Effects of Manganese Carbonate Addition on the Carbocatalytic Properties of Lignocellulosic Waste for Use in the Degradation of Acetaminophen
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Methods
2.2.1. Carbonaceous Compound Development
2.2.2. Reaction Mechanisms
2.3. Analyses
2.3.1. Chromatography-Based Analysis
2.3.2. Spectroscopic and Electrochemical Characterization for BPS, BPP, BPS-Mn, BPP-Mn Materials
3. Results
3.1. Spectroscopic and Textural Characterization
3.2. Adsorption and Carbocatalytic Processes
3.3. Electrochemical Study on Carbocatalysis Performance
3.4. Mechanism Elucidation of ACE Degradation with Carbocatalyst BPS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Torres, L.A.Z.; Woiciechowski, A.L.; Tanobe, V.O.d.A.; Karp, S.G.; Lorenci, L.C.G.; Faulds, C.; Soccol, C.R. Lignin as a potential source of high-added value compounds: A review. J. Clean. Prod. 2020, 263, 121499. [Google Scholar] [CrossRef]
- Bajwa, D.S.; Pourhashem, G.; Ullah, A.H.; Bajwa, S.G. A concise review of current lignin production, applications, products, and their environment impact. Ind. Crops Prod. 2019, 139, 111526. [Google Scholar] [CrossRef]
- Machida, M.; Mochimaru, T.; Tatsumoto, H. Lead(II) adsorption onto the graphene layer of carbonaceous materials in aqueous solution. Carbon 2006, 44, 2681–2688. [Google Scholar] [CrossRef]
- Patiño, Y.; Díaz, E.; Ordóñez, S. Performance of different carbonaceous materials for emerging pollutants adsorption. Chemosphere 2014, 119, S124–S130. [Google Scholar] [CrossRef]
- Álvarez-Torrellas, S.; Rodríguez, A.; Ovejero, G.; García, J. Comparative adsorption performance of ibuprofen and tetracycline from aqueous solution by carbonaceous materials. Chem. Eng. J. 2016, 283, 936–947. [Google Scholar] [CrossRef]
- Chen, W.H.; Naveen, C.; Ghodke, P.K.; Sharma, A.K.; Bobde, P. Co-pyrolysis of lignocellulosic biomass with other carbonaceous materials: A review on advance technologies, synergistic effect, and future prospectus. Fuel 2023, 345, 128177. [Google Scholar] [CrossRef]
- Romero-Hernandez, J.J.; Paredes-Laverde, M.; Silva-Agredo, J.; Mercado, D.F.; Ávila-Torres, Y.; Torres-Palma, R.A. Pharmaceutical adsorption on NaOH-treated rice husk-based activated carbons: Kinetics, thermodynamics, and mechanisms. J. Clean. Prod. 2024, 434, 139935. [Google Scholar] [CrossRef]
- Sepelev, I.; Galoburda, R. Industrial potato peel waste application in food production: A Review. Res. Rural Dev. 2015, 1, 130–136. [Google Scholar]
- Chauhan, A.; Islam, F.; Imran, A.; Ikram, A.; Zahoor, T.; Khurshid, S.; Shah, M.A. A review on waste valorization, biotechnological utilization, and management of potato. Food Sci. Nutr. 2023, 11, 5773–5785. [Google Scholar] [CrossRef]
- Daimary, N.; Eldiehy, K.S.H.; Boruah, P.; Deka, D.; Bora, U.; Kakati, B.K. Potato peels as a sustainable source for biochar, bio-oil and a green heterogeneous catalyst for biodiesel production. J. Environ. Chem. Eng. 2022, 10, 107108. [Google Scholar] [CrossRef]
- Ahmad, T.; Danish, M. Prospects of banana waste utilization in wastewater treatment: A review. J. Environ. Manag. 2018, 206, 330–348. [Google Scholar] [CrossRef] [PubMed]
