Overview and Evaluation of Chemicals and Methods for Flame Retardancy in Glued Laminated Wood Systems
Abstract
:1. Introduction
1.1. Salt-Based Flame Retardants
1.2. Intumescent Fireproofing Systems
1.3. Chemical Modification of Plywood
1.4. Other Chemicals
1.5. Mechanisms of Bonding Flame Retardants to Wood, Flame-Retardant Mechanisms, and Their Environmental Aspects
2. Main Plywood Testing Standards Intended for Construction
- -
- For internal use as structural elements in dry conditions;
- -
- For internal use (or protected externally) as structural elements in humid conditions;
- -
- For external use as structural elements;
- -
- For internal use as non-structural elements in dry conditions;
- -
- For internal (or protected external) applications as non-structural elements in humid conditions;
- -
- For external use as non-structural elements;
- -
- For use as structural floor coverings on joists in dry or humid conditions or externally;
- -
- For use as structural roof coverings on joists in dry or humid conditions or externally;
- -
- For use as structural wall coverings on studs in dry or humid conditions or externally.
3. Methods to Increase Flame Retardancy of Plywood
4. Original System for Solution Evaluation
5. Original System for Evaluating Flame Retardants
6. Summary
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DoP | Declaration of Performance; |
CFP | negative carbon footprint; |
SBI | Single Burning Item; |
FIGRA | a parameter describing the rate of heat release by the tested material; |
SMOGRA | the smoke release rate index. |
References
- Ayrilmis, N.; Korkut, S.; Tanritanir, E.; Winandy, J.E.; Hiziroglu, S. Effect of various fire retardants on surface roughness of plywood. Build. Environ. 2006, 41, 887–892. [Google Scholar] [CrossRef]
- Jännes, T.; Akkanen, I.; Kekki, M.; Kiiski, T.; Liski, K.; Pajuoja, H.; Rainio, J.; Räsänen, T.; Silventoinen, I.; Torniainen, P.; et al. Wood-Based Panels Industry 2018; Kirjakaari Oy: Jyväskylä, Finnland, 2018. [Google Scholar]
- Jia, L.; Chu, J.; Ma, L.; Qi, X.; Kumar, A. Life Cycle Assessment of Plywood Manufacturing Process in China. Int. J. Environ. Res. Public Health 2019, 16, 2037. [Google Scholar] [CrossRef]
- Hakkarainen, J.; Linkosalmi, L.; Huovinen, A.; Vares, S.; Häkkinen, T.; Hakkarainen, J.; Veikkola, M.; Lahtela, T. LVL Handbook Europe; Federation of the Finnish Woodworking Industries: Helsinki, Finland, 2019. [Google Scholar]
- EN 1995–1-2; Eurocode 5: Design of Timber Structures. European Committee for Standardization (CEN): Brussels, Belgium, 1995.
- Popesu, C.-M.; Pfriem, A. Treatments and modification to improve the reaction to fire of wood and wood based products—An overview. Fire Mater. 2020, 44, 100–111. [Google Scholar] [CrossRef]
- Wu, Z.; Deng, X.; Luo, Z.; Zhang, B.; Xi, X.; Yu, L.; Li, L. Improvements in Fire Resistance, Decay Resistance, Anti-Mold Property and Bonding Performance in Plywood Treated with Manganese Chloride, Phosphoric Acid, Boric Acid and Ammonium Chloride. Coatings 2021, 11, 399. [Google Scholar] [CrossRef]
- Wang, S.Y.; Rao, Y.C. Structural Performance of Fire-Retardant Treated Plywood. Effect of Elevated Temperature. Holzforschung 1999, 53, 547–552. [Google Scholar] [CrossRef]
- Kartal, N.; Ayrilmis, N.; Imamura, Y. Decay and termite resistance of plywood treated with various fire retardants. Build. Environ. 2007, 42, 1207–1211. [Google Scholar] [CrossRef]
