A Review of Antimicrobial Polymer Coatings on Steel for the Food Processing Industry
Abstract
:1. Introduction
2. Treatment Strategies for the Prevention of Bacterial Adhesion and Biofilm Formation on Steel for Food Application
- Coating the steel surface with released-based antimicrobial coating;
- Coating the steel surface with contact-based antimicrobial coating;
- Immobilizing antifouling coatings on the steel surface to prevent bacterial adhesion.
2.1. Released-Based Antimicrobial Polymer Coatings
2.1.1. Antibacterial Polymer Coatings Functionalized with Metal Nanoparticles
Antibacterial Additive | Type of Polymer Matrix | Coating Method | Properties | Reference |
---|---|---|---|---|
AgNPs | Organic Locust Gum/ Polyethylene glycol | Drop casting and airbrush spray coating |
| [61] |
AgNPs | PTFE | Electroless |
| [59] |
AgNPs | PTFE | Sol-gel-based dip coating method |
| [60] |
AgNPs | DOPA | Layer-by-layer deposition |
| [62] |
Ag/Zn-exchanged zeolite | Epoxy resin | Airless spray |
| [63] |
AgNPs Bioactive Glass | Chitosan | electrophoretic deposition |
| [65] |
CuNPs | PEGDA hydrogel | electrochemical polymerization |
| [68] |
2.1.2. Antibacterial Polymer Coatings Functionalized with Antibacterial Enzymes
2.2. Contact-Based Antimicrobial Polymer Coatings
2.2.1. Antimicrobial Cationic Polymers and Peptides Coatings
2.2.2. Chloropolymers (N-Halamine) Coatings on the Steel
2.2.3. Coatings with Photocatalytically Active Semiconductors (TiO2) on the Steel
2.3. Anti-Biofouling Polymer Coatings on the Steel
3. Conclusions
- -
- An overview of how bactericidal polymer coatings are classified according to their interaction mechanisms with microbes. This classification helps in understanding the diverse strategies employed to prevent microbial colonization.
- -
- In-depth analysis of different strategies to achieve antibacterial properties: released- and contact-based antimicrobial coatings and antibiofouling strategies for steel coatings.
- -
- The impact of antimicrobial additives on the mechanical and corrosion resistance properties of coatings is significant. This factor necessitates careful consideration in selecting the appropriate bactericidal strategy for real-world applications.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Shaltout, F.A. Ways of Food Contamination, Its Impact and Prevention. Food Sci. Nutr. Technol. 2024, 9, 1–8. [Google Scholar] [CrossRef]
- Hussain, M. Food Contamination: Major Challenges of the Future. Foods 2016, 5, 21. [Google Scholar] [CrossRef] [PubMed]
- Abebe, G.M. The Role of Bacterial Biofilm in Antibiotic Resistance and Food Contamination. Int. J. Microbiol. 2020, 2020, 1705814. [Google Scholar] [CrossRef] [PubMed]
- DeFlorio, W.; Liu, S.; White, A.R.; Taylor, T.M.; Cisneros-Zevallos, L.; Min, Y.; Scholar, E.M.A. Recent Developments in Antimicrobial and Antifouling Coatings to Reduce or Prevent Contamination and Cross-contamination of Food Contact Surfaces by Bacteria. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3093–3134. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Gómez, P.; Muro-Fraguas, I.; Múgica-Vidal, R.; Sainz-García, A.; Sainz-García, E.; González-Raurich, M.; Álvarez-Ordóñez, A.; Prieto, M.; López, M.; López, M.; et al. Development and Characterization of Anti-Biofilm Coatings Applied by Non-Equilibrium Atmospheric Plasma on Stainless Steel. Food Res. Int. 2022, 152, 109891. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Rodríguez, F.; Valero, A.; Carrasco, E.; García, R.M.; Zurera, G. Understanding and Modelling Bacterial Transfer to Foods: A Review. Trends Food Sci. Technol. 2008, 19, 131–144. [Google Scholar] [CrossRef]
- Larsen, M.H.; Dalmasso, M.; Ingmer, H.; Langsrud, S.; Malakauskas, M.; Mader, A.; Møretrø, T.; Smole Možina, S.; Rychli, K.; Wagner, M.; et al. Persistence of Foodborne Pathogens and Their Control in Primary and Secondary Food Production Chains. Food Control 2014, 44, 92–109. [Google Scholar] [CrossRef]
- Muhterem-Uyar, M.; Dalmasso, M.; Bolocan, A.S.; Hernandez, M.; Kapetanakou, A.E.; Kuchta, T.; Manios, S.G.; Melero, B.; Minarovičová, J.; Nicolau, A.I.; et al. Environmental Sampling for Listeria monocytogenes Control in Food Processing Facilities Reveals Three Contamination Scenarios. Food Control 2015, 51, 94–107. [Google Scholar] [CrossRef]
- Gorman, R.; Bloomfield, S.; Adley, C.C. A Study of Cross-Contamination of Food-Borne Pathogens in the Domestic Kitchen in the Republic of Ireland. Int. J. Food Microbiol. 2002, 76, 143–150. [Google Scholar] [CrossRef]
- Carrasco, E.; Morales-Rueda, A.; García-Gimeno, R.M. Cross-Contamination and Recontamination by Salmonella in Foods: A Review. Food Res. Int. 2012, 45, 545–556. [Google Scholar] [CrossRef]