- Mohiuddin, A.; Saha, M.K.; Hossian, M.S.; Ferdoushi, A. Usefulness of Banana (Musa paradisiaca) Wastes in Manufacturing of Bio-products: A Review. Agriculturists 2014, 12, 148–158. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, P.; Liu, S.; Fan, L.; Zhou, N.; Min, M.; Cheng, Y.; Peng, P.; Anderson, E.; Wang, Y.; et al. Microwave-assisted pyrolysis of biomass for bio-oil production. In Pyrolysis; IntechOpen: Rijeka, Croatia, 2017; pp. 129–166. [Google Scholar] [CrossRef]
- Şerbǎnescu, C. Kinetic analysis of cellulose pyrolysis: A short review. Chem. Pap. 2014, 68, 847–860. [Google Scholar] [CrossRef]
- Meyer, S.; Glaser, B.; Quicker, P. Technical, economical, and climate-related aspects of biochar production technologies: A literature review. Environ. Sci. Technol. 2011, 45, 9473–9483. [Google Scholar] [CrossRef]
- Quimbaya-Ñañez, C.; Serna-Galvis, E.A.; Silva-Agredo, J.; García-Rubio, I.; Torres-Palma, R.A.; Ávila-Torres, Y.P. Improvement of the Carbocatalytic Degradation of Pharmaceuticals in Water by the Use of Ultrasound Waves. Water 2023, 15, 3679. [Google Scholar] [CrossRef]
- Quimbaya-Ñañez, C.; Serna-Galvis, E.A.; Silva-Agredo, J.; Huerta, L.; Torres-Palma, R.A.; Ávila-Torres, Y. Mn-based material derived from industrial sawdust for the elimination of ciprofloxacin: Loss of antibiotic activity and toxicity via carbocatalysis assisted by ultrasound. J. Environ. Chem. Eng. 2024, 12, 112015. [Google Scholar] [CrossRef]
- Hayat, W.; Zhang, Y.; Huang, S.; Hussain, I.; Huang, R. Insight into the degradation of methomyl in water by peroxymonosulfate. J. Environ. Chem. Eng. 2021, 9, 105358. [Google Scholar] [CrossRef]
- Vo, H.N.P.; Le, G.; Nguyen, T.M.H.; Bui, X.-T.; Nguyen, K.H.; Rene, E.R.; Vo, T.D.H.; Cao, N.-D.T.; Mohan, R. Acetaminophen micropollutant: Historical and current occurrences, toxicity, removal strategies and transformation pathways in different environments. Chemosphere 2019, 236, 124391. [Google Scholar] [CrossRef]
- Manasik, N.; Tony, M.A. The Environmental Oxidation of Acetaminophen in Aqueous Media as an emerging Pharmaceutical Pollutant Using a Chitosan Waste-Based Magnetite Nanocomposite. Resources 2024, 13, 47. [Google Scholar] [CrossRef]
- Lin, Y.; Wu, S.; Yang, C.; Chen, M.; Li, X. Preparation of size-controlled silver phosphate catalysts and their enhanced photocatalysis performance via synergetic effect with MWCNTs and PANI. Appl. Catal. B Environ. 2019, 245, 71–86. [Google Scholar] [CrossRef]
- Lin, Y. Interfacial Charge Transfer between Silver Phosphate and W2N3 Induced by Nitrogen Vacancies Enhances Removal of β-Lactam Antibiotics. Adv. Funct. Mater. 2021, 32, 2108814. [Google Scholar] [CrossRef]
- Jiang, L.; Li, W.; Wang, H.; Yang, J.; Chen, H.; Wang, X.; Yuan, X.; Wang, H. Non-radical activation of low additive periodate by carbon-doped boron nitride for acetaminophen degradation: Significance of high-potential metastable intermediates. J. Hazard. Mater. 2024, 469, 133806. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.; Masud, M.A.; Annamalai, S.; Shin, W.S. The inherent nature of N/P heteroatoms in Sargassum fusiforme seaweed biochar enhanced the nonradical activation of peroxymonosulfate for acetaminophen degradation in aquatic environments. Chemosphere 2024, 356, 141877. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Xie, F.; Lan, J.; Xu, Z.; Liu, Q.; Hou, H. Activation of peroxymonosulfate under visible-light illumination for enhanced degradation of acetaminophen by self-assembly iron phosphorus/hexagonal tubular graphite carbon nitride. Colloids Surf. A Physicochem. Eng. Asp. 2024, 702, 134862. [Google Scholar] [CrossRef]
