Efficient Synthesis of Fe3O4/PPy Double-Carbonized Core-Shell-like Composites for Broadband Electromagnetic Wave Absorption
Abstract
:1. Introduction
2. Materials and Experimental Methods
2.1. Materials
2.2. Preparation of the Carbonized PPy Nanospheres (CNs)
2.3. Preparation of the Functionalized CN (FC)
2.4. Preparation of Double-Carbonized FC (CFC)
2.5. Characterization and Measurements
3. Results and Discussion
3.1. Morphology and Structure Analysis of Core–Shell-like Composites
3.2. EMWA Performance of the Core–Shell-like Composites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, C.; Shan, Z.; Tao, S.; Xie, A.; Yang, H.; Su, J.; Horke, S.; Kitagawa, S.; Zhang, G. Atomic tuning in electrically conducting bimetallic organic frameworks for controllable electromagnetic wave absorption. Adv. Funct. Mater. 2023, 33, 2305082. [Google Scholar] [CrossRef]
- Liu, Y.; Wei, X.; He, X.; Yao, J.; Tan, R.; Chen, P.; Yao, B.; Zhou, J.; Yao, Z. Multifunctional shape memory composites for joule heating, self-healing, and highly efficient microwave absorption. Adv. Funct. Mater. 2023, 33, 2211352. [Google Scholar] [CrossRef]
- Flaifel, M.H.; Ahmad, S.H.; Abdullah, M.H.; Rasid, R.; Shaari, A.H.; El-Saleh, A.A.; Appadu, S. Preparation, thermal, magnetic and microwave absorption properties of thermoplastic natural rubber matrix impregnated with NiZn ferrite nanoparticles. Compos. Sci. Technol. 2014, 96, 103–108. [Google Scholar] [CrossRef]
- Zhao, Y.; Hao, L.; Zhang, X.; Tan, S.; Li, H.; Zheng, J.; Ji, G. A novel strategy in electromagnetic wave absorbing and shielding materials design: Multi-responsive field effect. Small Sci. 2022, 2, 2100077. [Google Scholar] [CrossRef]
- Zhao, Z.; Qing, Y.; Kong, L.; Xu, H.; Fan, X.; Yun, J.; Zhang, L.; Wu, H. Advancements in microwave absorption motivated by interdisciplinary research. Adv. Mater. 2024, 36, 2304182. [Google Scholar] [CrossRef] [PubMed]
- Zarepour, A.; Ahmadi, S.; Rabiee, N.; Zarrabi, A.; Iravani, S. Self-healing MXene- and graphene-based composites: Properties and applications. Nano-Micro Lett. 2023, 15, 100. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yi, Y.; Duan, R.; Lu, C.; Zhou, Z. Dual cross-linked and vertically oriented MXene/polyvinyl alcohol aerogel for ultrabroadband electromagnetic interference shielding and thermal camouflage. Polymer 2024, 291, 126604. [Google Scholar] [CrossRef]
- Tao, J.-R.; Yang, D.; Yang, Y.; He, Q.-M.; Fei, B.; Wang, M. Migration mechanism of carbon nanotubes and matching viscosity-dependent morphology in Co-continuous Poly(lactic acid)/Poly(ε-caprolactone) blend: Towards electromagnetic shielding enhancement. Polymer 2022, 252, 124963. [Google Scholar] [CrossRef]
- Abdalla, I.; Shen, J.; Yu, J.; Li, Z.; Ding, B. Co3O4/carbon composite nanofibrous membrane enabled high-efficiency electromagnetic wave absorption. Sci. Rep. 2018, 8, 12402. [Google Scholar] [CrossRef]
- Yu, L.J.; Ahmad, S.; Appadu, S.; Kong, I.; Tarawneh, M.; Flaifel, M. Comparison of magnetic and microwave absorbing properties between multiwalled carbon nanotubes nanocomposite, nickel zinc ferrite nanocomposite and hybrid nanocomposite. World J. Eng. 2014, 11, 317–322. [Google Scholar] [CrossRef]
