Rheology of Highly Filled Polymer Compositions—Limits of Filling, Structure, and Transport Phenomena
Abstract
:1. Introduction
2. Structure as a Function of the Concentration
3. Approaching the Limit of Filling
4. Heterogeneous Displacements
5. Conclusions and Perspectives
- Detailed consideration of the role of interparticle interaction, i.e., attraction or repulsion of filler particles;
- Interaction of the filler with the polymeric matrix;
- Assessment of the role of the shape of filler particles, i.e., transition from spherical to oblong particles;
- Dynamics of movement of filled compositions through channels of different geometry with formations of the surface layer and shear banding;
- Microfluidics, i.e., movement of filled liquids through channels, the size of which is commensurate with the size of the particles;
- Physics of plasticity in deformation of highly filled polymer compositions;
- Consideration of the rheology of polymer compositions with deformable particles, including foams.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Jaworski, Z.; Spychaj, T.; Story, A.; Story, G. Carbomer microgels as model yield-stress fluids. Rev. Chem. Eng. 2022, 38, 881–919. [Google Scholar] [CrossRef]
- Malkin, A.Y.; Derkach, S.R.; Kulichikhin, V.G. Rheology of gels and yielding liquids. Gels 2023, 9, 715. [Google Scholar] [CrossRef] [PubMed]
- Larson, R.G.; Wei, Y. A review of thixotropy and its rheological modeling. J. Rheol. 2019, 63, 477–501. [Google Scholar] [CrossRef]
- Agarwal, M.; Sharma, S.; Shankar, V.; Joshi, Y.M. Distinguishing thixotropy from viscoelasticity. J. Rheol. 2021, 65, 663–680. [Google Scholar] [CrossRef]
- Jamali, S.; McKinley, G.H. The Mnemosyne number and the rheology of remembrance. J. Rheol. 2022, 66, 1027–1039. [Google Scholar] [CrossRef]
- Brown, E.; Jaeger, H.M. Dynamic jamming point for shear thickening suspensions. Phys Rev Lett. 2009, 103, 086001. [Google Scholar] [CrossRef]
- Malkin, A.; Ya, V.; Kulichikhin, V.; Ilyin, S. A modern look on yield stress fluids. Rheol. Acta 2017, 56, 177–188. [Google Scholar] [CrossRef]
- Bonn, D.; Denn, M.M.; Berthier, L.; Divoux, T.; Manneville, S. Yield stress materials in soft condensed matter. Rev. Mod. Phys. 2017, 89, 035005. [Google Scholar] [CrossRef]
- Bhattacharyya, T.; Jacob, A.R.; Petekidis, G.; Joshi, Y.M. On the nature of flow curve and categorization of thixotropic yield stress materials. J. Rheol. 2023, 67, 461–477. [Google Scholar] [CrossRef]
- Masalova, I.; Fabrice, K.K.; Tshilumbu, N.N.; George, N.; Malkin, A.Y. Emulsification of highly concentrated emulsions—A criterion of shear stability. J. Rheol. 2018, 62, 781–790. [Google Scholar] [CrossRef]
- Hipp, J.B.; Richards, J.J.; Wagner, N.J. Direct measurements of the microstructural origin of shear-thinning in carbon black suspensions. J. Rheol. 2021, 65, 145–146. [Google Scholar] [CrossRef]
- Vyssotsky, V.A.; Gordon, S.B.; Frisch, H.L.; Hammersley, J.M. Critical Percolation Probabilities (Bond Problem). Phys. Rev. 1961, 123, 1566. [Google Scholar] [CrossRef]
- Frisch, H.L.; Hammersley, J.M.; Welsh, D.J.A. Monte Carlo Estimates of Percolation Probabilities for Various Lattices. Phys. Rev. 1963, 126, 949. [Google Scholar] [CrossRef]
- Dean, P. A new Monte Carlo method for percolation problems on a lattice. Math. Proc. Cambridge Phil. Soc. 1963, 59, 397–410. [Google Scholar] [CrossRef]
