Soluble Photosensitive Polyimide Precursor with Bisphenol A Framework: Synthesis and Characterization
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis of Bisphenol A-Bisphenol F (BAF) Photosensitive Poly(Amic Ester) (BAFPAE)
2.3. Preparation of Photocurable BAFPAE-x Samples
2.4. Preparation of BAF Polyimide
2.5. Measurements
2.6. Photosensitive Performance
2.7. Imidization Degree
3. Result and Discussion
3.1. Synthesis and Characterization
3.2. Dissolution Performance
3.3. Photocuring Kinetics and the Degree of Imidization
3.4. Thermal Properties
3.5. Mechanical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Dong, Z.; He, Q.; Shen, D.; Gong, Z.; Zhang, D.; Zhang, W.; Ono, T.; Jiang, Y. Microfabrication of functional polyimide films and microstructures for flexible MEMS applications. Microsyst. Nanoeng. 2023, 9, 31. [Google Scholar] [CrossRef] [PubMed]
- Mo, W.J.; Zhang, Z.P.; Rong, M.Z.; Zhang, M.Q. Photosensitive polyimide enabled simple, reversible and environmentally friendly selective metallization on diverse substrates. Appl. Mater. Today 2024, 38, 102159. [Google Scholar] [CrossRef]
- Ustad, R.E.; Chavan, V.D.; Kim, H.; Shin, M.-h.; Kim, S.-K.; Choi, K.-K.; Kim, D.-K. Thermal, Mechanical, and Electrical Stability of Cu Films in an Integration Process with Photosensitive Polyimide (PSPI) Films. Nanomaterials 2023, 13, 2642. [Google Scholar] [CrossRef] [PubMed]
- Tamai, S.; Yamashita, W.; Yamaguchi, A. Preparation and properties of processable polyimides having bulky pendent ether groups. J. Polym. Sci. Part A Polym. Chem. 1998, 36, 971–978. [Google Scholar] [CrossRef]
- Wu, Z.; He, J.; Yang, H.; Yang, S. Progress in Aromatic Polyimide Films for Electronic Applications: Preparation, Structure and Properties. Polymers 2022, 14, 1269. [Google Scholar] [CrossRef]
- Flores-Bonano, S.; Vargas-Martinez, J.; Suárez, O.M.; Silva-Araya, W. Tortuosity Index Based on Dynamic Mechanical Properties of Polyimide Foam for Aerospace Applications. Materials 2019, 12, 1851. [Google Scholar] [CrossRef]
- Zhou, L.R.; Wu, G.N.; Gao, B.; Zhou, K.; Liu, J.; Cao, K.J.; Zhou, L.J. Study on charge transport mechanism and space charge characteristics of polyimide films. IEEE Trans. Dielectr. Electr. Insul. 2009, 16, 1143–1149. [Google Scholar] [CrossRef]
- Sezer Hicyilmaz, A.; Celik Bedeloglu, A. Applications of polyimide coatings: A review. SN Appl. Sci. 2021, 3, 363. [Google Scholar] [CrossRef]
- Maya, E.M.; Lozano, A.E.; de Abajo, J.; de la Campa, J.G. Chemical modification of copolyimides with bulky pendent groups: Effect of modification on solubility and thermal stability. Polym. Degrad. Stab. 2007, 92, 2294–2299. [Google Scholar] [CrossRef]
- Ghosh, A.; Sen, S.K.; Banerjee, S.; Voit, B. Solubility improvements in aromatic polyimides by macromolecular engineering. RSC Adv. 2012, 2, 5900–5926. [Google Scholar] [CrossRef]