- Costerton, J.W.; Lewandowski, Z.; Caldwell, D.E.; Korber, D.R.; Lappin-Scott, H.M. MICROBIAL BIOFILMS. Annu. Rev. Microbiol. 1995, 49, 711–745. [Google Scholar] [CrossRef] [PubMed]
- Kumar, C.G.; Anand, S.K. Significance of Microbial Biofilms in Food Industry: A Review. Int. J. Food Microbiol. 1998, 42, 9–27. [Google Scholar] [CrossRef]
- Awad, T.S.; Asker, D.; Hatton, B.D. Food-Safe Modification of Stainless Steel Food-Processing Surfaces to Reduce Bacterial Biofilms. ACS Appl. Mater. Interfaces 2018, 10, 22902–22912. [Google Scholar] [CrossRef]
- Herald, P.J.; Zottola, E.A. Attachment of Listeria monocytogenes to Stainless Steel Surfaces at Various Temperatures and PH Values. J. Food Sci. 1988, 53, 1549–1562. [Google Scholar] [CrossRef]
- Patel AD, D.A. Stainless Steel for Dairy and Food Industry: A Review. J. Mater. Sci. Eng. 2015, 4, 1–4. [Google Scholar] [CrossRef]
- Chmielewski, R.A.N.; Frank, J.F. Biofilm Formation and Control in Food Processing Facilities. Compr. Rev. Food Sci. Food Saf. 2003, 2, 22–32. [Google Scholar] [CrossRef]
- Corcoran, M.; Morris, D.; De Lappe, N.; O’Connor, J.; Lalor, P.; Dockery, P.; Cormican, M. Commonly Used Disinfectants Fail To Eradicate Salmonella enterica Biofilms from Food Contact Surface Materials. Appl. Environ. Microbiol. 2014, 80, 1507–1514. [Google Scholar] [CrossRef]
- Gibson, H.; Taylor, J.H.; Hall, K.E.; Holah, J.T. Effectiveness of Cleaning Techniques Used in the Food Industry in Terms of the Removal of Bacterial Biofilms. J. Appl. Microbiol. 1999, 87, 41–48. [Google Scholar] [CrossRef]
- Pan, Y.; Breidt, F.; Kathariou, S. Resistance of Listeria monocytogenes Biofilms to Sanitizing Agents in a Simulated Food Processing Environment. Appl. Environ. Microbiol. 2006, 72, 7711–7717. [Google Scholar] [CrossRef]
- Doh, H.; Nitin, N. Gelatin-Based Rechargeable Antibacterial Hydrogel Paint Coating for Reducing Cross-Contamination and Biofilm Formation on Stainless Steel. Food Control 2022, 141, 109113. [Google Scholar] [CrossRef]
- Nerín, C.; Aznar, M.; Carrizo, D. Food Contamination during Food Process. Trends Food Sci. Technol. 2016, 48, 63–68. [Google Scholar] [CrossRef]
- Hage, M.; Akoum, H.; Chihib, N.-E.; Jama, C. Antimicrobial Peptides-Coated Stainless Steel for Fighting Biofilms Formation for Food and Medical Fields: Review of Literature. Coatings 2021, 11, 1216. [Google Scholar] [CrossRef]
- Isopencu, G.; Mocanu, A. Recent Advances in Antibacterial Composite Coatings. Coatings 2022, 12, 1504. [Google Scholar] [CrossRef]
- Brooks, J.D.; Flint, S.H. Biofilms in the Food Industry: Problems and Potential Solutions. Int. J. Food Sci. Technol. 2008, 43, 2163–2176. [Google Scholar] [CrossRef]
- Lestido-Cardama, A.; Sendón, R.; Bustos, J.; Nieto, M.T.; Paseiro-Losada, P.; Rodríguez-Bernaldo de Quirós, A. Food and Beverage Can Coatings: A Review on Chemical Analysis, Migration, and Risk Assessment. Compr. Rev. Food Sci. Food Saf. 2022, 21, 3558–3611. [Google Scholar] [CrossRef]
- Leivo, E.; Wilenius, T.; Kinos, T.; Vuoristo, P.; Mäntylä, T. Properties of Thermally Sprayed Fluoropolymer PVDF, ECTFE, PFA and FEP Coatings. Prog. Org. Coat. 2004, 49, 69–73. [Google Scholar] [CrossRef]
- Kaplan, M.A.; Gorbenko, A.D.; Ivannikov, A.Y.; Kartabaeva, B.B.; Konushkin, S.V.; Demin, K.Y.; Baikin, A.S.; Sergienko, K.V.; Nasakina, E.O.; Bannykh, I.O.; et al. Investigation of Antibacterial Properties of Corrosion-Resistant 316L Steel Alloyed with 0.2 Wt.% and 0.5 Wt.% Ag. Materials 2022, 16, 319. [Google Scholar] [CrossRef]
- Kaplan, M.A.; Ivannikov, A.Y.; Konushkin, S.V.; Nasakina, E.O.; Baikin, A.S.; Kartabaeva, B.B.; Gorbenko, A.D.; Kolmakov, A.G.; Sevostyanov, M.A. Study of the Structure, Mechanical Characteristics, and Antibacterial Properties of Corrosion-Resistant Steel Alloyed with Silver and Titanium. Dokl. Chem. 2022, 502, 37–44. [Google Scholar] [CrossRef]
- Liu, L.T.; Li, Y.Z.; Yu, K.P.; Zhu, M.Y.; Jiang, H.; Yu, P.; Huang, M.X. A Novel Stainless Steel with Intensive Silver Nanoparticles Showing Superior Antibacterial Property. Mater. Res. Lett. 2021, 9, 270–277. [Google Scholar] [CrossRef]
- Liu, L.T.; Chin, A.W.H.; Yu, P.; Poon, L.L.M.; Huang, M.X. Anti-Pathogen Stainless Steel Combating COVID-19. Chem. Eng. J. 2022, 433, 133783. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Guo, H. A Short Review of Antibacterial Cu-Bearing Stainless Steel: Antibacterial Mechanisms, Corrosion Resistance, and Novel Preparation Techniques. J. Iron Steel Res. Int. 2024, 31, 24–45. [Google Scholar] [CrossRef]
- Veselinov, D.; Skulev, H.; Yankova, R.; Ivanov, S.; Moriarty, T.F.; Gueorguiev, B. Enhancing Antibacterial Performance: Structure, Phase Composition, and Microroughness of Selective Plated Copper Coatings on Medical-Grade Stainless Steel 1.4021 and Nickel Alloy Ni200. Appl. Sci. 2023, 13, 9840. [Google Scholar] [CrossRef]