- Sun, M.; Fang, W.; Liang, Q.; Xing, Y.; Lin, L.; Luo, H. Efficient acetaminophen degradation via peroxymonosulfate activation by Mn/N co-doped biochar: Performance, mechanism and approach. J. Environ. Chem. Eng. 2024, 12, 112647. [Google Scholar] [CrossRef]
- Li, J.; Li, B.; Zhang, X. Comparative studies of thermal degradation between larch lignin and manchurian ash lignin. Polym. Degrad. Stab. 2002, 78, 279–285. [Google Scholar] [CrossRef]
- Mo, Z.; Li, M.; Sun, S.; Zhu, R.; Zhan, D.; Li, A.; Li, Y.; Zhang, Y.; Yu, Q. Modeling of activated carbon and multi-scale molecular simulation of its water vapor adsorption: A review. J. Environ. Chem. Eng. 2024, 12, 113732. [Google Scholar] [CrossRef]
- Liang, W.; Li, L.; Li, R.; Yin, Y.; Li, Z.; Liu, X.; Shan, S.; He, Y.; Meng, Y.; Li, Z.; et al. Crystal structure of impurity-free rhodochrosite (MnCO3) and thermal expansion properties. Phys. Chem. Miner. 2020, 47, 9. [Google Scholar] [CrossRef]
- Nam, K.; Kim, Y.; Jo, Y.; Lee, S.M.; Kim, B.G.; Choi, R.; Choi, S.; Song, H.; Park, J.T. New Crystal Structure: Synthesis and Characterization of Hexagonal Wurtzite MnO. J. Am. Chem. Soc. 2012, 134, 8392–8395. [Google Scholar] [CrossRef]
- Lee, J.H.Q.; Lauw, S.J.L.; Webster, R.D. The electrochemical study of Vanillin in acetonitrile. Electrochim. Acta 2016, 211, 533–544. [Google Scholar] [CrossRef]
- Galwey, A.K.; Brown, M.E. Chapter 12 Decomposition of carbonates. Stud. Phys. Theor. Chem. 1999, 86, 345–364. [Google Scholar] [CrossRef]
- Ovalle-Serrano, S.A.; Blanco-Tirado, C.; Combariza, M.Y. Exploring the composition of raw and delignified Colombian fique fibers, tow and pulp. Cellulose 2018, 25, 151–165. [Google Scholar] [CrossRef]
- Balachandran, R.; Zhao, M.; Dong, B.; Brown, I.; Raghavan, S.; Keswani, M. Role of ammonia and carbonates in scavenging hydroxyl radicals generated during megasonic irradiation of wafer cleaning solutions. Microelectron. Eng. 2014, 130, 82–86. [Google Scholar] [CrossRef]
- Li, P.H.; Wei, Y.M.; Wu, C.W.; Yang, C.; Jiang, B.; Wu, W.J. Lignin-based composites for high-performance supercapacitor electrode materials. RSC Adv. 2022, 12, 19485–19494. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, S. Reactive species in advanced oxidation processes: Formation, identification and reaction mechanism. Chem. Eng. J. 2020, 401, 126158. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, J.; Gao, Y.; Pang, S.-Y.; Yang, Y.; Ma, J.; Gu, J.; Li, J.; Wang, Z.; Wang, L.-H.; et al. Activation of peroxymonosulfate by phenols: Important role of quinone intermediates and involvement of singlet oxygen. Water Res. 2017, 125, 209–218. [Google Scholar] [CrossRef]