- Liu, B.; Zhou, Y.; Dong, L.; Lu, Q.; Xu, X. Enhanced thermal conductivity in copolymerized polyimide. iScience 2022, 25, 105451. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, Y.; Yu, S.-P.; Abe, T. Synthesis and Gas Permeability of Aromatic Polyamide and Polyimide Having Oligodimethylsiloxane in Main-Chain or in Side-Chain. Polym. J. 1992, 24, 1129–1135. [Google Scholar] [CrossRef]
- Filippov, A.P.; Krasova, A.S.; Tarabukina, E.B.; Kashina, A.V.; Meleshko, T.K.; Yakimansky, A.V. The effect of side chain length on hydrodynamic and conformational characteristics of polyimide-graft-polymethylmethacrylate copolymers in thermodynamically good solutions. J. Polym. Res. 2016, 23, 219. [Google Scholar] [CrossRef]
- Kimura, H.; Ohtsuka, K.; Matsumoto, A.; Fukuoka, H.; Oishi, Y. Synthesis and characterization of phenylethynylcarbonyl terminated novel thermosetting imide compound. Express Polym. Lett. 2013, 7, 161–171. [Google Scholar] [CrossRef]
- Kamanina, N.; Toikka, A.; Barnash, Y.; Zak, A.; Tenne, R. Influence of Surface Relief on Orientation of Nematic Liquid Crystals: Polyimide Doped with WS2 Nanotubes. Crystals 2022, 12, 391. [Google Scholar] [CrossRef]
- Lin, Q.; Zhang, W.; Chen, L.; Li, Y.; Ning, Z.; Zhang, X.; Xiao, Y. Rigid Photosensitive Polyimide Significantly Improves the Comprehensive Performance of UV-Curing Epoxy Acrylic Resins. ACS Appl. Polym. Mater. 2024, 6, 8267–8276. [Google Scholar] [CrossRef]
- Ahne, H.; Leuschner, R.; Rubner, R. Recent advances in photosensitive polyimides. Polym. Adv. Technol. 1993, 4, 217–233. [Google Scholar] [CrossRef]
- Pan, D.; Tian, Z.; He, T.; Ouyang, Y.; Chen, Z.; Dong, F.; Wang, S.; Liu, S. Investigation of Photosensitive Polyimide with Photolithography Process and Mechanical Behavior for Wafer-Level Packaging. In Proceedings of the 2024 25th International Conference on Electronic Packaging Technology (ICEPT), Tianjin, China, 7–9 August 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Fan, J.; Zhu, T.; Wu, W.J.; Tang, S.H.; Liu, J.Q.; Tu, L.C. Low Temperature Photosensitive Polyimide Based Insulating Layer Formation for Microelectromechanical Systems Applications. J. Electron. Mater. 2015, 44, 4891–4897. [Google Scholar] [CrossRef]
- Qin, S.; Jiang, Y.; Ji, Z.; Yang, C.; Guo, Y.; Zhang, X.; Qin, H.; Jia, X.; Wang, X. Three-dimensional printing of high-performance polyimide by direct ink writing of hydrogel precursor. J. Appl. Polym. Sci. 2021, 138, 50636. [Google Scholar] [CrossRef]
- Hegde, M.; Meenakshisundaram, V.; Chartrain, N.; Sekhar, S.; Tafti, D.; Williams, C.B.; Long, T.E. 3D Printing All-Aromatic Polyimides using Mask-Projection Stereolithography: Processing the Nonprocessable. Adv. Mater. 2017, 29, 1701240. [Google Scholar] [CrossRef]
- Herzberger, J.; Meenakshisundaram, V.; Williams, C.B.; Long, T.E. 3D Printing All-Aromatic Polyimides Using Stereolithographic 3D Printing of Polyamic Acid Salts. ACS Macro Lett. 2018, 7, 493–497. [Google Scholar] [CrossRef] [PubMed]
- Shukla, V.; Bajpai, M.; Singh, D.K.; Singh, M.; Shukla, R. Review of basic chemistry of UV-curing technology. Pigment Resin Technol. 2004, 33, 272–279. [Google Scholar] [CrossRef]
