Synthesis of a Novel Zwitterionic Hypercrosslinked Polymer for Highly Efficient Iodine Capture from Water
Abstract
:1. Introduction
2. Experimental Section
2.1. General Remarks
2.1.1. Materials
2.1.2. Characterization
2.2. Synthesis of Materials
2.2.1. Synthesis of 7AIn-PiP
2.2.2. Synthesis of the Dual 1,3-Dipole
2.3. I2 Adsorption Experiments of 7AIn-PiP in I2 Aqueous Solution
2.3.1. I2 Adsorption Experiments of 7AIn-PiP in Saturated I2 Aqueous Solution
2.3.2. Recycling Tests of 7AIn-PiP in Saturated I2 Aqueous Solution
2.3.3. I2 Adsorption Experiments of 7AIn-PiP in Unsaturated I2 Aqueous Solution
3. Results and Discussion
3.1. Characterization and Analysis of Materials
3.1.1. Pore Properties and I2 Adsorption Results of a Batch of Polymers
3.1.2. Characterization of 7AIn-PiP
3.1.3. Characterization of the Dual 1,3-Dipole
3.1.4. Formation Mechanism of the Dual 1,3-Dipole and Polymer 7AIn-PiP
3.2. I2 Adsorption Property of 7AIn-PiP
3.2.1. Evaluation of I2 Adsorption Property of 7AIn-PiP in Saturated I2 Aqueous Solution
3.2.2. Analysis of Adsorption Kinetics of 7AIn-PiP in Saturated I2 Aqueous Solution
3.2.3. Characterization of I2@7AIn-PiP
3.2.4. Possible I2 Adsorption Mechanism of 7AIn-PiP in Saturated I2 Aqueous Solution
3.2.5. Regeneration Property of 7AIn-PiP in Saturated I2 Aqueous Solution
3.2.6. New Adsorption Phenomenon of 7AIn-PiP in Unsaturated I2 Aqueous Solution
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, D.Y.; Zhou, Q.F.; Yin, Y.G.; Lu, D.W.; Hu, L.G.; Richmond, R.H.; Moon, H.B.; Yan, B.; Jiang, G.B. Implications of Fukushima’s radioactive water discharge on global environmental sustainability. Environ. Sci. Technol. 2024, 58, 3061–3064. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.J.; Jang, K.B.; Woo, T.H. Analysis of purification in radioactively contaminated ocean water near the Fukushima nuclear accident site. Energy. Sci. Eng. 2023, 11, 3310–3316. [Google Scholar] [CrossRef]
- Zhou, W.N.; Lavendomme, R.; Zhang, D.W. Recent progress in iodine capture by macrocycles and cages. Chem. Commun. 2024, 60, 779–792. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Cui, D.; Zhang, S.R.; Xu, Y.H.; Jiang, D.L. Iodine capture in porous organic polymers and metal-organic frameworks materials. Mater. Horiz. 2019, 6, 1571–1595. [Google Scholar] [CrossRef]
- Yu, Y.N.; Yin, Z.; Cao, L.H.; Ma, Y.M. Organic porous solid as promising iodine capture materials. J. Incl. Phenom. Macrocycl. Chem. 2022, 102, 395–427. [Google Scholar] [CrossRef]
- Sun, Q.; Aguila, B.; Ma, S.Q. Opportunities of porous organic polymers for radionuclide sequestration. Trends Chem. 2019, 1, 292–303. [Google Scholar] [CrossRef]
- Zheng, Z.Y.; Lin, Q.Y.; Gao, Y.; Ji, X.F.; Sessler, J.L.; Wang, H.Y. Recent advances in iodine adsorption from water. Coordin. Chem. Rev. 2024, 511, 215860. [Google Scholar] [CrossRef]
- Sun, J.K.; Antonietti, M.; Yuan, J.Y. Nanoporous ionic organic networks: From synthesis to materials applications. Chem. Soc. Rev. 2016, 45, 6627–6656. [Google Scholar] [CrossRef]
- Xu, D.; Guo, J.N.; Yan, F. Porous ionic polymers: Design, synthesis, and applications. Prog. Polym. Sci. 2018, 79, 121–143. [Google Scholar] [CrossRef]
- Zhang, P.H.; Wang, Z.F.; Cheng, P.; Chen, Y.; Zhang, Z.J. Design and application of ionic covalent organic frameworks. Coordin. Chem. Rev. 2021, 438, 213873. [Google Scholar] [CrossRef]
- Chen, D.Y.; Ma, T.T.; Zhao, X.Y.; Jing, X.F.; Zhao, R.; Zhu, G.S. Multi-functionalization integration into the electrospun nanofibers exhibiting effective iodine capture from water. ACS Appl. Mater. Interfaces 2022, 14, 47126–47135. [Google Scholar] [CrossRef]