- Woodcock, L.V. Percolation transitions in the hard-sphere fluid. AIChE J. 2012, 58, 1610–1618. [Google Scholar] [CrossRef]
- Simonov-Emel’yanov, I.D. Classification of dsperse-filled polymer composite materials on the basis of lattice type and structure principle. Polym. Sci. Ser. D 2022, 13, 265–269. [Google Scholar] [CrossRef]
- Li, B.; Guo, Y.; Steeman, P.; Bulters, M.; Yu, W. Shear-induced breakdown and agglomeration in nanoparticles filled polymer: The shift of phase boundary and kinetics. J. Rheol. 2021, 65, 291–309. [Google Scholar] [CrossRef]
- Nazockdast, E.; Morris, J.F. Effect of repulsive interactions on structure and rheology of sheared colloidal dispersions. Soft Matter 2012, 8, 4223–4234. [Google Scholar] [CrossRef]
- Terech, P.; Friol, S. Rheometry of an androstanol steroid derivative paramagnetic organogel. Methodology for a comparison with a fatty acid organogel. Tetrahedron 2007, 63, 7366–7374. [Google Scholar] [CrossRef]
- Ilyin, S.; Roumyantseva, T.; Spiridonova, V.; Semakov, A.; Frenkin EMalkin, A.; Kulichikhin, V. Gels of cysteine/Ag-based dilute colloid systems. Gels of cysteine/Ag-based dilute colloid systems and their rheological properties. Soft Matter 2021, 7, 9090–9103. [Google Scholar] [CrossRef]
- Richards, J.A.; Guy, B.M.; Blanco, E.; Hermes, M.; Poy, G.; Poon, W.C.K. The role of friction in the yielding of adhesive non-Brownian suspensions. J. Rheol. 2020, 64, 405–412. [Google Scholar] [CrossRef]
- Kansal, A.R.; Torquato, S.; Stillinger, F.H. Computer generation of dense polydisperse sphere packings. J. Chem. Phys. 2002, 117, 8212–8218. [Google Scholar] [CrossRef]
- Simonov-Yemel’yanov, L.D.; Pykhtin, A.A. Compaction curve of powdered fillers and calculation of composition of dispersion-filled polymer composites with various structure and properties. Inorg. Mater. Appl. Res. 2021, 12, 151–158. [Google Scholar] [CrossRef]
- Simonov-Emelyanov, I.D.; Kharlamova, K.I. Filler particle size and packaging and compositions of filled polymer composites with different types of structures and properties. Theor. Found. Chem. Eng. 2020, 54, 1290–1296. [Google Scholar] [CrossRef]
- Farr, R.S.; Groot, R.D. Close packing density of polydisperse hard spheres. J. Chem. Phys. 2009, 13, 4104. [Google Scholar] [CrossRef] [PubMed]
- Malbranche, N.; Chakraborty, B.; Morris, J.F. Shear thickening in dense bidisperse suspensions. J. Rheol. 2023, 67, 91–104. [Google Scholar] [CrossRef]
- Singh, A.; Ness, C.; Sharma, A.K.; de Pablo, J.J.; Jaeger, H.M. Rheology of bidisperse non-Brownian suspensions. arXiv 2023, arXiv:2311.05696v1. [Google Scholar]
- Garat, C.; Kiesgen de Richter, S.; Lidon, P.; Colin, A.; Ovarlez, G. Using good vibrations: Melting and controlled shear jamming of dense granular suspensions. J. Rheol. 2022, 66, 237–256. [Google Scholar] [CrossRef]
- Malkin, A.Y. Rheology of filled polymers. Adv. Polymer Sci. 1990, 96, 69–97. [Google Scholar]
- Xiong, W.; Wang, X. Nonlinear responses of carbon black-filled polymer solutions to forced oscillatory shear. J. Non-Newton Fluid Mech. 2020, 282, 104319. [Google Scholar] [CrossRef]
- Malkin, A.Y.; Mityukov, A.V.; Kotomin, S.V.; Shabeko, A.A.; Kulichikhin, V.G. Elasticity and plasticity of highly concentrated noncolloidal suspensions under shear. J. Rheol. 2020, 64, 469–479. [Google Scholar] [CrossRef]
- Pradeep, S.; Wessel, A.; Hsiao, L.C. Hydrodynamic origin for the suspension viscoelasticity of rough colloids. J. Rheol. 2022, 66, 895–906. [Google Scholar] [CrossRef]