- Sangermano, M.; Razza, N.; Crivello, J.V. Cationic UV-Curing: Technology and Applications. Macromol. Mater. Eng. 2014, 299, 775–793. [Google Scholar] [CrossRef]
- Jamaluddin, J.; Lee, M.C. Properties of UV-curable solvent-free pressure sensitive adhesive. J. Adhes. Sci. Technol. 2013, 27, 905–911. [Google Scholar] [CrossRef]
- Chiang, T.H.; Chen, C.H.; Wei, T.-C. Characterization of UV-curable adhesives containing acrylate monomers and fluorosurfactant and their performance in dye-sensitized solar cells in long-term thermal stability tests. J. Appl. Polym. Sci. 2019, 136, 47948. [Google Scholar] [CrossRef]
- Ferracci, G.; Zhu, M.; Ibrahim, M.S.; Ma, G.; Fan, T.F.; Lee, B.H.; Cho, N.-J. Photocurable Albumin Methacryloyl Hydrogels as a Versatile Platform for Tissue Engineering. ACS Appl. Bio Mater. 2020, 3, 920–934. [Google Scholar] [CrossRef]
- Yu, A.Z.; Sahouani, J.M.; Webster, D.C. Highly functional methacrylated bio-based resins for UV-curable coatings. Prog. Org. Coat. 2018, 122, 219–228. [Google Scholar] [CrossRef]
- Frisch, K.C.; Klempner, D.; Frisch, H.L. Recent advances in interpenetrating polymer networks. Polym. Eng. Sci. 1982, 22, 1143–1152. [Google Scholar] [CrossRef]
- Herrera-González, A.M.; Caldera-Villalobos, M.; Pérez-Mondragón, A.A.; Cuevas-Suárez, C.E.; González-López, J.A. Analysis of double bond conversion of photopolymerizable monomers by FTIR-ATR spectroscopy. J. Chem. Educ. 2019, 96, 1786–1789. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, X.; Sun, Y.; Xie, W. POSS dental nanocomposite resin: Synthesis, shrinkage, double bond conversion, hardness, and resistance properties. Polymers 2018, 10, 369. [Google Scholar] [CrossRef]
- Li, W.S.; Shen, Z.X.; Zheng, J.Z.; Tang, S.H. FT-IR Study of the Imidization Process of Photosensitive Polyimide PMDA/ODA. Appl. Spectrosc. 1998, 52, 985–989. [Google Scholar] [CrossRef]
- Zhai, Y.; Yang, Q.; Zhu, R.; Gu, Y. The study on imidization degree of polyamic acid in solution and ordering degree of its polyimide film. J. Mater. Sci. 2008, 43, 338–344. [Google Scholar] [CrossRef]
- Kim, B.-H.; Park, H.; Park, H.-Y.; Moon, D.-C. Degree of imidization for polyimide films investigated by evolved gas analysis-mass spectrometry. Thermochim. Acta 2013, 551, 184–190. [Google Scholar] [CrossRef]
- Makhija, S.M.; Pearce, E.M.; Kwei, T.K. Kinetics of imidization of poly (amic acid) in miscible and immiscible polymer blends. J. Appl. Polym. Sci. 1992, 44, 917–925. [Google Scholar] [CrossRef]
- Suzuki, Y.; Maekawa, Y.; Yoshida, M.; Maeyama, K.; Yonezawa, N. Ion-beam-induced dual-tone imaging of polyimide via two-step imidization. Chem. Mater. 2002, 14, 4186–4191. [Google Scholar] [CrossRef]
- Windrich, F.; Kappert, E.J.; Malanin, M.; Eichhorn, K.-J.; Häuβler, L.; Benes, N.E.; Voit, B. In-situ imidization analysis in microscale thin films of an ester-type photosensitive polyimide for microelectronic packaging applications. Eur. Polym. J. 2016, 84, 279–291. [Google Scholar] [CrossRef]