- Yu, L.J.; Ahmad, S.; Kong, I.; Tarawneh, M. Microwave absorbing properties of nickel-zinc ferrite/multiwalled nanotube thermoplastic natural rubber composites. Adv. Mater. Res. 2012, 501, 24–28. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, C.; Huang, H.; Guo, W.; Yu, J.; Qiu, J. Carbon-enabled microwave chemistry: From interaction mechanisms to nanomaterial manufacturing. Nano Energy 2021, 85, 106027. [Google Scholar] [CrossRef]
- Zheng, W.; Zhang, P.; Chen, J.; Tian, W.B.; Zhang, Y.M.; Sun, Z.M. In situ synthesis of CNTs@Ti3C2 hybrid structures by microwave irradiation for high-performance anodes in lithium ion batteries. J. Mater. Chem. A 2018, 6, 3543–3551. [Google Scholar] [CrossRef]
- Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R.K.; Kar, K.K. Microwave as a tool for synthesis of carbon-based electrodes for energy storage. ACS Appl. Mater. Interfaces 2022, 14, 20306–20325. [Google Scholar] [CrossRef] [PubMed]
- Głowniak, S.; Szczęśniak, B.; Choma, J.; Jaroniec, M. Advances in microwave synthesis of nanoporous materials. Adv. Mater. 2021, 33, 2103477. [Google Scholar] [CrossRef] [PubMed]
- Poyraz, S.; Zhang, L.; Schroder, A.; Zhang, X. Ultrafast microwave welding/reinforcing approach at the interface of thermoplastic materials. ACS Appl. Mater. Interfaces 2015, 7, 22469–22477. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, L.; Poyraz, S.; Smith, J.; Kushvaha, V.; Tippur, H.; Zhang, X. An ultrafast microwave approach towards multi-component and multi-dimensional nanomaterials. RSC Adv. 2014, 4, 9308–9313. [Google Scholar] [CrossRef]
- Zhang, X.; Manohar, S.K. Microwave synthesis of nanocarbons from conducting polymers. Chem. Commun. 2006, 2477–2479. [Google Scholar] [CrossRef]
- Shang, S.; Yang, X.; Tao, X.-M. Easy synthesis of carbon nanotubes with polypyrrole nanotubes as the carbon precursor. Polymer 2009, 50, 2815–2818. [Google Scholar] [CrossRef]
- Kopecká, J.; Mrlík, M.; Olejnik, R.; Kopecký, D.; Prokeš, J.; Bober, P.; Moravkova, Z.; Trchová, M.; Stejskal, J.; Vrnata, M. Polypyrrole nanotubes and their carbonized analogs: Synthesis, characterization, gas sensing properties. Sensors 2016, 16, 1917. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, M.; Ling, Y.; Xu, J.; Hu, S.; Hayat, T.; Alharbi, N.S.; Yang, F. Fabrication of one dimensional CNTs/Fe3O4@PPy/Pd magnetic composites for the accumulation and electrochemical detection of triclosan. J. Electroanal. Chem. 2018, 818, 97–105. [Google Scholar] [CrossRef]
- Elhassan, A.; Abdalla, I.; Yu, J.; Li, Z.; Ding, B. Microwave-assisted fabrication of sea cucumber-like hollow structured composite for high-performance electromagnetic wave absorption. J. Chem. Eng. 2020, 392, 123646. [Google Scholar] [CrossRef]
- Mordina, B.; Kumar, R.; Tiwari, R.K.; Setua, D.K.; Sharma, A. Fe3O4 nanoparticles embedded hollow mesoporous carbon nanofibers and polydimethylsiloxane-based nanocomposites as efficient microwave absorber. J. Phys. Chem. C 2017, 121, 7810–7820. [Google Scholar] [CrossRef]
- Sun, C.; Guo, Y.; Xu, X.; Du, Q.; Duan, H.; Chen, Y.; Li, H.; Liu, H. In situ preparation of carbon/Fe3C composite nanofibers with excellent electromagnetic wave absorption properties. Compos. Part. A Appl. Sci. Manuf. 2017, 92, 33–41. [Google Scholar] [CrossRef]
