Polycaprolactone Nanofibers Functionalized by Fibronectin/Gentamicin and Implanted Silver for Enhanced Antibacterial Properties, Cell Adhesion, and Proliferation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electrospinning of PCL Nanofibers
2.2. Plasma-Deposited Coating, Containing Carboxyl Group-(-COOH) and Ag Ion Implantation
2.3. Characterization
2.4. Immobilization of Fibronectin and Gentamycin
2.5. Cell Tests
2.6. Antipathogen Tests
3. Results
3.1. Chemistry and Morphology of Composite Nanofibers
3.2. Analysis of Ag-Implanted Samples
3.3. Cell Tests
3.4. Antipathogen Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mao, A.S.; Mooney, D.J. Regenerative medicine: Current therapies and future directions. Proc. Natl. Acad. Sci. USA 2015, 112, 14452–14459. [Google Scholar] [CrossRef]
- Hassiba, A.J.; El Zowalaty, M.E.; Nasrallah, G.K.; Webster, T.J.; Luyt, A.S.; Abdullah, A.M.; Elzatahry, A.A. Review of recent research on biomedical applications of electrospun polymer nanofibers for improved wound healing. Nanomedicine 2016, 11, 715–737. [Google Scholar] [CrossRef]
- Karuppuswamy, P.; Venugopal, J.R.; Navaneethan, B.; Laiva, A.L.; Sridhar, S.; Ramakrishna, S. Functionalized hybrid nanofibers to mimic native ECM for tissue engineering applications. Appl. Surf. Sci. 2014, 322, 162–168. [Google Scholar] [CrossRef]
- DeFrates, K.; Moore, R.; Lin, G.; Hu, X.; Beachley, V.; Borgesi, J.; Mulderig, T. Protein-Based Fiber Materials in Medicine: A Review. Nanomaterials 2018, 8, 457. [Google Scholar] [CrossRef] [PubMed]
- Prosecká, E.; Rampichová, M.; Litvinec, A.; Tonar, Z.; Králíčková, M.; Vojtová, L.; Kochová, P.; Plencner, M.; Buzgo, M.; Míčková, A.; et al. Collagen/hydroxyapatite scaffold enriched with polycaprolactone nanofibers, thrombocyte-rich solution and mesenchymal stem cells promotes regeneration in large bone defect in vivo. J. Biomed. Mater. Res. Part A 2015, 103, 671–682. [Google Scholar] [CrossRef] [PubMed]
- Mejía Suaza, M.L.; Leos Rivera, J.C.; Rodríguez Padilla, M.C.; Moncada Acevedo, M.E.; Ossa Orozco, C.P.; Zarate Triviño, D.G. Poly(vinyl alcohol)/Silk Fibroin/Ag-NPs Composite Nanofibers as a Substrate for MG-63 Cells’ Growth. Polymers 2023, 15, 1838. [Google Scholar] [CrossRef] [PubMed]
- Collagen Market. Available online: https://www.gminsights.com/industry-analysis/collagen-market (accessed on 11 November 2023).
- Maleki, H.; Azimi, B.; Ismaeilimoghadam, S.; Danti, S. Poly(lactic acid)-Based Electrospun Fibrous Structures for Biomedical Applications. Appl. Sci. 2022, 12, 3192. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, D.G.; Liu, Y.; Liu, Y.N. Progress of Electrospun Nanofibrous Carriers for Modifications to Drug Release Profiles. J. Funct. Biomater. 2022, 13, 289. [Google Scholar] [CrossRef]
- Mousavi, S.; Nejad, Z.M.; Hashemi, S.A.; Salari, M.; Gholami, A.; Ramakrishna, S.; Chiang, W.; Lai, C.W. Bioactive Agent-Loaded Electrospun Nanofiber Membranes for Accelerating Healing Process: A Review. Membranes 2021, 11, 702. [Google Scholar] [CrossRef]
- Rodriguez, I.A.; Kalaf, E.A.G.; Bowlin, G.L.; Sell, S.A. Platelet-Rich Plasma in Bone Regeneration: Engineering the Delivery for Improved Clinical Efficacy TL—2014. Biomed Res. Int. 2014, 2014, 392398. [Google Scholar] [CrossRef]