- Santa-aho, S.; Lindgren, M. Characterisation of Antibacterial Silver Coatings Produced by Selective Electrolysis on Stainless Steel. Int. Heat. Treat. Surf. Eng. 2008, 2, 23–26. [Google Scholar] [CrossRef]
- Sun, G.; Tao, F.; Jiang, B.; Ji, W.; Niu, M.; Shen, X. Microstructure and Biomedical Properties of Laser Alloyed Cu-Co Alloys on Medical Stainless Steel. Chin. J. Lasers 2018, 45, 1202008. [Google Scholar] [CrossRef]
- Sohrabi, S.; Pazokian, H.; Ghafary, B.; Mollabashi, M.; Montazerolghaem, M. Improving the Antibacterial Performance of 304 Stainless Steel Using Nd-YAG Laser Irradiation. Appl. Phys. A 2024, 130, 104. [Google Scholar] [CrossRef]
- Hirano, M.; Hashimoto, M.; Miura, K.; Ohtsu, N. Fabrication of Antibacterial Nanopillar Surface on AISI 316 Stainless Steel through Argon Plasma Etching with Direct Current Discharge. Surf. Coat. Technol. 2021, 406, 126680. [Google Scholar] [CrossRef]
- Nikiforov, A.; Ma, C.; Choukourov, A.; Palumbo, F. Plasma Technology in Antimicrobial Surface Engineering. J. Appl. Phys. 2022, 131, 011102. [Google Scholar] [CrossRef]
- Awad, D.; Awad, D.; Khalaf, K.; Alshami, L. In Vitro Study of the Antibacterial Effect of Plasma Surface Treatment Using Argon Gas on Orthodontic Stainless Steel Brackets against Streptococcus mutans and Lactobacillus acidophilus. Bionatura 2022, 7, 1–8. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, X.; Jiang, L.; Ma, Y.; Fan, A.; Tang, B. Antibacterial Property of Cu Modified Stainless Steel by Plasma Surface Alloying. J. Iron Steel Res. Int. 2012, 19, 75–79. [Google Scholar] [CrossRef]
- González, A.; Riego, A.; Vega, V.; García, J.; Galié, S.; Gutiérrez del Río, I.; Martínez de Yuso, M.; Villar, C.; Lombó, F.; De la Prida, V. Functional Antimicrobial Surface Coatings Deposited onto Nanostructured 316L Food-Grade Stainless Steel. Nanomaterials 2021, 11, 1055. [Google Scholar] [CrossRef]
- Elangovan, T.; Balasankar, A.; Arokiyaraj, S.; Rajagopalan, R.; George, R.P.; Oh, T.H.; Kuppusami, P.; Ramasundaram, S. Highly Durable Antimicrobial Tantalum Nitride/Copper Coatings on Stainless Steel Deposited by Pulsed Magnetron Sputtering. Micromachines 2022, 13, 1411. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.S.; Zemajtis, F.; Nosonovsky, M.; Sobolev, K. Synthesis of ZnO/TiO2-Based Hydrophobic Antimicrobial Coatings for Steel and Their Roughness, Wetting, and Tribological Characterization. J. Tribol. 2022, 144, 081402. [Google Scholar] [CrossRef]
- Qu, Y.; Lu, X.; Zhu, T.; Yu, J.; Zhang, Z.; Sun, Y.; Hao, Y.; Wang, Y.; Yu, Y. Application of an Antibacterial Coating Layer via Amine-Terminated Hyperbranched Zirconium–Polysiloxane for Stainless Steel Orthodontic Brackets. IET Nanobiotechnol. 2024, 2024, 4391833. [Google Scholar] [CrossRef]
- Huang, K.; Chen, J.; Nugen, S.R.; Goddard, J.M. Hybrid Antifouling and Antimicrobial Coatings Prepared by Electroless Co-Deposition of Fluoropolymer and Cationic Silica Nanoparticles on Stainless Steel: Efficacy against Listeria monocytogenes. ACS Appl. Mater. Interfaces 2016, 8, 15926–15936. [Google Scholar] [CrossRef]
- Adlhart, C.; Verran, J.; Azevedo, N.F.; Olmez, H.; Keinänen-Toivola, M.M.; Gouveia, I.; Melo, L.F.; Crijns, F. Surface Modifications for Antimicrobial Effects in the Healthcare Setting: A Critical Overview. J. Hosp. Infect. 2018, 99, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Mu, M.; Wang, X.; Taylor, M.; Castillo, A.; Cisneros-Zevallos, L.; Akbulut, M.; Min, Y. Multifunctional Coatings for Mitigating Bacterial Fouling and Contamination. Colloid Interface Sci. Commun. 2023, 55, 100717. [Google Scholar] [CrossRef]
- Ramburrun, P.; Pringle, N.A.; Dube, A.; Adam, R.Z.; D’Souza, S.; Aucamp, M. Recent Advances in the Development of Antimicrobial and Antifouling Biocompatible Materials for Dental Applications. Materials 2021, 14, 3167. [Google Scholar] [CrossRef]
- Xia, B.; Dong, C.; Lu, Y.; Rong, M.; Lv, Y.; Shi, J. Preparation and Characterization of Chemically-Crosslinked Polyethyleneimine Films on Hydroxylated Surfaces for Stable Bactericidal Coatings. Thin Solid Films 2011, 520, 1120–1124. [Google Scholar] [CrossRef]
- Dediu, V.; Busila, M.; Tucureanu, V.; Bucur, F.I.; Iliescu, F.S.; Brincoveanu, O.; Iliescu, C. Synthesis of ZnO/Au Nanocomposite for Antibacterial Applications. Nanomaterials 2022, 12, 3832. [Google Scholar] [CrossRef]
- Eto, S.; Kawano, S.; Someya, S.; Miyamoto, H.; Sonohata, M.; Mawatari, M. First Clinical Experience With Thermal-Sprayed Silver Oxide–Containing Hydroxyapatite Coating Implant. J. Arthroplast. 2016, 31, 1498–1503. [Google Scholar] [CrossRef]