- Lu, X.; Wu, Y.; Cai, H.; Qu, X.; Ni, L.; Teng, C.; Zhu, Y.; Jiang, L. Fe3O4 nanopearl decorated carbon nanotubes stemming from carbon onions with self-cleaning and microwave absorption properties. RSC Adv. 2015, 5, 54175–54181. [Google Scholar] [CrossRef]
- Gai, L.; Zhao, Y.; Song, G.; An, Q.; Xiao, Z.; Zhai, S.; Li, Z. Construction of core-shell PPy@MoS2 with nanotube-like heterostructures for electromagnetic wave absorption: Assembly and enhanced mechanism. Compos. Part. A Appl. Sci. Manuf. 2020, 136, 105965. [Google Scholar] [CrossRef]
- Gao, Y.; Lei, Z.; Pan, L.; Wu, Q.; Zhuang, X.; Tan, G.; Ning, M.; Man, Q. Lightweight chitosan-derived carbon/rGO aerogels loaded with hollow Co1-xNixO nanocubes for superior electromagnetic wave absorption and heat insulation. J. Chem. Eng. 2023, 457, 141325. [Google Scholar] [CrossRef]
- Deka, N.; Bera, A.; Roy, D.; De, P. Unraveling the role of counter anions on optical and microwave absorption characteristics of flexible copolymers. Polymer 2023, 282, 126158. [Google Scholar] [CrossRef]
- Yang, X.; Pang, X.; Cao, M.; Liu, X.; Li, X. Efficient microwave absorption induced by hierarchical pores of reed-derived ultralight carbon materials. Ind. Crops Prod. 2021, 171, 113814. [Google Scholar] [CrossRef]
- Luo, H.; Lu, Y.; Qiu, J. An Electromagnetic microwave stealth photothermal soft actuator with lightweight and hydrophobic properties. ACS Appl. Mater. Interfaces 2021, 13, 32046–32057. [Google Scholar] [CrossRef]
- Li, Z.; Han, X.; Ma, Y.; Liu, D.; Wang, Y.; Xu, P.; Li, C.; Du, Y. MOFs-derived hollow Co/C microspheres with enhanced microwave absorption performance. ACS Sustain. Chem. Eng. 2018, 6, 8904–8913. [Google Scholar] [CrossRef]
- Zhu, B.; Cui, Y.; Lv, D.; Liu, P.; Wei, H.; Bu, J. Synthesis and electromagnetic wave absorption properties of peanut shell-like SiC fibers. Mater. Lett. 2020, 263, 127288. [Google Scholar] [CrossRef]
- Peymanfar, R.; Yektaei, M.; Javanshir, S.; Selseleh-Zakerin, E. Regulating the energy band-gap, UV–Vis light absorption, electrical conductivity, microwave absorption, and electromagnetic shielding effectiveness by modulating doping agent. Polymer 2020, 209, 122981. [Google Scholar] [CrossRef]
- Li, Z.; Lin, H.; Ding, S.; Ling, H.; Wang, T.; Miao, Z.; Zhang, M.; Meng, A.; Li, Q. Synthesis and enhanced electromagnetic wave absorption performances of Fe3O4@C decorated walnut shell-derived porous carbon. Carbon 2020, 167, 148–159. [Google Scholar] [CrossRef]
- Chang, Q.; Li, C.; Sui, J.; Waterhouse, G.I.N.; Zhang, Z.-M.; Yu, L.-M. Cage-Like eggshell membrane-derived Co-CoxSy-Ni/N,S-codoped carbon composites for electromagnetic wave absorption. Chem. Eng. J. 2022, 430, 132650. [Google Scholar] [CrossRef]
- Shi, X.L.; Cao, M.S.; Yuan, J.; Fang, X.Y. Dual nonlinear dielectric resonance and nesting microwave absorption peaks of hollow cobalt nanochains composites with negative permeability. Appl. Phys. Lett. 2009, 95, 163108. [Google Scholar] [CrossRef]
- Zhang, M.; Jiang, Z.; Lv, X.; Zhang, X.; Zhang, Y.; Zhang, J.; Zhang, L.; Gong, C. Microwave absorption performance of reduced graphene oxide with negative imaginary permeability. J. Phys. D Appl. Phys. 2020, 53, 02LT01. [Google Scholar] [CrossRef]
- Tong, G.; Yuan, J.; Wu, W.; Hu, Q.; Qian, H.; Li, L.; Shen, J. Flower-like Co superstructures: Morphology and phase evolution mechanism and novel microwave electromagnetic characteristics. CrystEngComm 2012, 14, 2071–2079. [Google Scholar] [CrossRef]
