strength and high transmittance. Vacuum 2018, 158, 158–165. [Google Scholar] [CrossRef]
- Wang, X.; Shan, S.; Shi, S.Q.; Zhang, Y.; Cai, L.; Smith, L.M. Optically transparent bamboo with high strength and low thermal conductivity. ACS Appl. Mater. Interfaces 2020, 13, 1662–1669. [Google Scholar] [CrossRef] [PubMed]
- Erythropel, H.C.; Zimmerman, J.B.; de Winter, T.M.; Petitjean, L.; Melnikov, F.; Lam, C.H.; Lounsbury, A.M.; Mellor, K.E.; Janković, N.Z.; Tu, Q.; et al. The Green ChemisTREE: 20 years after taking root with the 12 principles. Green Chem. 2018, 20, 1929–1961. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, J.; Yang, F.; Tang, C.; Huang, Q. Effect of H2O2 bleaching treatment on the properties of finished transparent wood. Polymers 2019, 11, 776. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Guo, X.; He, Y.; Zheng, R. A green steam-modified delignification method to prepare low-lignin delignified wood for thick, large highly transparent wood composites. J. Mater. Res. 2019, 34, 932–940. [Google Scholar] [CrossRef]
- Lu, H.; Ding, C.; Zhai, S.; Pan, M. Research Progress on Properties and Applications of Transparent Wood. Polym. Bull. 2022, 34, 13–26. [Google Scholar]
- Li, Y.; Fu, Q.; Rojas, R.; Yan, M.; Lawoko, M.; Berglund, L. Lignin-retaining transparent wood. ChemSusChem 2017, 10, 3445–3451. [Google Scholar] [CrossRef] [PubMed]
- Xia, Q.; Chen, C.; Yao, Y.; He, S.; Wang, X.; Li, J.; Gao, J.; Gan, W.; Jiang, B.; Cui, M.; et al. In situ lignin modification toward photonic wood. Adv. Mater. 2021, 33, 2001588. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Y.; Guo, F.L.; Li, Y.Q.; Zhu, W.B.; Li, Y.; Huang, P.; Hu, N.; Fu, S.Y. High overall performance transparent bamboo composite via a lignin-modification strategy. Compos. Part B Eng. 2022, 235, 109798. [Google Scholar] [CrossRef]
- Cai, H.; Wang, Z.; Xie, D.; Zhao, P.; Sun, J.; Qin, D.; Cheng, F. Flexible transparent wood enabled by epoxy resin and ethylene glycol diglycidyl ether. J. For. Res. 2021, 32, 1779–1787. [Google Scholar] [CrossRef]
- Tian, L.; Zhu, W.; Chen, X.; Feng, Y.; Hu, H.; Wang, H.; Dang, B.; Chai, H.; Sun, Q.; Yang, Y. Flexible transparent wood with reversible photoresponsive property. Polymer 2024, 294, 126725. [Google Scholar] [CrossRef]
- Rao, A.N.S.; Nagarajappa, G.B.; Nair, S.; Chathoth, A.M.; Pandey, K.K. Flexible transparent wood prepared from poplar veneer and polyvinyl alcohol. Compos. Sci. Technol. 2019, 182, 107719. [Google Scholar] [CrossRef]
- Wang, K.; Peng, H.; Gu, Q.; Zhang, X.; Liu, X.; Dong, Y.; Cai, Y.; Li, Y.; Li, J. Scalable, large-size, and flexible transparent bamboo. Chem. Eng. J. 2023, 451, 138349. [Google Scholar] [CrossRef]
- Liu, X.; Peng, H.; Zhang, T.; Wang, K.; Dong, Y.; Wang, K.; Zhan, X.; Liu, Y.; Li, Y.; Li, J. One-step brush-coating strategy for low-haze and water-resistant transparent wood films. Prog. Org. Coat. 2023, 185, 107912. [Google Scholar] [CrossRef]
- Chen, F.; Ritter, M.; Xu, Y.; Tu, K.; Koch, S.M.; Yan, W.; Bian, H.; Ding, Y.; Sun, J.; Burgert, I. Lightweight, Strong, and Transparent Wood Films Produced by Capillary Driven Self-Densification. Small 2024, 20, 2311966. [Google Scholar] [CrossRef] [PubMed]
- Gan, W.; Xiao, S.; Gao, L.; Gao, R.; Li, J.; Zhan, X. Luminescent and transparent wood composites fabricated by poly (methyl methacrylate) and γ-Fe2O3@YVO4: Eu3+ nanoparticle impregnation. ACS Sustain. Chem. Eng. 2017, 5, 3855–3862. [Google Scholar] [CrossRef]