- Makowski, T.; Svyntkivska, M.; Piorkowska, E.; Mizerska, U.; Fortuniak, W.; Kowalczyk, D.; Brzezinski, S.; Kregiel, D. Antibacterial Electroconductive Composite Coating of Cotton Fabric. Materials 2022, 15, 1072. [Google Scholar] [CrossRef]
- Rodríguez-Barajas, N.; Becerra-Solano, L.; Gutiérrez-Mercado, Y.K.; Macías-Carballo, M.; Gómez, C.M.; Pérez-Larios, A. Study of the Interaction of Ti–Zn as a Mixed Oxide at Different PH Values Synthesized by the Sol–Gel Method and Its Antibacterial Properties. Nanomaterials 2022, 12, 1948. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yu, Y.; Wang, H.; Ren, L.; Yang, K. Study on Mechanical Behavior of Cu-Bearing Antibacterial Titanium Alloy Implant. J. Mech. Behav. Biomed. Mater. 2022, 125, 104926. [Google Scholar] [CrossRef] [PubMed]
- Noronha, V.T.; Paula, A.J.; Durán, G.; Galembeck, A.; Cogo-Müller, K.; Franz-Montan, M.; Durán, N. Silver Nanoparticles in Dentistry. Dent. Mater. 2017, 33, 1110–1126. [Google Scholar] [CrossRef] [PubMed]
- Hermawan, H. Updates on the Research and Development of Absorbable Metals for Biomedical Applications. Prog. Biomater. 2018, 7, 93–110. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, J.; Lan, X.; Qi, H.; Fan, D.; Zhang, L. Synergy of Bioinspired Chimeric Protein and Silver Nanoparticles for Fabricating “Kill-Release” Antibacterial Coating. Appl. Surf. Sci. 2021, 557, 149799. [Google Scholar] [CrossRef]
- Gao, L.; Wang, L.; Yang, L.; Zhao, Y.; Shi, N.; An, C.; Sun, Y.; Xie, J.; Wang, H.; Song, Y.; et al. Preparation, Characterization and Antibacterial Activity of Silver Nanoparticle/Graphene Oxide/Diatomite Composite. Appl. Surf. Sci. 2019, 484, 628–636. [Google Scholar] [CrossRef]
- Zhu, M.; Li, X.; Ge, L.; Zi, Y.; Qi, M.; Li, Y.; Li, D.; Mu, C. Green Synthesis of κ-Carrageenan@Ag Submicron-Particles with High Aqueous Stability, Robust Antibacterial Activity and Low Cytotoxicity. Mater. Sci. Eng. C 2020, 106, 110185. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, Y.; Wang, C. Development and Evaluation of Electroless Ag-PTFE Composite Coatings with Anti-Microbial and Anti-Corrosion Properties. Appl. Surf. Sci. 2005, 252, 1620–1627. [Google Scholar] [CrossRef]
- Zhang, S.; Liang, X.; Gadd, G.M.; Zhao, Q. A Sol–Gel Based Silver Nanoparticle/Polytetrafluorethylene (AgNP/PTFE) Coating with Enhanced Antibacterial and Anti-Corrosive Properties. Appl. Surf. Sci. 2021, 535, 147675. [Google Scholar] [CrossRef]
- Karabulut, G.; Beköz Üllen, N.; Akyüz, E.; Karakuş, S. Surface Modification of 316L Stainless Steel with Multifunctional Locust Gum/Polyethylene Glycol-Silver Nanoparticles Using Different Coating Methods. Prog. Org. Coat. 2023, 174, 107291. [Google Scholar] [CrossRef]
- Charlot, A.; Sciannaméa, V.; Lenoir, S.; Faure, E.; Jérôme, R.; Jérôme, C.; Van De Weerdt, C.; Martial, J.; Archambeau, C.; Willet, N.; et al. All-in-One Strategy for the Fabrication of Antimicrobial Biomimetic Films on Stainless Steel. J. Mater. Chem. 2009, 19, 4117. [Google Scholar] [CrossRef]
- Pereyra, A.M.; Gonzalez, M.R.; Rodrigues, T.A.; Soares Luterbach, M.T.; Basaldella, E.I. Enhancement of Biocorrosion Resistance of Epoxy Coating by Addition of Ag/Zn Exchanged a Zeolite. Surf. Coat. Technol. 2015, 270, 284–289. [Google Scholar] [CrossRef]
- Cowan, M.M.; Abshire, K.Z.; Houk, S.L.; Evans, S.M. Antimicrobial Efficacy of a Silver-Zeolite Matrix Coating on Stainless Steel. J. Ind. Microbiol. Biotechnol. 2003, 30, 102–106. [Google Scholar] [CrossRef]
- Pishbin, F.; Mouriño, V.; Gilchrist, J.B.; McComb, D.W.; Kreppel, S.; Salih, V.; Ryan, M.P.; Boccaccini, A.R. Single-Step Electrochemical Deposition of Antimicrobial Orthopaedic Coatings Based on a Bioactive Glass/Chitosan/Nano-Silver Composite System. Acta Biomater. 2013, 9, 7469–7479. [Google Scholar] [CrossRef]
- Qian, H.; Li, M.; Li, Z.; Lou, Y.; Huang, L.; Zhang, D.; Xu, D.; Du, C.; Lu, L.; Gao, J. Mussel-Inspired Superhydrophobic Surfaces with Enhanced Corrosion Resistance and Dual-Action Antibacterial Properties. Mater. Sci. Eng. C 2017, 80, 566–577. [Google Scholar] [CrossRef]
- Lee, B.-S.; Lin, Y.-C.; Hsu, W.-C.; Hou, C.-H.; Shyue, J.-J.; Hsiao, S.-Y.; Wu, P.-J.; Lee, Y.-T.; Luo, S.-C. Engineering Antifouling and Antibacterial Stainless Steel for Orthodontic Appliances through Layer-by-Layer Deposition of Nanocomposite Coatings. ACS Appl. Bio Mater. 2020, 3, 486–494. [Google Scholar] [CrossRef]
- Cometa, S.; Iatta, R.; Ricci, M.A.; Ferretti, C.; De Giglio, E. Analytical Characterization and Antimicrobial Properties of Novel Copper Nanoparticle–Loaded Electrosynthesized Hydrogel Coatings. J. Bioact. Compat. Polym. 2013, 28, 508–522. [Google Scholar] [CrossRef]
- Glinel, K.; Thebault, P.; Humblot, V.; Pradier, C.M.; Jouenne, T. Antibacterial Surfaces Developed from Bio-Inspired Approaches. Acta Biomater. 2012, 8, 1670–1684. [Google Scholar] [CrossRef]