- Zou, J.; Wang, X. Rheological responses of particle-filled polymer solutions: The transition to linear-nonlinear dichotomy. J. Rheol. 2021, 65, 1–12. [Google Scholar] [CrossRef]
- Larsen, T.; Søbye, A.L.; Royer, J.R.; Poon, W.C.K.; Larsen, T.; Andreasen, S.J.; Drozdov, A.D.; Christiansen, J.D.C. Rheology of polydisperse nonspherical graphite particles suspended in mineral oil. J. Rheol. 2023, 67, 81–89. [Google Scholar] [CrossRef]
- Ladd, A.J.C. Hydrodynamic transport coefficients of random dispersions of hard spheres. J. Chem. Phys. 1990, 93, 3484–3494. [Google Scholar] [CrossRef]
- Mityukov, A.V.; Govorov, V.A.; Malkin, A.; Ya Kulichikhin, V.G. Rheology of highly concentrated suspensions with a bimodal size distribution of solid particles for powder injection molding. Polymers 2021, 13, 2709. [Google Scholar] [CrossRef] [PubMed]
- Oelschlaeger, C.; Marten, J.; Péridont, F.; Willenbacher, N. Imaging of the microstructure of Carbopol dispersions and correlation with their macroelasticity: A micro- and macrorheological study. J. Rheol. 2022, 66, 749–760. [Google Scholar] [CrossRef]
- Del Gado, E.; Morris, J.F. Preface: Physics of dense suspensions. J. Rheol. 2020, 64, 223–225. [Google Scholar] [CrossRef]
- Malkin, A.Y. Non-Newtonian viscosity in steady-state shear flows. J. Non-Newton Fluid Mech. 2013, 192, 48–65. [Google Scholar] [CrossRef]
- Vermant, J.; Solomon, M.J. Flow-induced structure in colloidal suspensions. J. Phys. Condens. Matter 2005, 17, R187. [Google Scholar] [CrossRef]
- O’Brien, V.T.; Mackay, M.E. Shear and elongation flow properties of kaolin suspensions. J. Rheol. 2002, 46, 557–572. [Google Scholar] [CrossRef]
- Lee, Y.S.; Wagner, N.J. Dynamic properties of shear thickening colloidal suspensions. Rheol. Acta 2003, 42, 199–208. [Google Scholar] [CrossRef]
- Bagusat, F.; Böhme, B.; Schiller, P.; Mögel, H.J. Shear induced periodic structure changes in concentrated alumina suspensions at constant shear rate monitored by FBRM. Rheol. Acta 2005, 44, 313–318. [Google Scholar] [CrossRef]
- Rathee, V.; Blair, D.L.; Urbach, J.S. Localized stress fluctuations drive shear thickening in dense suspensions. Proc. Natl. Acad. Sci. USA 2017, 114, 8740–8745. [Google Scholar] [CrossRef]
- Andrade, R.J.E.; Jacob, A.R.; Galindo, R.J.; Galindo-Rosales, F.J.; Campo-Deaño, L.; Huang, Q.; Hassager, O.; Petekidis, G. Dilatancy in dense suspensions of model hard-sphere-like colloids under shear and extensional flow. J. Rheol. 2020, 64, 1179–1196. [Google Scholar] [CrossRef]
- Gurnon, A.K.; Wagner, N.J. Microstructure and rheology relationships for shear thickening colloidal dispersions. J. Fluid Mech. 2015, 769, 242–276. [Google Scholar] [CrossRef]
- Goyal, A.; Del Gado, E.; Jones, S.Z.; Martys, N.S. Ordered domains in sheared dense suspensions: The link to viscosity and the disruptive effect of friction. J. Rheol. 2022, 66, 1055–1065. [Google Scholar] [CrossRef]
- Wang, Y.; Ewoldt, R.H. New insights on carbon black suspension rheology—Anisotropic thixotropy and antithixotropy. J. Rheol. 2022, 66, 937–953. [Google Scholar] [CrossRef]
- Singh, A. Hidden hierarchy in the rheology of dense suspensions. arXiv 2023, arXiv:2305.13586. [Google Scholar] [CrossRef]
- Chun, B.; Jung, Y.W. Universal flow-induced orientational ordering of colloidal rods in planar shear and extensional flows: Dilute and semidilute concentrations. J. Rheol. 2023, 67, 315–330. [Google Scholar] [CrossRef]