- Xia, S.L.; Sun, Z.; Yi, L.F.; Wang, Y.H. Synthesis of soluble polyimide derived from novel naphthalene diamines for liquid crystal alignment layers and a preliminary study on the mechanism of imidization. RSC Adv. 2013, 3, 14661–14670. [Google Scholar] [CrossRef]
- Liu, P.; Zhu, J.; Cheng, L.; Liu, X.; Liu, R. Curing and properties of urethane acrylates with different functionalities under electron-beam and ultraviolet irradiation. Prog. Org. Coat. 2021, 156, 106252. [Google Scholar] [CrossRef]
- Wu, Y.; Ding, C.; Yu, J.; Huang, P. Synthesis and Characterization of Semi-Aliphatic Polyimide Films with Excellent Comprehensive Performance. Polym. Sci. Ser. B 2023, 65, 120–128. [Google Scholar]
- Liu, C.; Zhao, X.; Li, Y. New autophotosensitive semiaromatic hyperbranched polyimides with excellent thermal stabilities and low birefringences. High Perform. Polym. 2013, 25, 301–311. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, S.; Yuan, J. New developments in intrinsic black photosensitive polyimide for advanced display applications. Mater. Today Chem. 2021, 42, 102346. [Google Scholar] [CrossRef]
- She, Y.K.; Wang, S.X.; Liao, Q. Transparent and highly organosoluble aromatic polyimides with twisted backbone and bulky side substituents for flexible substrate materials. J. Polym. Sci. 2024, 62, 1061–1073. [Google Scholar] [CrossRef]
- Zhao, W.J.; Tong, Y.Z.; Zeng, P.P.; Zhou, Y.S.; Cao, X.W.; Wu, W. Comparative study of intrachain versus interchain cross-linking on the mechanical, thermal and dielectric properties of low-k polyimide. Chin. J. Polym. Sci. 2024, 42, 1824–1834. [Google Scholar] [CrossRef]
Solvent | DMF | NMP | DMSO | THF | DCM | Acetone | Ethanol | EA |
---|---|---|---|---|---|---|---|---|
BAFPAE-0.4 | 72 wt% | 70 wt% | 60 wt% | 53 wt% | ++ | +− | −− | ++ |
BAFPAE-0.6 | 76 wt% | 70 wt% | 60 wt% | 55 wt% | ++ | +− | −− | ++ |
BAFPAE-0.8 | 80 wt% | 76 wt% | 60 wt% | 60 wt% | ++ | +− | −− | ++ |
BAFPAE-1.0 | 76 wt% | 75 wt% | 60 wt% | 55 wt% | ++ | +− | −− | ++ |
BAFPAE-1.2 | 75 wt% | 71 wt% | 60 wt% | 50 wt% | ++ | +− | −− | ++ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, B.; Li, J.; Li, N.; Li, W.; Zhang, S.; Lei, H. Soluble Photosensitive Polyimide Precursor with Bisphenol A Framework: Synthesis and Characterization. Polymers 2025, 17, 1428. https://doi.org/10.3390/polym17111428
Zheng B, Li J, Li N, Li W, Zhang S, Lei H. Soluble Photosensitive Polyimide Precursor with Bisphenol A Framework: Synthesis and Characterization. Polymers. 2025; 17(11):1428. https://doi.org/10.3390/polym17111428
Chicago/Turabian StyleZheng, Bowen, Jing Li, Ning Li, Wa Li, Shuai Zhang, and Haile Lei. 2025. "Soluble Photosensitive Polyimide Precursor with Bisphenol A Framework: Synthesis and Characterization" Polymers 17, no. 11: 1428. https://doi.org/10.3390/polym17111428
APA StyleZheng, B., Li, J., Li, N., Li, W., Zhang, S., & Lei, H. (2025). Soluble Photosensitive Polyimide Precursor with Bisphenol A Framework: Synthesis and Characterization. Polymers, 17(11), 1428. https://doi.org/10.3390/polym17111428