- Caro, A.; Humblot, V.; Méthivier, C.; Minier, M.; Salmain, M.; Pradier, C.-M. Grafting of Lysozyme and/or Poly(Ethylene Glycol) to Prevent Biofilm Growth on Stainless Steel Surfaces. J. Phys. Chem. B 2009, 113, 2101–2109. [Google Scholar] [CrossRef]
- Faure, E.; Vreuls, C.; Falentin-Daudré, C.; Zocchi, G.; Van de Weerdt, C.; Martial, J.; Jérôme, C.; Duwez, A.-S.; Detrembleur, C. A Green and Bio-Inspired Process to Afford Durable Anti-Biofilm Properties to Stainless Steel. Biofouling 2012, 28, 719–728. [Google Scholar] [CrossRef]
- Yuan, S.; Wan, D.; Liang, B.; Pehkonen, S.O.; Ting, Y.P.; Neoh, K.G.; Kang, E.T. Lysozyme-Coupled Poly(Poly(Ethylene Glycol) Methacrylate)−Stainless Steel Hybrids and Their Antifouling and Antibacterial Surfaces. Langmuir 2011, 27, 2761–2774. [Google Scholar] [CrossRef]
- Homaei, A.A.; Sariri, R.; Vianello, F.; Stevanato, R. Enzyme Immobilization: An Update. J. Chem. Biol. 2013, 6, 185–205. [Google Scholar] [CrossRef]
- Humblot, V.; Yala, J.-F.; Thebault, P.; Boukerma, K.; Héquet, A.; Berjeaud, J.-M.; Pradier, C.-M. The Antibacterial Activity of Magainin I Immobilized onto Mixed Thiols Self-Assembled Monolayers. Biomaterials 2009, 30, 3503–3512. [Google Scholar] [CrossRef]
- Andrade, C.A. Chemical Immobilization of Antimicrobial Peptides on Biomaterial Surfaces. Front. Biosci. 2016, 8, 453. [Google Scholar] [CrossRef]
- Bahar, A.; Ren, D. Antimicrobial Peptides. Pharmaceuticals 2013, 6, 1543–1575. [Google Scholar] [CrossRef]
- Ren, T.; Qiao, M.; Zhang, L.; Weese, J.; Huang, T.-S.; Ren, X. Antimicrobial Activity of N-Halamine–Coated Materials in Broiler Chicken Houses. J. Food Prot. 2018, 81, 195–201. [Google Scholar] [CrossRef]
- Davis, E.M.; Li, D.; Irvin, R.T. A Peptide—Stainless Steel Reaction That Yields a New Bioorganic—Metal State of Matter. Biomaterials 2011, 32, 5311–5319. [Google Scholar] [CrossRef]
- Héquet, A.; Humblot, V.; Berjeaud, J.-M.; Pradier, C.-M. Optimized Grafting of Antimicrobial Peptides on Stainless Steel Surface and Biofilm Resistance Tests. Colloids Surf. B Biointerfaces 2011, 84, 301–309. [Google Scholar] [CrossRef]
- Faure, E.; Lecomte, P.; Lenoir, S.; Vreuls, C.; Van De Weerdt, C.; Archambeau, C.; Martial, J.; Jérôme, C.; Duwez, A.-S.; Detrembleur, C. Sustainable and Bio-Inspired Chemistry for Robust Antibacterial Activity of Stainless Steel. J. Mater. Chem. 2011, 21, 7901. [Google Scholar] [CrossRef]
- Bastarrachea, L.J.; Goddard, J.M. Development of Antimicrobial Stainless Steel via Surface Modification with N-halamines: Characterization of Surface Chemistry and N-halamine Chlorination. J. Appl. Polym. Sci. 2013, 127, 821–831. [Google Scholar] [CrossRef]
- Bastarrachea, L.J.; McLandsborough, L.A.; Peleg, M.; Goddard, J.M. Antimicrobial N-halamine Modified Polyethylene: Characterization, Biocidal Efficacy, Regeneration, and Stability. J. Food Sci. 2014, 79, E887–E897. [Google Scholar] [CrossRef]
- Nautiyal, A.; Qiao, M.; Ren, T.; Huang, T.-S.; Zhang, X.; Cook, J.; Bozack, M.J.; Farag, R. High-Performance Engineered Conducting Polymer Film towards Antimicrobial/Anticorrosion Applications. Eng. Sci. 2018, 4, 70–78. [Google Scholar] [CrossRef]
- Demir, B.; Taylor, A.; Broughton, R.M.; Huang, T.-S.; Bozack, M.J.; Worley, S.D. N-Halamine Surface Coating for Mitigation of Biofilm and Microbial Contamination in Water Systems for Space Travel. Biofilm 2022, 4, 100076. [Google Scholar] [CrossRef]
- Yemmireddy, V.K.; Farrell, G.D.; Hung, Y. Development of Titanium Dioxide (TiO2) Nanocoatings on Food Contact Surfaces and Method to Evaluate Their Durability and Photocatalytic Bactericidal Property. J. Food Sci. 2015, 80, N1903–N1911. [Google Scholar] [CrossRef]
- Torres Dominguez, E.; Nguyen, P.H.; Hunt, H.K.; Mustapha, A. Antimicrobial Coatings for Food Contact Surfaces: Legal Framework, Mechanical Properties, and Potential Applications. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1825–1858. [Google Scholar] [CrossRef]
- Zhang, S.; Liang, X.; Gadd, G.M.; Zhao, Q. Advanced Titanium Dioxide-Polytetrafluorethylene (TiO2-PTFE) Nanocomposite Coatings on Stainless Steel Surfaces with Antibacterial and Anti-Corrosion Properties. Appl. Surf. Sci. 2019, 490, 231–241. [Google Scholar] [CrossRef]
- Gibney, K.A.; Sovadinova, I.; Lopez, A.I.; Urban, M.; Ridgway, Z.; Caputo, G.A.; Kuroda, K. Poly(Ethylene Imine)s as Antimicrobial Agents with Selective Activity. Macromol. Biosci. 2012, 12, 1279–1289. [Google Scholar] [CrossRef]
- Park, D.; Wang, J.; Klibanov, A.M. One-Step, Painting-Like Coating Procedures To Make Surfaces Highly and Permanently Bactericidal. Biotechnol. Prog. 2006, 22, 584–589. [Google Scholar] [CrossRef]