- Egres, R.G.; Wagner, N.J. The rheology and microstructure of acicular precipitated calcium carbonate colloidal suspensions through the shear thickening transition. J. Rheol. 2005, 49, 719–746. [Google Scholar] [CrossRef]
- Khandavalli, S.; Rothstein, J.P. Large amplitude oscillatory shear rheology of three different shear-thickening particle dispersions. Rheol. Acta. 2015, 54, 601–618. [Google Scholar] [CrossRef]
- Ilyin, S.O.; Malkin, A.Y.; Kulichikhin, V.G. Rheological peculiarities of concentrated suspensions. Colloid J. 2012, 74, 472–482. [Google Scholar] [CrossRef]
- Guy, B.M.; Hermes, M.; Poon, W.C.K. Towards a unified description of the rheology of hard-particle Suspensions. Phys. Rev. Lett. 2015, 115, 088304. [Google Scholar] [CrossRef]
- Lin, N.Y.; Guy, B.M.; Hermes, M.; Ness, C.; Sun, J.; Poon, W.C.; Cohen, I. Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions. Phys. Rev. Lett. 2015, 115, 228304. [Google Scholar] [CrossRef]
- Wang, M.; Jamali, S.; Brady, J.F. A hydrodynamic model for discontinuous shear-thickening in dense suspensions. J. Rheol. 2020, 64, 379–394. [Google Scholar] [CrossRef]
- Yanagishima, T.; Liu, Y.; Tanaka, H.; Dullens, R.P.A. Particle-level visualization of hydrodynamic and frictional couplings in dense suspensions of spherical colloids. Phys. Rev. X 2021, 11, 021056. [Google Scholar] [CrossRef]
- Madraki, Y.; Oakley, A.; Le, A.N.; Colin, A.; Ovarlez, G.; Hormozi, S. Shear thickening in dense non-Brownian suspensions: Viscous to inertial transition. J. Rheol. 2020, 64, 227–238. [Google Scholar] [CrossRef]
- Silbert, L.E. Jamming of frictional spheres and random loose packing. Soft Matter 2010, 6, 2918–2924. [Google Scholar] [CrossRef]
- Mari, R.; Seto, R.; Morris, J.F.; Denn, M.M. Shear thickening frictionless and frictional rheologies in non-Brownian suspensions. J. Rheol. 2014, 58, 1693–1724. [Google Scholar] [CrossRef]
- Dong, J.; Trulsson, M. Unifying viscous and inertial regimes of discontinuous shear thickening suspensions. J. Rheol. 2020, 64, 255–266. [Google Scholar] [CrossRef]
- Hsiao, L.C.; Jamali, S.; Glynos, E.; Green, P.F.; Larson, R.G.; Solomon, M.J. Rheological State Diagrams for Rough Colloids in Shear Flow. Phys. Rev. Lett. 2017, 119, 158001. [Google Scholar] [CrossRef] [PubMed]
- Jamali, S.; Brady, J.F. Alternative Frictional Model for Discontinuous Shear Thickening of Dense Suspensions: Hydrodynamics. Phys. Rev. Lett. 2019, 123, 138002. [Google Scholar] [CrossRef] [PubMed]
- More, R.V.; Ardekani, A.M. Roughness induced shear thickening in frictional non-Brownian suspensions: A numerical study. J. Rheol. 2020, 64, 283–297. [Google Scholar] [CrossRef]
- Ikeda, A.; Berthier, L.; Sollich, P. Disentangling glass and jamming physics in the rheology of soft materials. Soft Matter 2013, 32, 7669. [Google Scholar] [CrossRef]
- Morris, J.F. Progress and challenges in suspension rheology. Rheol. Acta 2023, 62, 617–629. [Google Scholar] [CrossRef]
- Wyart, M.; Cates, M.E. Discontinuous shear thickening without inertia in dense non-Brownian suspensions. Phys. Rev. Lett. 2014, 112, 098302. [Google Scholar] [CrossRef]
- Cao, S.; Wang, Y.; Pang, H.; Zhang, J.; Wu, Y.; Xuan, S.; Gong, X. Shear jamming onset in dense granular suspensions. J. Rheol. 2021, 65, 419–426. [Google Scholar] [CrossRef]