- Kumar, K.; Kumar, R.; Kaushal, S.; Thakur, N.; Umar, A.; Akbar, S.; Ibrahim, A.A.; Baskoutas, S. Biomass waste-derived carbon materials for sustainable remediation of polluted environment: A comprehensive review. Chemosphere 2023, 345, 140419. [Google Scholar] [CrossRef]
- Liu, X.J.; Li, M.F.; Singh, S.K. Manganese-Modified Lignin Biochar as Adsorbent for Removal of Methylene Blue. J. Mater. Res. Technol. 2021, 12, 1434–1445. [Google Scholar] [CrossRef]
- Dong, C.D.; Chen, C.W.; Tsai, M.L.; Chang, J.H.; Lyu, S.Y.; Hung, C.M. Degradation of 4-Nonylphenol in Marine Sediments by Persulfate over Magnetically Modified Biochars. Bioresour. Technol. 2019, 281, 143–148. [Google Scholar] [CrossRef]
- Yao, Y.; Cai, Y.; Lu, F.; Wei, F.; Wang, X.; Wang, S. Magnetic Recoverable MnFe2O4 and MnFe2O4-Graphene Hybrid as Heterogeneous Catalysts of Peroxymonosulfate Activation for Efficient Degradation of Aqueous Organic Pollutants. J. Hazard. Mater. 2014, 270, 61–70. [Google Scholar] [CrossRef]
- Fu, W.-X.; Qin, M.-Z.; Niu, H.-Y.; Hu, Q.-Y.; Guo, D.; Chen, M.-M.; Niu, C.-G.; Huang, D.-W. Insights into the High Performance of Co–Mn Oxide Supported by Carbon Fiber Frameworks for Ciprofloxacin Oxidation Process. J. Clean. Prod. 2023, 392, 136062. [Google Scholar] [CrossRef]
- Nriagu, J. Environmental Pollution and Health Effects. In Encyclopedia of Environmental Health; Elsevier: Amsterdam, The Netherlands, 2011; pp. 617–629. ISBN 9780444639523. [Google Scholar]
- Zhou, Z.G.; Du, H.M.; Dai, Z.; Mu, Y.; Tong, L.L.; Xing, Q.J.; Liu, S.S.; Ao, Z.; Zou, J.P. Degradation of Organic Pollutants by Peroxymonosulfate Activated by MnO2 with Different Crystalline Structures: Catalytic Performances and Mechanisms. Chem. Eng. J. 2019, 374, 170–180. [Google Scholar] [CrossRef]
- Song, Y.; Jiang, J.; Ma, J.; Zhou, Y.; Von Gunten, U. Enhanced Transformation of Sulfonamide Antibiotics by Manganese(IV) Oxide in the Presence of Model Humic Constituents. Water Res. 2019, 153, 200–207. [Google Scholar] [CrossRef]
- Saputra, E.; Muhammad, S.; Sun, H.; Ang, H.M.; Tadé, M.O.; Wang, S. Different Crystallographic One-Dimensional MnO2 Nanomaterials and Their Superior Performance in Catalytic Phenol Degradation. Environ. Sci. Technol. 2013, 47, 5882–5887. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Fu, W.; Hou, C.; Yang, Y.; Zhang, X. A Comprehensive Assessment of Catalytic Performances of Mn2O3 Nanoparticles for Peroxymonosulfate Activation during Bisphenol a Degradation. Catalysts 2021, 11, 993. [Google Scholar] [CrossRef]
- Khan, A.; Zhang, K.; Sun, P.; Pan, H.; Cheng, Y.; Zhang, Y. High Performance of the A-Mn2O3 Nanocatalyst for Persulfate Activation: Degradation Process of Organic Contaminants via Singlet Oxygen. J. Colloid Interface Sci. 2021, 584, 885–899. [Google Scholar] [CrossRef]
- Wang, F.; Xiao, M.; Ma, X.; Wu, S.; Ge, M.; Yu, X. Insights into the Transformations of Mn Species for Peroxymonosulfate Activation by Tuning the Mn3O4 Shapes. Chem. Eng. J. 2021, 404, 127097. [Google Scholar] [CrossRef]
- Saputra, E.; Muhammad, S.; Sun, H.; Ang, H.M.; Tadé, M.O.; Wang, S. Manganese Oxides at Different Oxidation States for Heterogeneous Activation of Peroxymonosulfate for Phenol Degradation in Aqueous Solutions. Appl. Catal. B Environ. 2013, 142–143, 729–735. [Google Scholar] [CrossRef]