- Wang, X.; Yan, H.; Hang, R.; Shi, H.; Wang, L.; Ma, J.; Liu, X.; Yao, X. Enhanced Anticorrosive and Antibacterial Performances of Silver Nanoparticles/Polyethyleneimine/MAO Composite Coating on Magnesium Alloys. J. Mater. Res. Technol. 2021, 11, 2354–2364. [Google Scholar] [CrossRef]
- Cao, Z.; Zhu, M.; Dong, X.; Liu, D.; Cao, P. Multimodification of a 304 Stainless Steel Surface Based on DA/PEI/SiO2 for Improving Surface Antimicrobial Performance. Coatings 2023, 13, 1845. [Google Scholar] [CrossRef]
- Andreeva, D.V.; Skorb, E.V.; Shchukin, D.G. Layer-by-Layer Polyelectrolyte/Inhibitor Nanostructures for Metal Corrosion Protection. ACS Appl. Mater. Interfaces 2010, 2, 1954–1962. [Google Scholar] [CrossRef]
- Brunot, C.; Ponsonnet, L.; Lagneau, C.; Farge, P.; Picart, C.; Grosgogeat, B. Cytotoxicity of Polyethyleneimine (PEI), Precursor Base Layer of Polyelectrolyte Multilayer Films. Biomaterials 2007, 28, 632–640. [Google Scholar] [CrossRef]
- Amso, Z.; Hayouka, Z. Antimicrobial Random Peptide Cocktails: A New Approach to Fight Pathogenic Bacteria. Chem. Commun. 2019, 55, 2007–2014. [Google Scholar] [CrossRef]
- Mahlapuu, M.; Håkansson, J.; Ringstad, L.; Björn, C. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Front. Cell Infect. Microbiol. 2016, 6, 235805. [Google Scholar] [CrossRef]
- Ren, X.Y.; Bai, X.Q.; Yuan, C.Q.; Yang, Y.; Xie, H.; Cao, P.; Ma, C.Y.; Wang, X.J.; Yan, X.P. Protein Engineering of a New Recombinant Peptide to Increase the Surface Contact Angle of Stainless Steel. RSC Adv. 2015, 5, 101309–101318. [Google Scholar] [CrossRef]
- Vreuls, C.; Zocchi, G.; Thierry, B.; Garitte, G.; Griesser, S.S.; Archambeau, C.; Van de Weerdt, C.; Martial, J.; Griesser, H. Prevention of Bacterial Biofilms by Covalent Immobilization of Peptides onto Plasma Polymer Functionalized Substrates. J. Mater. Chem. 2010, 20, 8092. [Google Scholar] [CrossRef]
- Cao, P.; Li, W.-W.; Morris, A.R.; Horrocks, P.D.; Yuan, C.-Q.; Yang, Y. Investigation of the Antibiofilm Capacity of Peptide-Modified Stainless Steel. R. Soc. Open Sci. 2018, 5, 172165. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, Y.; Yang, H. Efficacy of Low Concentration Neutralised Electrolysed Water and Ultrasound Combination for Inactivating Escherichia coli ATCC 25922, Pichia Pastoris GS115 and Aureobasidium Pullulans 2012 on Stainless Steel Coupons. Food Control 2017, 73, 889–899. [Google Scholar] [CrossRef]
- Kaur, R.; Liu, S. Antibacterial Surface Design—Contact Kill. Prog. Surf. Sci. 2016, 91, 136–153. [Google Scholar] [CrossRef]
- Bai, R.; Zhang, Q.; Li, L.; Li, P.; Wang, Y.-J.; Simalou, O.; Zhang, Y.; Gao, G.; Dong, A. N-Halamine-Containing Electrospun Fibers Kill Bacteria via a Contact/Release Co-Determined Antibacterial Pathway. ACS Appl. Mater. Interfaces 2016, 8, 31530–31540. [Google Scholar] [CrossRef]
- Cerkez, I.; Kocer, H.B.; Worley, S.D.; Broughton, R.M.; Huang, T.S. Antimicrobial Functionalization of Poly(Ethylene Terephthalate) Fabrics with Waterborne N-halamine Epoxides. J. Appl. Polym. Sci. 2016, 133, 43088. [Google Scholar] [CrossRef]
- Rai, R.K.; Kanniyappan, H.; Muthuvijayan, V.; Venkitasamy, K.; Jayakrishnan, A. Durable Polymeric N. -Halamine Functionalized Stainless Steel Surface for Improved Antibacterial and Anti-Biofilm Activity. Mater. Adv. 2021, 2, 1090–1098. [Google Scholar] [CrossRef]
- Qiao, M.; Liu, Q.; Yong, Y.; Pardo, Y.; Worobo, R.; Liu, Z.; Jiang, S.; Ma, M. Scalable and Rechargeable Antimicrobial Coating for Food Safety Applications. J. Agric. Food Chem. 2018, 66, 11441–11450. [Google Scholar] [CrossRef]
- Skåra, T.; Rosnes, J.T. Emerging Methods and Principles in Food Contact Surface Decontamination/Prevention. In Innovation and Future Trends in Food Manufacturing and Supply Chain Technologies; Elsevier: Amsterdam, The Netherlands, 2016; pp. 151–172. [Google Scholar]
- Yu, J.C.; Ho, W.; Lin, J.; Yip, H.; Wong, P.K. Photocatalytic Activity, Antibacterial Effect, and Photoinduced Hydrophilicity of TiO2 Films Coated on a Stainless Steel Substrate. Environ. Sci. Technol. 2003, 37, 2296–2301. [Google Scholar] [CrossRef]
- Krumdieck, S.P.; Boichot, R.; Gorthy, R.; Land, J.G.; Lay, S.; Gardecka, A.J.; Polson, M.I.J.; Wasa, A.; Aitken, J.E.; Heinemann, J.A.; et al. Nanostructured TiO2 Anatase-Rutile-Carbon Solid Coating with Visible Light Antimicrobial Activity. Sci. Rep. 2019, 9, 1883. [Google Scholar] [CrossRef]
- Fujishima, A.; Rao, T.N.; Tryk, D.A. TiO2 Photocatalysts and Diamond Electrodes. Electrochim. Acta 2000, 45, 4683–4690. [Google Scholar] [CrossRef]
- Sobczyk-Guzenda, A.; Szymanski, W.; Jedrzejczak, A.; Batory, D.; Jakubowski, W.; Owczarek, S. Bactericidal and Photowetting Effects of Titanium Dioxide Coatings Doped with Iron and Copper/Fluorine Deposited on Stainless Steel Substrates. Surf. Coat. Technol. 2018, 347, 66–75. [Google Scholar] [CrossRef]