- Diaz-Gomez, L.; Alvarez-Lorenzo, C.; Concheiro, A.; Silva, M.; Dominguez, F.; Sheikh, F.A.; Cantu, T.; Desai, R.; Garcia, V.L.; Macossay, J. Biodegradable electrospun nanofibers coated with platelet-rich plasma for cell adhesion and proliferation. Mater. Sci. Eng. C 2014, 40, 180–188. [Google Scholar] [CrossRef]
- Solovieva, A.O.; Permyakova, E.S.; Ershov, K.I.; Bakhareva, K.I.; Miroshnichenko, S.M.; Kiryukhantsev-Korneev, P.V.; Konopatsky, A.S.; Polčak, J.; Shtansky, D.V.; Manakhov, A.M.; et al. Plasma-Coated Polycaprolactone Nanofibers with Covalently Bonded Platelet-Rich Plasma Enhance Adhesion and Growth of Human Fibroblasts. Nanomaterials 2019, 9, 637. [Google Scholar] [CrossRef]
- Desmet, T.; Poleunis, C.; Delcorte, A.; Dubruel, P. Double protein functionalized poly-ε-caprolactone surfaces: In depth ToF-SIMS and XPS characterization. J. Mater. Sci. Mater. Med. 2012, 23, 293–305. [Google Scholar] [CrossRef] [PubMed]
- Solovieva, A.; Miroshnichenko, S.; Kovalskii, A.; Permyakova, E.; Popov, Z.; Dvořáková, E.; Kiryukhantsev-Korneev, P.; Obrosov, A.; Polčak, J.; Zajíčková, L.; et al. Immobilization of platelet-rich plasma onto COOH plasma-coated PCL nanofibers boost viability and proliferation of human mesenchymal stem cells. Polymers 2017, 9, 736. [Google Scholar] [CrossRef]
- Zhang, Z.; Yoo, R.; Wells, M.; Beebe, T.P.; Biran, R.; Tresco, P. Neurite outgrowth on well-characterized surfaces: Preparation and characterization of chemically and spatially controlled fibronectin and RGD substrates with good bioactivity. Biomaterials 2005, 26, 47–61. [Google Scholar] [CrossRef]
- Elnaggar, M.A.; El-Fawal, H.A.N.; Allam, N.K. Biocompatible PCL-nanofibers scaffold with immobilized fibronectin and laminin for neuronal tissue regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 119, 111550. [Google Scholar] [CrossRef]
- Sottile, J.; Hocking, D.C.; Swiatek, P.J. Fibronectin matrix assembly enhances adhesion-dependent cell growth. J. Cell Sci. 1998, 2943, 2933–2943. [Google Scholar] [CrossRef]
- Manakhov, A.; Permyakova, E.S.; Ershov, S.; Sheveyko, A.; Kovalskii, A.; Polčák, J.; Zhitnyak, I.Y.; Gloushankova, N.A.; Zajíčková, L.; Shtansky, D.V. Bioactive TiCaPCON-coated PCL nanofibers as a promising material for bone tissue engineering. Appl. Surf. Sci. 2019, 479, 796–802. [Google Scholar] [CrossRef]
- Sokullu-Urkac, E.; Oztarhan, A.; Tihminlioglu, F.; Nikolaev, A.; Brown, I. Oxidation Behavior of C- and Au-Ion-Implanted Biodegradable Polymers. IEEE Trans. Plasma Sci. 2012, 40, 863–869. [Google Scholar] [CrossRef]
- Ahire, J.J.; Hattingh, M.; Neveling, D.P.; Dicks, L.M.T. Copper-Containing Anti-Biofilm Nanofiber Scaffolds as a Wound Dressing Material. PLoS ONE 2016, 11, e0152755. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wang, R.; Liu, J.; Zhang, W.; Liu, Z.; Lou, X.; Nie, H.; Wang, H.; Mo, X.; Abd-Elhamid, A.I.; et al. Incorporation of magnesium oxide nanoparticles into electrospun membranes improves pro-angiogenic activity and promotes diabetic wound healing. Biomater. Adv. 2022, 133, 112609. [Google Scholar] [CrossRef]
- Sang, W.; Zhang, R.; Shi, X.; Dai, Y. Advanced Metallized Nanofibers for Biomedical Applications. Adv. Sci. 2023, 2302044, e2302044. [Google Scholar] [CrossRef]