- Kawalerczyk, J.; Dziurka, D.; Pinkowski, G.; Stachowiak-Wencek, A.; Walkiewicz, J.; Mirski, R. The Effect of Treatment with Fire Retardant on Properties of Birch Veneer and Manufactured Fire-Resistant Plywood. Drewno. Pr. Nauk. Doniesienia Komun. 2023, 66, 00015. [Google Scholar] [CrossRef]
- Demir, A.; Aydin, I. Investigation of physical properties od plywood treated with fire retardant chemicals. Wood Ind. Eng. 2019, 1, 77–80. [Google Scholar]
- Demir, A.; Aydin, I. Surface free energy, wettability and bonding of plywood after fire-retardant treatment with various chemicals. J. Adhes. Sci. Technol. 2022, 37, 284–295. [Google Scholar] [CrossRef]
- Terzi, E.; Kartal, S.N.; White, R.H.; Shinoda, K.; Imamura, Y. Fire performance and decay resistance of solid wood and plywood treated with quaternary ammonia compounds and common fire retardants. Eur. J. Wood Wood Prod. 2009, 69, 41–51. [Google Scholar] [CrossRef]
- Depczyńska, E.; Perdoch, W.; Mazela, B. Influence of Reaction Parameters on the Gelation of Silanised Linseed Oil. Materials 2020, 13, 5376. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Zhang, Q. In Situ Polymerization and Flame Retardant Mechanism of Bio-Based Nitrogen and Phosphorus Macromolecular Flame Retardant in Plywood. Macromol. Rapid Commun. 2022, 43, 2200018. [Google Scholar] [CrossRef] [PubMed]
- Levan, S.L.; Kim, J.M.; Nagel, R.J.; Evans, J.W. Mechanical properties of fire-retardant-treated plywood after cyclic temperature exposure. For. Prod. J. 1996, 46, 64–71. [Google Scholar]
- Bryn, O.; Bekhta, P.; Sedlacik, J.; Vorosz, F.; Galysh, V. The effect of diffusive impregnation of birch veneers with fire retardant on plywood properties. Bioresources 2015, 11, 9112–9125. [Google Scholar] [CrossRef]
- Park, H.J.; Jian, H.; Wen, M.; Jo, S.U. Toxic Gas and Smoke Generation and Flammability of Flame-Retardant Plywood. Polymers 2024, 16, 507. [Google Scholar] [CrossRef]
- Miljković, J.; Grmuša, I.; Điporović, M.; Kačarević-Popović, Z. The influence of fire retardants on the properties of beech and poplar veneers and plywood. Glas. Sumar. Fak. 2005, 92, 111–124. [Google Scholar] [CrossRef]
- Xu, F.; Zhang, H.; Wu, J. Synergistic catalytic flame retardant effect of zirconium phosphate on the poplar plywood. Constr. Build. Mater. 2021, 290, 123208. [Google Scholar] [CrossRef]
- Depczyńska, E.; Perdoch, W.; Mazela, B.; Furgał, M. Silylated Linseed Oil—Invisible Wood Protection? Surf. Coat. Int. 2019, 1, 22–26. [Google Scholar]
- Wang, W.; Zammarano, C.; Shields, J.R.; Knowlton, E.D.; Kim, I.; Gales, J.A.; Hoehler, M.S.; Li, J. A Novel Application of Silicone-Based Flame-Retardant Adhesive in Plywood. Constr. Build. Mater. 2018, 189, 448–459. [Google Scholar] [CrossRef]
- Sun, F.C.; Fu, J.H.; Peng, Y.X.; Jiao, X.M.; Liu, H.; Du, F.P.; Zhang, Y.F. Dual-functional intumescent fire-retardant/self-healing water-based plywood coatings. Prog. Org. Coat. 2021, 154, 106187. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, Z.; Wang, Q.; Tang, J. Fire-retardant and smoke-suppressant performance of an intumescent waterborne amino-resin fire-retardant coating for wood. Front. For. China 2008, 3, 487–492. [Google Scholar] [CrossRef]
- Chuang, C.S.; Tsai, K.C.; Wang, M.K.; Ou, C.C.; Ko, C.H.; Shiau, I.L. Effects of intumescent formulation for acrylic-based coating on flame-retardancy of painted red lauan (Parashorea spp.) thin plywood. Wood Sci. Technol. 2008, 42, 593–607. [Google Scholar] [CrossRef]