- Momeni, M.; Saghafian, H.; Golestani-Fard, F.; Barati, N.; Khanahmadi, A. Effect of SiO2 Addition on Photocatalytic Activity, Water Contact Angle and Mechanical Stability of Visible Light Activated TiO2 Thin Films Applied on Stainless Steel by a Sol Gel Method. Appl. Surf. Sci. 2017, 392, 80–87. [Google Scholar] [CrossRef]
- Priha, O.; Laakso, J.; Tapani, K.; Levänen, E.; Kolari, M.; Mäntylä, T.; Storgårds, E. Effect of Photocatalytic and Hydrophobic Coatings on Brewery Surface Microorganisms. J. Food Prot. 2011, 74, 1891–1901. [Google Scholar] [CrossRef]
- Anne Pauline, S.; Kamachi Mudali, U.; Rajendran, N. Fabrication of Nanoporous Sr Incorporated TiO2 Coating on 316L SS: Evaluation of Bioactivity and Corrosion Protection. Mater. Chem. Phys. 2013, 142, 27–36. [Google Scholar] [CrossRef]
- Cao, S.; Liu, B.; Fan, L.; Yue, Z.; Liu, B.; Cao, B. Highly Antibacterial Activity of N-Doped TiO2 Thin Films Coated on Stainless Steel Brackets under Visible Light Irradiation. Appl. Surf. Sci. 2014, 309, 119–127. [Google Scholar] [CrossRef]
- Hafedh, D.; Kaouther, K.; Ahmed, B.C.L. Multi-Property Improvement of TiO2-WO3 Mixed Oxide Films Deposited on 316L Stainless Steel by Electrophoretic Method. Surf. Coat. Technol. 2017, 326, 45–52. [Google Scholar] [CrossRef]
- Yemmireddy, V.K.; Hung, Y.-C. Effect of Binder on the Physical Stability and Bactericidal Property of Titanium Dioxide (TiO2) Nanocoatings on Food Contact Surfaces. Food Control 2015, 57, 82–88. [Google Scholar] [CrossRef]
- Yoon, S.H.; Rungraeng, N.; Song, W.; Jun, S. Superhydrophobic and Superhydrophilic Nanocomposite Coatings for Preventing Escherichia coli K-12 Adhesion on Food Contact Surface. J. Food Eng. 2014, 131, 135–141. [Google Scholar] [CrossRef]
- Liang, J.; Li, D.; Wang, D.; Liu, K.; Chen, L. Preparation of Stable Superhydrophobic Film on Stainless Steel Substrate by a Combined Approach Using Electrodeposition and Fluorinated Modification. Appl. Surf. Sci. 2014, 293, 265–270. [Google Scholar] [CrossRef]
- Han, J.T.; Jang, Y.; Lee, D.Y.; Park, J.H.; Song, S.-H.; Ban, D.-Y.; Cho, K. Fabrication of a Bionic Superhydrophobic Metal Surface by Sulfur-Induced Morphological Development. J. Mater. Chem. 2005, 15, 3089. [Google Scholar] [CrossRef]
- Zhang, X.; Honkanen, M.; Pore, V.; Levänen, E.; Mäntylä, T. Effect of Heat Treating Gel Films on the Formation of Superhydrophobic Boehmite Flaky Structures on Austenitic Stainless Steel. Ceram. Int. 2009, 35, 1559–1564. [Google Scholar] [CrossRef]
- Santos, O.; Nylander, T.; Rosmaninho, R.; Rizzo, G.; Yiantsios, S.; Andritsos, N.; Karabelas, A.; Müller-Steinhagen, H.; Melo, L.; Boulangé-Petermann, L.; et al. Modified Stainless Steel Surfaces Targeted to Reduce Fouling––Surface Characterization. J. Food Eng. 2004, 64, 63–79. [Google Scholar] [CrossRef]
- Bharathidasan, T.; Sathiyanaryanan, S. Self- Replenishing Superhydrophobic Durable Polymeric Nanocomposite Coatings for Heat Exchanger Channels in Thermal Management Applications. Prog. Org. Coat. 2020, 148, 105828. [Google Scholar] [CrossRef]
- Agbe, H.; Sarkar, D.K.; Chen, X.-G.; Faucheux, N.; Soucy, G.; Bernier, J.-L. Silver–Polymethylhydrosiloxane Nanocomposite Coating on Anodized Aluminum with Superhydrophobic and Antibacterial Properties. ACS Appl. Bio Mater. 2020, 3, 4062–4073. [Google Scholar] [CrossRef]
- Drelich, J.; Marmur, A. Physics and Applications of Superhydrophobic and Superhydrophilic Surfaces and Coatings. Surf. Innov. 2014, 2, 211–227. [Google Scholar] [CrossRef]
- Bruzaud, J.; Tarrade, J.; Celia, E.; Darmanin, T.; Taffin de Givenchy, E.; Guittard, F.; Herry, J.-M.; Guilbaud, M.; Bellon-Fontaine, M.-N. The Design of Superhydrophobic Stainless Steel Surfaces by Controlling Nanostructures: A Key Parameter to Reduce the Implantation of Pathogenic Bacteria. Mater. Sci. Eng. C 2017, 73, 40–47. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, Y. Modification of Stainless Steel Surfaces by Electroless Ni-P and Small Amount of PTFE to Minimize Bacterial Adhesion. J. Food Eng. 2006, 72, 266–272. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, Y. Electroless Ni–Cu–P–PTFE Composite Coatings and Their Anticorrosion Properties. Surf. Coat. Technol. 2005, 200, 2510–2514. [Google Scholar] [CrossRef]
- Huang, K.; Goddard, J.M. Stability of Nonfouling Electroless Nickel-Polytetrafluoroethylene Coatings after Exposure to Commercial Dairy Equipment Sanitizers. J. Dairy. Sci. 2015, 98, 5983–5994. [Google Scholar] [CrossRef]
- Huang, K.; McLandsborough, L.A.; Goddard, J.M. Adhesion and Removal Kinetics of Bacillus cereus Biofilms on Ni-PTFE Modified Stainless Steel. Biofouling 2016, 32, 523–533. [Google Scholar] [CrossRef]