Component | Species | |
---|---|---|
Potato Peel (%) | Banana Pseudostem (%) | |
Lignin content | 1–5 | 10–15 |
Cellulose Content | 40–60 | 30–50 |
Hemicellulose content | 30–20 | 20–25 |
Oxidant Agent | Material | Degradation (%) ACE | ROS Generate | Dosage on ACE Removal | Time (min) |
---|---|---|---|---|---|
IO3− | Carbon-doped boron nitride [23]. | 90.8% | 1O2 O2•− | 30–60 μM | 8 |
PMS PDS (peroxidisulphate) | SFBC800 possesses intrinsic N and P heteroatoms, SFBC (Sargassum fusiforme biochar carbon) [24]. | 98.70% | O2•− •OH SO4•− | [SFBC800] = 100 mg/L | 45 |
PMS | Fe/HTCN-3/Vis [25]. | 51.9% 99.9% | •OH SO4•− | 0.2 g/L 0.8 g/L | 60 |
PMS | Mn/N co-doped biochar (Mn@NBC-X) [26]. | 79.6% | CO3•− | 20 mg/L | 10 |
Material | Pore Volume (cm3) | Pore Quantity (%) | Pore Dimension (Å) | Yield (%w/w) | Especific Surface Area (SBET, m2/g) | |||
---|---|---|---|---|---|---|---|---|
Micro-Sized Pore | Meso-Sized Pore | Micro-Sized Pore | Meso-Sized Pore | Micro-Sized Pore | Meso-Sized Pore | |||
PP | 0.002 | 0.006 | 77 | 23 | 9.5 | 25.8 | 1.95 | 8.9 |
BPP | 0.003 | 0.014 | 14.6 | 84.4 | 18.3 | 22.3 | 6.19 | 17.3 |
BPP-Mn | 0.115 | 0.029 | 87.0 | 13.0 | 8.3 | 23.3 | 3.53 | 264.9 |
PS | 0.002 | 0.002 | 89.0 | 11.0 | 9.2 | 20.3 | 3.24 | 23.3 |
BPS | 0.005 | 0.008 | 38.5 | 61.5 | 17.3 | 22.3 | 3.87 | 17.0 |
BPS-Mn | 0.111 | 0.028 | 79.8 | 20.2 | 9.3 | 23.3 | 3.64 | 252.1 |
Material | Mn (%) | Charge Capability (mV) |
---|---|---|
BPS | 5.55 | −2.9 |
BPS-Mn | 95.79 | −18.3 |
BPP | 0.17 | 21.4 |
BPP-Mn | 92.62 | −11.0 |
Material | pH Initial | pH Final 50 min |
---|---|---|
BPS | 6.1 | 10.8 |
BPS-Mn | 6.1 | 7.9 |
BPP | 6.1 | 5.5 |
BPP-Mn | 6.1 | 5.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mosquera-Olano, C.; Quimbaya, C.; Rodríguez, V.; Vanessa-Lasso, A.; Correa, S.; Castrillón, E.D.C.; Rojas, J.; Ávila-Torres, Y.P. Effects of Manganese Carbonate Addition on the Carbocatalytic Properties of Lignocellulosic Waste for Use in the Degradation of Acetaminophen. Polymers 2024, 16, 3316. https://doi.org/10.3390/polym16233316
Mosquera-Olano C, Quimbaya C, Rodríguez V, Vanessa-Lasso A, Correa S, Castrillón EDC, Rojas J, Ávila-Torres YP. Effects of Manganese Carbonate Addition on the Carbocatalytic Properties of Lignocellulosic Waste for Use in the Degradation of Acetaminophen. Polymers. 2024; 16(23):3316. https://doi.org/10.3390/polym16233316
Chicago/Turabian StyleMosquera-Olano, Camila, Carolina Quimbaya, Vanessa Rodríguez, Angie Vanessa-Lasso, Santiago Correa, E. D. C. Castrillón, John Rojas, and Yenny P. Ávila-Torres. 2024. "Effects of Manganese Carbonate Addition on the Carbocatalytic Properties of Lignocellulosic Waste for Use in the Degradation of Acetaminophen" Polymers 16, no. 23: 3316. https://doi.org/10.3390/polym16233316
APA StyleMosquera-Olano, C., Quimbaya, C., Rodríguez, V., Vanessa-Lasso, A., Correa, S., Castrillón, E. D. C., Rojas, J., & Ávila-Torres, Y. P. (2024). Effects of Manganese Carbonate Addition on the Carbocatalytic Properties of Lignocellulosic Waste for Use in the Degradation of Acetaminophen. Polymers, 16(23), 3316. https://doi.org/10.3390/polym16233316