- Chuang, C.S.; Tsai, K.C.; Yang, T.H.; Ko, C.H.; Wang, M.K. Effects of adding organo-clays for acrylic-based intumescent coating on fire-retardancy of painted thin plywood. Appl. Clay Sci. 2011, 53, 709–715. [Google Scholar] [CrossRef]
- Mazela, B.; Anyelkis Batista, A.; Grześkowiak, W. Expandable Graphite as a Fire Retardant for Cellulosic Materials—A Review. Forests 2020, 11, 755. [Google Scholar] [CrossRef]
- Bekhta, P.; Hiziroglu, S.; Shepelyuk, O. Properties of plywood manufactured from compressed veneer as building material. Mater. Des. 2009, 30, 947–953. [Google Scholar] [CrossRef]
- Zhao, W.; Huang, H.; He, M.; Tan, Q.; Liu, Y.; Wang, J. Study on flame retardant effect and adsorption mechanism of ultrasonic atomized aerosol. Chem. Eng. Res. Des. 2025, 213, 296–308. [Google Scholar] [CrossRef]
- Speight, J.G. Environmental Organic Chemistry for Engineers; Ebook Elsevier Publishing: Amsterdam, The Netherlands, 2016; ISBN 9780128006689. [Google Scholar] [CrossRef]
- Hochół, A.; Flejszar, M.; Chmielarz, P. Advances and opportunities in synthesis of flame retardant polymers via reversible deactivation radical polymerization. Polym. Degrad. Stab. 2023, 214, 110414. [Google Scholar] [CrossRef]
- Häublein, M.; Demleitner, M.; Altstädt, V. Fire behavior and flame-retardant properties of application-oriented fiber-reinforced polymers (FRPs). In Composite Materials; Elsevier: Amsterdam, The Netherlands, 2021; pp. 383–417. [Google Scholar] [CrossRef]
- Mohd Sabee, M.M.S.; Itam, Z.; Beddu, S.; Zahari, N.M.; Mohd Kamal, N.L.; Mohamad, D.; Zulkepli, N.A.; Shafiq, M.D.; Abdul Hamid, Z.A. Flame Retardant Coatings: Additives, Binders, and Fillers. Polymers 2022, 14, 2911. [Google Scholar] [CrossRef]
- Östman, B.; Voss, A.; Hughes, A.; Hovde, P.; Grexa, O. Durability of fire retardant treated wood products at humid and exterior conditions review of literature. Fire Mater. 2001, 25, 95–104. [Google Scholar] [CrossRef]
- Östman, B.; Tsantaridis, L. Durability of the reaction to fire performance for fire retardant treated (FRT) wood products in exterior applications—A ten years report. MATEC Web Conf. 2016, 46, 05005. [Google Scholar] [CrossRef]
- Kolbrecki, A.; Sudoł, E. Weathering resistance of fire-retardant coatings on façade claddings made of selected exotic wood species. Part 2: Fire performance. Ann. Wars. Univ. Life Sci. -SGGW. For. Wood Technol. 2014, 86, 231–234. [Google Scholar]
- Segev, O.; Kushmaro, A.; Brenner, A. Environmental Impact of Flame Retardants (Persistence and Biodegradability). Int. J. Environ. Res. Public Health 2009, 6, 478–491. [Google Scholar] [CrossRef] [PubMed]
- Dogan, M.; Dogan, S.; Savas, L.; Ozcelik, G.; Tayfun, U. Flame retardant effect of boron compounds in polymeric materials. Compos. Part B Eng. 2021, 222, 109088. [Google Scholar] [CrossRef]
- Horacek, H.; Grabner, R. Advantages of flame retardants based on nitrogen compounds. Polym. Degrad. Stab. 1996, 54, 205–215. [Google Scholar] [CrossRef]
- Mensah, R.A.; Shanmugam, V.; Narayanan, S.; Renner, J.S.; Babu, K.; Neisiany, R.E.; Forsth, M.; Sas, G.; Das, O. A review of sustainable and environment-friendly flame retardants used in plastics. Polym. Test. 2022, 108, 107511. [Google Scholar] [CrossRef]
- Vahabi, H.; Sonnier, R.; Ferry, L. Effects of ageing on the fire behaviour of flame retarded polymers. Polym. Int. 2015, 64, 313–328. [Google Scholar] [CrossRef]
- EN 13986: 2004; Wood-Based Panels for Use in Construction. Characteristics, Evaluation of Conformity and Marking. European Committee for Standardization (CEN): Brussels, Belgium, 2004.