- Liu, L.; He, N.; Wu, T.; Hu, P.; Tong, G. Co/C/Fe/C hierarchical flowers with strawberry-like surface as surface plasmon for enhanced permittivity, permeability, and microwave absorption properties. J. Chem. Eng. 2019, 355, 103–108. [Google Scholar] [CrossRef]
- Zeng, Q.; Xu, D.-W.; Chen, P.; Yu, Q.; Xiong, X.-H.; Chu, H.-R.; Wang, Q. 3D graphene-Ni microspheres with excellent microwave absorption and corrosion resistance properties. J. Mater. Sci. Mater. Electron. 2018, 29, 2421–2433. [Google Scholar] [CrossRef]
- Nie, H.; Cui, M.; Russell, T.P. A route to rapid carbon nanotube growth. Chem. Commun. 2013, 49, 5159–5161. [Google Scholar] [CrossRef] [PubMed]
- Raza, A.; Wang, J.; Yang, S.; Si, Y.; Ding, B. Hierarchical porous carbon nanofibers via electrospinning. Carbon Lett. 2014, 15, 1–14. [Google Scholar] [CrossRef]
- Rezvanpanah, E.; Ghaffarian Anbaran, S.R.; Di Maio, E. Carbon nanotubes in microwave foaming of thermoplastics. Carbon 2017, 125, 32–38. [Google Scholar] [CrossRef]
- Zhu, Y.-J.; Chen, F. Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem. Rev. 2014, 114, 6462–6555. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Pallavkar, S.; Chen, M.; Yerra, N.; Luo, Z.; Colorado, H.A.; Lin, H.; Haldolaarachchige, N.; Khasanov, A.; Ho, T.C.; et al. Magnetic carbon nanostructures: Microwave energy-assisted pyrolysis vs. conventional pyrolysis. Chem. Commun. 2013, 49, 258–260. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, I.; Salim, A.; Zhu, M.; Yu, J.; Li, Z.; Ding, B. Light and flexible composite nanofibrous membranes for high-efficiency electromagnetic absorption in a broad frequency. ACS Appl. Mater. Interfaces 2018, 10, 44561–44569. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, I.; Cai, J.; Lu, W.; Yu, J.; Li, Z.; Ding, B. Recent progress on electromagnetic wave absorption materials enabled by electrospun carbon nanofibers. Carbon 2023, 213, 118300. [Google Scholar] [CrossRef]
- Li, T.; Zhi, D.; Chen, Y.; Li, B.; Zhou, Z.; Meng, F. Multiaxial electrospun generation of hollow graphene aerogel spheres for broadband high-performance microwave absorption. Nano Res. 2020, 13, 477–484. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elhassan, A.; Lv, X.; Abdalla, I.; Yu, J.; Li, Z.; Ding, B. Efficient Synthesis of Fe3O4/PPy Double-Carbonized Core-Shell-like Composites for Broadband Electromagnetic Wave Absorption. Polymers 2024, 16, 1160. https://doi.org/10.3390/polym16081160
Elhassan A, Lv X, Abdalla I, Yu J, Li Z, Ding B. Efficient Synthesis of Fe3O4/PPy Double-Carbonized Core-Shell-like Composites for Broadband Electromagnetic Wave Absorption. Polymers. 2024; 16(8):1160. https://doi.org/10.3390/polym16081160
Chicago/Turabian StyleElhassan, Ahmed, Xiaoshuang Lv, Ibrahim Abdalla, Jianyong Yu, Zhaoling Li, and Bin Ding. 2024. "Efficient Synthesis of Fe3O4/PPy Double-Carbonized Core-Shell-like Composites for Broadband Electromagnetic Wave Absorption" Polymers 16, no. 8: 1160. https://doi.org/10.3390/polym16081160
APA StyleElhassan, A., Lv, X., Abdalla, I., Yu, J., Li, Z., & Ding, B. (2024). Efficient Synthesis of Fe3O4/PPy Double-Carbonized Core-Shell-like Composites for Broadband Electromagnetic Wave Absorption. Polymers, 16(8), 1160. https://doi.org/10.3390/polym16081160