- Abbas, S.; Haider, A.; Al-Musawi, S. Antimicrobial and Wound Healing Effects of Metal Oxide Nanoparticles Enriched Wound Dressing. Nano 2023, 18. [Google Scholar] [CrossRef]
- Yudaev, P.; Mezhuev, Y.; Chistyakov, E. Nanoparticle-Containing Wound Dressing: Antimicrobial and Healing Effects. Gels 2022, 8, 329. [Google Scholar] [CrossRef]
- Lansdown, A.B.G. Silver. I: Its antibacterial properties and mechanism of action. J. Wound Care 2002, 11, 125–130. [Google Scholar] [CrossRef]
- Paneysar, J.S.; Barton, S.; Ambre, P.; Coutinho, E. Novel Temperature Responsive Films Impregnated with Silver Nano Particles (Ag-NPs) as Potential Dressings for Wounds. J. Pharm. Sci. 2022, 111, 810–817. [Google Scholar] [CrossRef] [PubMed]
- Manakhov, A.M.; Permyakova, E.S.; Sitnikova, N.A.; Tsygankova, A.R.; Alekseev, A.Y.; Solomatina, M.V.; Baidyshev, V.S.; Popov, Z.I.; Blahová, L.; Eliáš, M.; et al. Biodegradable Nanohybrid Materials as Candidates for Self-Sanitizing Filters Aimed at Protection from SARS-CoV-2 in Public Areas. Molecules 2022, 27, 1333. [Google Scholar] [CrossRef]
- Manakhov, A.; Kiryukhantsev-Korneev, P.; Michlíček, M.; Permyakova, E.; Dvořáková, E.; Polčák, J.; Popov, Z.; Visotin, M.; Shtansky, D.V. Grafting of carboxyl groups using CO2/C2H4/Ar pulsed plasma: Theoretical modeling and XPS derivatization. Appl. Surf. Sci. 2018, 435, 1220–1227. [Google Scholar] [CrossRef]
- Xiao, Y.; Rong, L.; Wang, B.; Mao, Z.; Xu, H.; Zhong, Y.; Zhang, L.; Sui, X. A light-weight and high-efficacy antibacterial nanocellulose-based sponge via covalent immobilization of gentamicin. Carbohydr. Polym. 2018, 15, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Filatova, K.; Domincova Bergerova, E.; Kazantseva, N.; Masar, M.; Suly, P.; Sopik, T.; Cisar, J.; Durpekova, S.; Sedlarik, V. Design and Fabrication of Electrospun PLA-Based Silica-Modified Composite Nanofibers with Antibacterial Properties for Perspective Wound Treatment. Polymers 2023, 15, 3500. [Google Scholar] [CrossRef]
- Tang, X.; Guo, X.; Duo, Y.; Qian, X. Preparation and Characterization of a One-Step Electrospun Poly(Lactic Acid)/Wormwood Oil Antibacterial Nanofiber Membrane. Polymers 2023, 15, 3585. [Google Scholar] [CrossRef] [PubMed]
- Mercante, L.; Teodoro, K.; dos Santos, D.; dos Santos, F.; Ballesteros, C.; Ju, T.; Williams, G.; Correa, D. Recent Progress in Stimuli-Responsive Antimicrobial Electrospun Nanofibers. Polymers 2023, 15, 4299. [Google Scholar] [CrossRef] [PubMed]
- Murillo, L.; Rivero, P.J.; Sandúa, X.; Pérez, G.; Palacio, J.F.; Rodríguez, R.J. Antifungal Activity of Chitosan/Poly(Ethylene Oxide) Blend Electrospun Polymeric Fiber Mat Doped with Metallic Silver Nanoparticles. Polymers 2023, 15, 3700. [Google Scholar] [CrossRef] [PubMed]
Sample | [C], at.% | [O], at.% | [N], at.% | [Ag], at.% | [Pt], at.% | [K], at.% | [P], at.% |
---|---|---|---|---|---|---|---|
PCL-ref | 83.1 | 16.8 | 0 | 0 | 0.1 | 0 | 0 |
PCL-COOH | 81.7 | 18.2 | 0 | 0 | 0.1 | 0 | 0 |
PCL-COOH-FBN | 87.6 | 11.4 | 0.5 | 0 | 0.1 | 0.2 | 0.2 |
PCL-FbN-Ag-2.5 front side | 86.7 | 12.6 | 0.2 | 0.2 | 0.1 | 0.1 | 0.1 |
PCL-FBN-Ag-2.5 back side | 88.5 | 11.2 | 0 | 0 | 0.1 | 0.1 | 0.1 |