- Zhao, Q. Effect of Surface Free Energy of Graded NI–P–PTFE Coatings on Bacterial Adhesion. Surf. Coat. Technol. 2004, 185, 199–204. [Google Scholar] [CrossRef]
- Lou, G.; Shen, L.; Qian, Y.; Chen, Y.; Bai, H.; Cheng, H.; Xu, J.; Yang, Y. Study on the Antibacterial and Anti-Corrosion Properties of Ni-GO/Ni-RGO Composite Coating on Manganese Steel. Surf. Coat. Technol. 2021, 424, 127681. [Google Scholar] [CrossRef]
- Wei, J.; Ravn, D.B.; Gram, L.; Kingshott, P. Stainless Steel Modified with Poly(Ethylene Glycol) Can Prevent Protein Adsorption but Not Bacterial Adhesion. Colloids Surf. B Biointerfaces 2003, 32, 275–291. [Google Scholar] [CrossRef]
- Zouaghi, S.; Barry, M.E.; Bellayer, S.; Lyskawa, J.; André, C.; Delaplace, G.; Grunlan, M.A.; Jimenez, M. Antifouling Amphiphilic Silicone Coatings for Dairy Fouling Mitigation on Stainless Steel. Biofouling 2018, 34, 769–783. [Google Scholar] [CrossRef] [PubMed]
- Şen, Y.; Bağcı, U.; Güleç, H.A.; Mutlu, M. Modification of Food-Contacting Surfaces by Plasma Polymerization Technique: Reducing the Biofouling of Microorganisms on Stainless Steel Surface. Food Bioproc. Technol. 2012, 5, 166–175. [Google Scholar] [CrossRef]
- Terada, A.; Okuyama, K.; Nishikawa, M.; Tsuneda, S.; Hosomi, M. The Effect of Surface Charge Property on Escherichia coli Initial Adhesion and Subsequent Biofilm Formation. Biotechnol. Bioeng. 2012, 109, 1745–1754. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.J.; Pang, L.Q.; Che, L.M.; Wu, X.E.; Chen, X.D. Nafion Coated Stainless Steel for Anti-Biofilm Application. Colloids Surf. B Biointerfaces 2013, 111, 252–256. [Google Scholar] [CrossRef]
- Yang, W.J.; Cai, T.; Neoh, K.-G.; Kang, E.-T.; Teo, S.L.-M.; Rittschof, D. Barnacle Cement as Surface Anchor for “Clicking” of Antifouling and Antimicrobial Polymer Brushes on Stainless Steel. Biomacromolecules 2013, 14, 2041–2051. [Google Scholar] [CrossRef]
Substrate | Peptide | Polymer Coupling Agent | Antibacterial Activity Species Tested | Reference |
---|---|---|---|---|
Steel | Magainin 1 Nisin | Chitosan polymer coating | Listeria ivanovii | [79] |
Steel | Nisin Tritrpticin (Trp11) Palmitoyl-4K (4K-C16) | Epoxy polymer coating | Bacillus subtilis Escherichia coli | [97] |
Steel | Magainin II | Dopamine | Staphylococcus aureus Escherichia coli | [98] |
Steel | Nisin | Methacrylamide bearing (oxidized) 3,4-dihydroxyphenylalanine (mDOPA | Bacillus subtilis | [80] |
Antibacterial Coating Strategy | Working Agents | Mechanism of Action and Advantages | Limitations |
---|---|---|---|
Released-based antimicrobial coating | Antimicrobial-loaded (metals NPs, antibiotics enzymes) | Simple release. Broad-ranging effectiveness, with the capability to deliver a substantial quantity of antimicrobial substance. | Impact of bacterial suppression is momentarily constrained by the available stock of antimicrobial agents. Potential toxicity from the biocidal substance. Risk of prompting bacterial immunity. Diminution of the antimicrobial compound. Unselective diffusion of antimicrobial elements. |
Contact-based antimicrobial coating | Cationic polymers and peptides, N-halamine, photocatalytic sensitive compounds (TiO2) | Cellular interference upon interaction with an active compound Possibility for sustained operational effectiveness | Activity confined to the vicinity of the altered surface. Diminished effectiveness upon contact with the body. Reduced efficacy of the photocatalytic contact-killing layer under ambient lighting conditions. |
Anti-biofouling coating | EN-PTFE, PEDOT, CNT-PTFE, Ni-P-PTFE, PEG, PEO, alkynyl-PMETA, alkynyl-PHEAA | Deterring bacteria through alterations in surface energy Mechanisms that are non-toxic to cells Initial prevention of bacterial colonization at the onset of contamination | Activity limited to the treated surface. Absence of bactericidal effect Low stability of the surface properties |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sukhareva, K.; Chernetsov, V.; Burmistrov, I. A Review of Antimicrobial Polymer Coatings on Steel for the Food Processing Industry. Polymers 2024, 16, 809. https://doi.org/10.3390/polym16060809
Sukhareva K, Chernetsov V, Burmistrov I. A Review of Antimicrobial Polymer Coatings on Steel for the Food Processing Industry. Polymers. 2024; 16(6):809. https://doi.org/10.3390/polym16060809
Chicago/Turabian StyleSukhareva, Ksenia, Vasily Chernetsov, and Igor Burmistrov. 2024. "A Review of Antimicrobial Polymer Coatings on Steel for the Food Processing Industry" Polymers 16, no. 6: 809. https://doi.org/10.3390/polym16060809
APA StyleSukhareva, K., Chernetsov, V., & Burmistrov, I. (2024). A Review of Antimicrobial Polymer Coatings on Steel for the Food Processing Industry. Polymers, 16(6), 809. https://doi.org/10.3390/polym16060809