- Prabhu, T.A.; Singh, A. Rheology and microstructure of discontinuous shear thickening suspensions. J. Rheol. 2022, 66, 731–747. [Google Scholar] [CrossRef]
- Saw, S.; Grob, M.; Zippelius, A.; Heussinger, C. Unsteady flow, clusters, and bands in a model shear-thickening fluid. Phys. Rev. E 2020, 101, 12602. [Google Scholar] [CrossRef]
- Rathee, V.; Blair, D.L.; Urbach, J.S. Localized transient jamming in discontinuous shear thickening. J. Rheol. 2020, 64, 299–308. [Google Scholar] [CrossRef]
- Xu, Q.; Majumdar, S.; Brown, E.; Jaeger, H.M. Shear thickening in highly viscous granular suspensions. Europhys. Lett. 2014, 107, 68004. [Google Scholar] [CrossRef]
- Xu, Q.; Singh, A.; Jaeger, H.M. Stress fluctuations and shear thickening in dense granular suspensions. J. Rheol. 2020, 64, 321–328. [Google Scholar] [CrossRef]
- Hodgson, D.J.M.; Hermes, M.; Blanco, E.; Poon, W.C.K. Granulation and suspension rheology: A unified treatment. J. Rheol. 2022, 66, 853–858. [Google Scholar] [CrossRef]
- Dincau, B.; Dressaire, E.; Sauret, A. Clogging: The self-sabotage of suspensions. Phys. Today 2023, 76, 24–30. [Google Scholar] [CrossRef]
- Estrada, N.; Taboada, A.; Radjaï, F. Shear strength and force transmission in granular media with rolling resistance. Phys. Rev. E 2008, 78, 021301. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.F. Shear Thickening of Concentrated Suspensions: Recent Developments and Relation to Other Phenomena. Annu. Rev. Fluid Mech. 2020, 52, 121–144. [Google Scholar] [CrossRef]
- Malkin, A.; Ilyin, S.; Semakov, A.; Kulichikhin, V. Viscoplasticity and stratified flow of colloid suspensions. Soft Matter 2012, 8, 2607–2617. [Google Scholar] [CrossRef]
- Larson, R.G. Flow-induced mixing, demixing, and phase transitions in polymeric fluids. Rheol. Acta 1992, 31, 497–520. [Google Scholar] [CrossRef]
- Semakov, A.V.; Kulichikhin, V.G.; Tereshin, A.K.; Antonov, S.V.; Malkin, A.Y. On the nature of phase separation of polymer solutions at high extension rates. J. Polym. Sci. B Polym. Phys. 2015, 53, 559–565. [Google Scholar] [CrossRef]
- Hu, Y.T. Steady-state shear banding in entangled polymers? J. Rheol. 2010, 54, 1307–1323. [Google Scholar] [CrossRef]
- Cromer, M.; Fredrickson, G.H.; Leal, L.G. A study of shear banding in polymer solutions. Phys. Fluids 2014, 26, 063101. [Google Scholar] [CrossRef]
- Germann, N. Shear banding in semidilute entangled polymer solutions. Curr. Opin. Colloid Interface Sci. 2019, 39, 1–10. [Google Scholar] [CrossRef]
- Ruan, Y.; Lu, Y.; An, L.; Wang, Z.G. Shear banding in entangled polymers: Stress plateau, banding location, and lever rule. ACS Macro Lett. 2021, 10, 1517–1523. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.; Rothstein, J.P. Transient evolution of shear-banding wormlike micellar solutions. J. Non-Newton. Fluid Mech. 2007, 143, 22–37. [Google Scholar] [CrossRef]
- Kang, K.; Lettinga, M.P.; Dhont, J.K. Is vorticity-banding due to an elastic instability? Rheol. Acta 2008, 47, 499–508. [Google Scholar] [CrossRef]
- Lerouge, S.; Berret, J.-F. Shear-Induced Transitions and Instabilities in Surfactant Wormlike Micelles. Adv. Polym. Sci. 2009, 230, 1–71. [Google Scholar] [CrossRef]
- Olmsted, P.D. Perspectives on shear banding in complex fluids. Rheol. Acta 2008, 47, 283–300. [Google Scholar] [CrossRef]
- Fall, A.; Bertrand, F.; Ovarlez, G.; Bonn, D. Yield stress and shear banding in granular suspensions. Phys. Rev. Lett. 2009, 103, 178301. [Google Scholar] [CrossRef]