- Bi, Z.; Li, T.; Su, H.; Ni, Y.; Yan, L. Transparent wood film incorporating carbon dots as encapsulating material for white light-emitting diodes. ACS Sustain. Chem. Eng. 2018, 6, 9314–9323. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, P.; Chen, M.; Yang, K.; Cao, Y.; Li, X.; Tang, M.; Chen, W.; Zhou, X. Constructing a novel electroluminescent device with high-temperature and high-humidity resistance based on a flexible transparent wood film. ACS Appl. Mater. Interfaces 2019, 11, 36010–36019. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Jia, C.; Wang, Y.; Fang, Z.; Dai, J.; Xu, L.; Huang, D.; Wu, J.; Li, Y.; Song, J.; et al. Isotropic paper directly from anisotropic wood: Top-down green transparent substrate toward biodegradable electronics. ACS Appl. Mater. Interfaces 2018, 10, 28566–28571. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Fang, L.; Wang, Y.; Zou, M.; Guo, W. Anisotropic flexible transparent films from remaining wood microstructures for screen protection and AgNW conductive substrate. Nanoscale 2018, 10, 4344–4353. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Hu, Y.; Wang, Q.; Lu, J.; Bai, T.; Pei, F.; Chen, Y.; Cheng, W.; Wang, D.; Han, G. Top-down approach making anisotropic, stable and flexible wood-based ionogels for wearable sensors. Chem. Eng. J. 2024, 487, 150472. [Google Scholar] [CrossRef]
- Liu, X.; Li, H.; Zhang, T.; Peng, H.; Wang, K.; Dong, Y.; Lu, Y.; Wang, K.; Zhan, X.; Liu, Y.; et al. Strong, tough, anisotropic, flexible, and transparent bamboo films. Ind. Crops Prod. 2024, 207, 117757. [Google Scholar] [CrossRef]
- Wang, W.; Gan, J.; Yuan, Q.; Chen, J.; Liu, Z.; Huang, Y. Flexible and transparent bamboo composites Enabled by a Dual-Resin blending strategy. Chem. Eng. J. 2025, 509, 161256. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, Y.; Zhu, S.; Xu, L.; Jia, C.; Dai, J.; Song, J.; Yao, Y.; Wang, Y.; Li, Y.; et al. Anisotropic, transparent films with aligned cellulose nanofibers. Adv. Mater. 2017, 29, 1606284. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Hyun, J. Hydrochromic film for dynamic information storage using cellulose nanofibers and silica nanoparticles. Carbohydr. Polym. 2024, 327, 121663. [Google Scholar] [CrossRef] [PubMed]
- Abral, H.; Mahardika, M.; Handayani, D.; Sugiarti, E.; Muslimin, A.N. Characterization of disintegrated bacterial cellulose nanofibers/PVA bionanocomposites prepared via ultrasonication. Int. J. Biol. Macromol. 2019, 135, 591–599. [Google Scholar] [CrossRef] [PubMed]
- Pugina, R.S.; da Silva, D.L.; Riul, A.; da Silva-Neto, M.L.; Gomes, A.S.; Caiut, J.M.A. Silk fibroin-Yb3+/Er3+: YAG composite films and their thermometric applications based on up-conversion luminescence. Polymer 2022, 241, 124541. [Google Scholar] [CrossRef]
Sample | Reagent Used | Polymer | Functional Additive | Optical Property | TS (MPa) | Ref. | |
---|---|---|---|---|---|---|---|
Tr (%) | Haze (%) | ||||||
TWF | NaClO | / | / | 90% | 80% | 150 MPa | [96] |
TWF | NaClO2/Acetate | EP | / | 82% | / | 75.12 MPa | [78] |
TWF | Lignin modification | PVA | / | 80% | 90% | 13.3 MPa | [89] |
TWF | DES | PAA | CDs | 85% | 85% | 60.92 MPa | [94] |
TBF | NaClO2/Acetate | EP | / | 81.47% | 72.43% | 169.03 MPa | [100] |
TBF | NaClO2/Acetate | / | / | 70.2% | 88.1% | 656.6 MPa | [99] |
TBF | NaClO2/Acetate | EP | / | 80% | 72% | 78.5 MPa | [90] |
CNF | NaCIO | / | / | 90% | / | 350 MPa | [101] |
CNF | cellulose nanofiber suspension oxidized | / | SiNPs | Tr: | / | [102] | |
80% (0.1 wt% CNF) | |||||||
30% (0.5 wt% CNF) | |||||||
BCF | BC nanofiber suspensions | PVA | / | Tr: | [103] | ||
90% (2.5 mL BC) | 32.5 MPa (2.5 mL BC) | ||||||
85% (7.5 mL BC) | 37.5 MPa (7.5 mL BC) | ||||||
SPF | Silk Fibroin Solution | / | Yb3+/Er3+:YAG | / | / | 7.8 MPa | [104] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, X.; Chai, Y.; Wan, C. Transparent Wood and Bamboo for Next-Generation Flexible Electronics: A Review. Polymers 2025, 17, 1972. https://doi.org/10.3390/polym17141972
Yin X, Chai Y, Wan C. Transparent Wood and Bamboo for Next-Generation Flexible Electronics: A Review. Polymers. 2025; 17(14):1972. https://doi.org/10.3390/polym17141972
Chicago/Turabian StyleYin, Xiaorong, Yaling Chai, and Caichao Wan. 2025. "Transparent Wood and Bamboo for Next-Generation Flexible Electronics: A Review" Polymers 17, no. 14: 1972. https://doi.org/10.3390/polym17141972
APA StyleYin, X., Chai, Y., & Wan, C. (2025). Transparent Wood and Bamboo for Next-Generation Flexible Electronics: A Review. Polymers, 17(14), 1972. https://doi.org/10.3390/polym17141972