PCL-FBN-Ag-5 front side | 86.1 | 13.2 | 0.1 | 0.3 | 0.1 | 0.1 | 0.1 |
PCL-FBN-Ag-5 back side | 85.1 | 14.5 | 0 | 0.1 | 0.1 | 0.1 | 0.1 |
Sample Designation | [C], at.% | [O], at.% | [N], at.% | [S], at.% | [Ag], at.% |
---|---|---|---|---|---|
PCL-ref | 73.9 | 26.1 | 0.0 | 0.0 | 0.0 |
PCL-COOH | 68.6 | 30.4 | 1.0 | 0.0 | 0.0 |
PCL-COOH-FBn | 67.1 | 24.9 | 8.0 | 0.0 | 0.0 |
PCL-COOH-FBn-Ag2.5 | 80.8 | 13.8 | 5.3 | 0.0 | 0.1 |
PCL-COOH-GM | 69.4 | 27.3 | 2.9 | 0.5 | 0.0 |
PCL-COOH-GM-Ag2.5 | 82.6 | 16.3 | 1.0 | 0.2 | 0.4 |
Strain/Sample | Diameter of Inhibition Zone, mm | |||||||
---|---|---|---|---|---|---|---|---|
ref | PCL-COOH | PCL-FBN | PCL-FBN-Ag 2.5 min | PCL-FBN-Ag 5 min | PCL-GM | PCL-GM-Ag 2.5 min | PCL-GM-Ag 5 min | |
Escherichia coli U20 | i | i | i | i | i | 5 | 7 | i |
Escherichia coli U4 | - | - | i | 7 | - | 5 | 11 | - |
Escherichia coli ATCC25922 | - | - | i | 6 | i | 5 | 8 | i |
Escherichia coli K261 | - | - | i | - | i | i | - | i |
Staphylococcus aureus BAA1707 (MW2) | - | - | - | 5 | - | 8 | 14 | - |
Staphylococcus aureus 11 | i | i | i | 7 | i | 11 | 15 | i |
Candida auris KA10 | - | - | - | - | - | - | - | - |
Enterococcus faecium Ya253 | - | i | i | i | i | i | i | i |
Enterococcus faecium i237 | - | i | i | i | i | i | i | i |
Staphylococcus aureus 10708/23 | - | - | - | 6 | - | 9 | 13 | - |
Klebsiella pneumoniae 67565/23 | - | - | - | - | - | - | - | - |
Pseudomonas aeruginosa 3945/23 | - | - | - | - | - | - | i | - |
Proteus mirabilis 3223/23 | - | - | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Permyakova, E.S.; Solovieva, A.O.; Sitnikova, N.; Kiryukhantsev-Korneev, P.V.; Kutzhanov, M.K.; Sheveyko, A.N.; Ignatov, S.G.; Slukin, P.V.; Shtansky, D.V.; Manakhov, A.M. Polycaprolactone Nanofibers Functionalized by Fibronectin/Gentamicin and Implanted Silver for Enhanced Antibacterial Properties, Cell Adhesion, and Proliferation. Polymers 2024, 16, 261. https://doi.org/10.3390/polym16020261
Permyakova ES, Solovieva AO, Sitnikova N, Kiryukhantsev-Korneev PV, Kutzhanov MK, Sheveyko AN, Ignatov SG, Slukin PV, Shtansky DV, Manakhov AM. Polycaprolactone Nanofibers Functionalized by Fibronectin/Gentamicin and Implanted Silver for Enhanced Antibacterial Properties, Cell Adhesion, and Proliferation. Polymers. 2024; 16(2):261. https://doi.org/10.3390/polym16020261
Chicago/Turabian StylePermyakova, Elizaveta S., Anastasiya O. Solovieva, Natalia Sitnikova, Philipp V. Kiryukhantsev-Korneev, Magzhan K. Kutzhanov, Alexander N. Sheveyko, Sergey G. Ignatov, Pavel V. Slukin, Dmitry V. Shtansky, and Anton M. Manakhov. 2024. "Polycaprolactone Nanofibers Functionalized by Fibronectin/Gentamicin and Implanted Silver for Enhanced Antibacterial Properties, Cell Adhesion, and Proliferation" Polymers 16, no. 2: 261. https://doi.org/10.3390/polym16020261
APA StylePermyakova, E. S., Solovieva, A. O., Sitnikova, N., Kiryukhantsev-Korneev, P. V., Kutzhanov, M. K., Sheveyko, A. N., Ignatov, S. G., Slukin, P. V., Shtansky, D. V., & Manakhov, A. M. (2024). Polycaprolactone Nanofibers Functionalized by Fibronectin/Gentamicin and Implanted Silver for Enhanced Antibacterial Properties, Cell Adhesion, and Proliferation. Polymers, 16(2), 261. https://doi.org/10.3390/polym16020261