- EN 636:2012+A1:2015; Plywood. Specifications. European Committee for Standardization (CEN): Brussels, Belgium, 2012.
- EN 314-2:2001; Plywood. Quality of Bonding Depending on the Application. European Committee for Standardization (CEN): Brussels, Belgium, 2001.
- EN 13501-1:2019; Fire Classification of Construction Products and Building Elements. European Committee for Standardization (CEN): Brussels, Belgium, 2019.
- EN 13823+A1:2014-12; Reaction to Fire Tests for Building Products—Building Products Excluding Floorings Exposed to the Thermal Attack by a Single Burning Item. European Committee for Standardization (CEN): Brussels, Belgium, 2014.
- EN ISO 9239-1:2004; Tests for Reaction to Fire of Floors. European Committee for Standardization (CEN): Brussels, Belgium, 2004.
- EN ISO 11925-2:2020; Single-Flame Source Test. European Committee for Standardization (CEN): Brussels, Belgium, 2020.
- EN 789:2005; Timber Structures. Test Methods. Determination of Mechanical Properties of Wood Based Panels. European Committee for Standardization (CEN): Brussels, Belgium, 2005.
- EN 310:1994; Wood-Based Panels. Determination of Modulus of Elasticity in Bending and of Bending Strength. European Committee for Standardization (CEN): Brussels, Belgium, 1994.
- Rozporządzenie Ministra Infrastruktury z Dnia 12 Kwietnia 2002 r. w Sprawie Warunków Technicznych, Jakim Powinny Odpowiadać Budynki i Ich Usytuowanie [Regulation of the Minister of Infrastructure of 12 April 2002 on the Technical Requirements to Be Met by Buildings and Their Location]; Dziennik Ustaw, Rządowe Centrum Legislacji: Warsaw, Poland, 2002; Volume 75, p. 690.
- REGULATION (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011 Laying Down Harmonised Conditions for the Marketing of Construction Products and Repealing Council Directive 89/106/EEC; Official Journal of the European Union; The European Parliament and The Council of the European Union: Washington, DC, USA, 2011.
- Chernenko, V.A. Technology of wood impregnation by polymeric compositions. Constr. Unique Build. Struct. 2017, 7, 32–52. [Google Scholar]
Fire Resistance Class of Building | Main Supporting Structure | Roof Structure | Roof | External Wall | Internal Wall | Roof Covering |
---|---|---|---|---|---|---|
A | R240 | R30 | REI120 | EI120 | EI60 | EI30 |
B | R120 | R30 | REI60 | EI60 | EI30 | EI30 |
C | R60 | R15 | REI60 | EI30 | EI15 | EI15 |
D | R30 | - | REI30 | EI30 | - | - |
E | - | - | - | - | - | - |
Maximum Fire Load Density in Fire Zones (Q) [MJ/m2] | Single-Storey Building | Multi-Storey Building | |||
---|---|---|---|---|---|
Short | Medium High | Tall | High-Rise | ||
Q ≤ 500 | E | D | C | B | B |
500 < Q ≤ 1000 | D | D | C | B | B |
1000 < Q ≤ 2000 | C | C | C | B | B |
2000 < Q ≤ 4000 | B | B | B | None | None |
Q > 4000 | A | A | A | None | None |
Assessment Criteria | Scoring | ||
---|---|---|---|
1 | 2 | 3 | |
Penetration depth | up to 2 mm | 2–8 mm | above 8 mm |
Quality of final surface | low | medium | high |
Processing time for 100 m2 | above 8 h | 2–8 h | less than 2 h |
The influence of the process on mechanical parameters | high | medium | low or none |
Cost for 100 m2 | above EUR 250 | EUR 25–EUR 250 | less than EUR 25 |
Assessment Criteria | Surface Impregnation (Pressureless) | Pressureless Impregnation (Immersion) | Pressure Impregnation (Autoclave) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Pneumatic Spray | Airless Spray | Roller | Brush | Rollers/Layers | Lubrication | Whole Plywood | Single Veneers | Whole Plywood | Single Veneers | |