- Fielding, S.M. Shear banding in soft glassy materials. Rep. Progr. Phys. 2014, 72, 102601. [Google Scholar] [CrossRef]
- Vernnamneni, L.; Garg, P.; Subramanian, G. Concentration banding instability of a sheared bacterial suspension. J. Fluid Mech. 2020, 904, A7. [Google Scholar] [CrossRef]
- Kawabata, H.; Nishiura, D.; Sakaguchi, H.; Tatsumi, Y. Self-organized domain microstructures in a plate-like particle suspension subjected to rapid simple shear. Rheol. Acta 2013, 52, 1–21. [Google Scholar] [CrossRef]
- Bian, X.; Litvinov, S.; Ellero, M.; Wagner, N.J. Hydrodynamic shear thickening of particulate suspension under confinement. J Non-Newton. Fluid Mech. 2014, 213, 39–49. [Google Scholar] [CrossRef]
- Cloitre, M.; Bonnecaze, R.T. A review on wall slip in high solid dispersions. Rheol. Acta 2017, 56, 283–305. [Google Scholar] [CrossRef]
- Malkin, A.Y.; Patlazhan, S.A. Wall slip for complex liquids–Phenomenon and its causes. Adv. Colloid Interface Sci. 2018, 257, 42–57. [Google Scholar] [CrossRef]
- Péméja, J.; Géraud, B.; Barentin, C.; Le Merrer, M. Wall slip regimes in jammed suspensions of soft microgels. Phys. Rev. Fluids 2019, 4, 033301. [Google Scholar] [CrossRef]
- Wilms, P.; Wieringa, J.; Blijdenstein, T.; van Malssen, K.; Kohlus, R. Quantification of shear viscosity and wall slip velocity of highly concentrated suspensions with non-Newtonian matrices in pressure driven flows. Rheol. Acta 2021, 60, 423–437. [Google Scholar] [CrossRef]
- Moud, A.A.; Piette, J.; Danesh, M.; Georgiou, G.C.; Hatzikiriakos, S.G. Apparent slip in colloidal suspensions. J. Rheol. 2022, 66, 79–90. [Google Scholar] [CrossRef]
- Mityukov, A.V.; Malkin, A.Y.; Kulichikhin, V.G. Flow-Spurt Transition under Shear Deformation of Concentrated Suspensions. Colloid J. 2020, 82, 408–413. [Google Scholar] [CrossRef]
- Kulichikhin, V.G.; Malkin, A.Y. The Role of Structure in Polymer Rheology: Review. Polymers 2022, 14, 1262. [Google Scholar] [CrossRef]
Qualification | Size of Particles | Maximum Possible Particle Concentrations, φm |
---|---|---|
Nanoparticles | 1–100 nm | 0.05–0.20 |
Ultradispersed particles | 0.1–1.0 μm | 0.20–0.255 |
Microparticles | 1.0–10 μm | 0.255–0.45 |
Macroparticles | 10–40 μm | 0.45–0.62 |
Large particles | >50 μm | 0.62–0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malkin, A.Y.; Kulichikhin, V.G.; Khashirova, S.Y.; Simonov-Emelyanov, I.D.; Mityukov, A.V. Rheology of Highly Filled Polymer Compositions—Limits of Filling, Structure, and Transport Phenomena. Polymers 2024, 16, 442. https://doi.org/10.3390/polym16030442
Malkin AY, Kulichikhin VG, Khashirova SY, Simonov-Emelyanov ID, Mityukov AV. Rheology of Highly Filled Polymer Compositions—Limits of Filling, Structure, and Transport Phenomena. Polymers. 2024; 16(3):442. https://doi.org/10.3390/polym16030442
Chicago/Turabian StyleMalkin, Alexander Ya., Valery G. Kulichikhin, Svetlana Yu. Khashirova, Igor D. Simonov-Emelyanov, and Anton V. Mityukov. 2024. "Rheology of Highly Filled Polymer Compositions—Limits of Filling, Structure, and Transport Phenomena" Polymers 16, no. 3: 442. https://doi.org/10.3390/polym16030442
APA StyleMalkin, A. Y., Kulichikhin, V. G., Khashirova, S. Y., Simonov-Emelyanov, I. D., & Mityukov, A. V. (2024). Rheology of Highly Filled Polymer Compositions—Limits of Filling, Structure, and Transport Phenomena. Polymers, 16(3), 442. https://doi.org/10.3390/polym16030442