Penetration depth | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 2 | 3 |
Quality of final surface | 3 | 3 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 3 |
Processing time for 100 m2 | 2 | 2 | 1 | 1 | 2 | 1 | 3 | 3 | 3 | 3 |
The influence of the process on mechanical parameters | 3 | 3 | 3 | 3 | 3 | 3 | 2 | 1 | 1 | 2 |
Cost for 100 m2 | 3 | 3 | 2 | 2 | 3 | 2 | 3 | 3 | 3 | 3 |
Sum | 12 | 12 | 8 | 8 | 11 | 8 | 11 | 12 | 11 | 14 |
Assessment Criteria | Scoring | ||
---|---|---|---|
1 | 2 | 3 | |
FIGRA effectiveness | low | medium | high |
THR effectiveness | low | medium | high |
Harmful to the environment | high | medium | low |
Harmful to humans | high | medium | low |
Application | interior | internal and external under roof | exterior |
Impact on mechanical parameters | high | medium | low or none |
Visual (decorative) aspects | negative | medium or none | positive |
Durability—resistance to fungi | low | medium | high |
Durability—water resistance | low | medium | high |
Cost for 100 m2 | less than EUR 250 | EUR 250–EUR 1250 | above EUR 1250 |
Assessment Criteria | Halides | Inorganic Salts | Boron Compounds | Phosphorus Chemicals | Nitrogen Chemicals | Mixtures of Phosphorus and Nitrogen Chemicals | Silicon-Based Compounds | Nanocomposites | Intumescent Fireproofing Systems | PF-Me and DMDHEU | Acetylation | Pyrolysis | Ionic Liquids |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FIGRA | 2 | 1 | 3 | 1 | 1 | 2 | 1 | 1 | 3 | 3 | 3 | 3 | 3 |
THR effectiveness | 3 | 1 | 3 | 3 | 3 | 3 | 1 | 1 | 1 | 1 | 3 | 1 | 3 |
Harmful to the environment | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 1 | 3 | 3 | 3 | 3 | 3 |
Harmful to humans | 1 | 2 | 1 | 3 | 3 | 3 | 3 | 1 | 3 | 3 | 3 | 3 | 3 |
Application | 1 | 3 | 2 | 1 | 2 | 2 | 3 | 2 | 2 | 3 | 3 | 2 | 3 |
Impact on mechanical parameters | 2 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 3 | 2 | 1 | 1 | 3 |
Visual (decorative) aspects | 1 | 2 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 3 |
Durability—resistance to fungi | 3 | 2 | 3 | 1 | 3 | 2 | 3 | 3 | 2 | 3 | 3 | 1 | 3 |
Durability—water resistance | 1 | 1 | 2 | 1 | 1 | 1 | 3 | 3 | 1 | 2 | 3 | 1 | 2 |
Cost for 100 m2 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | 1 | 1 | 2 | 3 | 3 | 1 |
Sum | 18 | 19 | 22 | 19 | 21 | 21 | 22 | 15 | 20 | 23 | 26 | 19 | 27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Depczynska, E.; Burawska, I. Overview and Evaluation of Chemicals and Methods for Flame Retardancy in Glued Laminated Wood Systems. Polymers 2025, 17, 1459. https://doi.org/10.3390/polym17111459
Depczynska E, Burawska I. Overview and Evaluation of Chemicals and Methods for Flame Retardancy in Glued Laminated Wood Systems. Polymers. 2025; 17(11):1459. https://doi.org/10.3390/polym17111459
Chicago/Turabian StyleDepczynska, Ewelina, and Izabela Burawska. 2025. "Overview and Evaluation of Chemicals and Methods for Flame Retardancy in Glued Laminated Wood Systems" Polymers 17, no. 11: 1459. https://doi.org/10.3390/polym17111459
APA StyleDepczynska, E., & Burawska, I. (2025). Overview and Evaluation of Chemicals and Methods for Flame Retardancy in Glued Laminated Wood Systems. Polymers, 17(11), 1459. https://doi.org/10.3390/polym17111459