- Sen, A.; Sharma, S.; Dutta, S.; Shirolkar, M.M.; Dam, G.K.; Let, S.; Ghosh, S.K. Functionalized ionic porous organic polymers exhibiting high iodine uptake from both the vapor and aqueous medium. ACS Appl. Mater. Interfaces 2021, 13, 34188–34196. [Google Scholar] [CrossRef] [PubMed]
- Jie, K.C.; Chen, H.; Zhang, P.F.; Guo, W.; Li, M.J.; Yang, Z.Z.; Dai, S. A benzoquinone-derived porous hydrophenazine framework for efficient and reversible iodine capture. Chem. Commun. 2018, 54, 12706–12709. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Li, A.M.; Zhou, M.; Xu, Y.Y.; Zhang, Y.; He, Q. Nonporous amorphous super adsorbents for highly effective and selective adsorption of iodine in water. Nat. Commun. 2023, 14, 5388. [Google Scholar] [CrossRef] [PubMed]
- Avais, M.; Chattopadhyay, S. Porous polyaminoamides via an exotemplate synthesis approach for ultrahigh multimedia iodine adsorption. J. Mater. Chem. A 2022, 10, 20090–20100. [Google Scholar] [CrossRef]
- Li, X.M.; Chen, G.; Jia, Q. One-pot synthesis of viologen-based hypercrosslinked polymers for efficient volatile iodine capture. Micropor. Mesopor. Mat. 2019, 279, 186–192. [Google Scholar] [CrossRef]
- Raja, A.A.; Yavuz, C.T. Charge induced formation of crystalline network polymers. RSC Adv. 2014, 4, 59779–59784. [Google Scholar] [CrossRef]
- Zhang, P.F.; Qiao, Z.A.; Jiang, X.G.; Veith, G.M.; Dai, S. Nanoporous ionic organic networks: Stabilizing and supporting gold nanoparticles for catalysis. Nano. Lett. 2015, 15, 823–828. [Google Scholar] [CrossRef]
- Chen, G.J.; Zhou, Y.; Wang, X.C.; Li, J.; Xue, S.; Liu, Y.Q.; Wang, Q.; Wang, J. Construction of porous cationic frameworks by crosslinking polyhedral oligomeric silsesquioxane units with N-heterocyclic linkers. Sci. Rep. 2015, 5, 11236. [Google Scholar] [CrossRef]
- Kim, K.; Buyukcakir, O.; Coskun, A. Diazapyrenium-based porous cationic polymers for colorimetric amine sensing and capture from CO2 scrubbing conditions. RSC Adv. 2016, 6, 77406–77409. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Khamizov, R.K. A pseudo-second order kinetic equation for sorption processes. Russ. J. Phys. Chem. A 2020, 94, 171–176. [Google Scholar] [CrossRef]
- Qian, X.; Zhu, Z.Q.; Sun, H.X.; Ren, F.; Mu, P.; Liang, W.D.; Chen, L.H.; Li, A. Capture and reversible storage of volatile iodine by novel conjugated microporous polymers containing thiophene units. ACS Appl. Mater. Interfaces 2016, 8, 21063–21069. [Google Scholar] [CrossRef] [PubMed]
- An, S.H.; Zhu, X.; He, Y.Y.; Yang, L.; Wang, H.; Jin, S.B.; Hu, J.; Liu, H.L. Porosity modulation in two-dimensional covalent organic frameworks leads to enhanced iodine adsorption performance. Ind. Eng. Chem. Res. 2019, 58, 10495–10502. [Google Scholar] [CrossRef]
- Wang, S.; Hu, Q.B.; Liu, Y.C.; Meng, X.Y.; Ye, Y.; Liu, X.H.; Song, X.W.; Liang, Z.Q. Multifunctional conjugated microporous polymers with pyridine unit for efficient iodine sequestration, exceptional tetracycline sensing and removal. J. Hazard. Mater. 2020, 387, 121949. [Google Scholar] [CrossRef]
- Liu, C.; Jin, Y.C.; Yu, Z.H.; Gong, L.; Wang, H.L.; Yu, B.Q.; Zhang, W.; Jiang, J.Z. Transformation of porous organic cages and covalent organic frameworks with efficient iodine vapor capture performance. J. Am. Chem. Soc. 2022, 144, 12390–12399. [Google Scholar] [CrossRef]
- Luo, D.; He, Y.L.; Tian, J.Y.; Sessler, J.L.; Chi, X.D. Reversible iodine capture by nonporous adaptive crystals of a bipyridine cage. J. Am. Chem. Soc. 2022, 144, 113–117. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Ge, R.L.; Song, X.D.; Xing, X.Q.; Jiang, Q.K.; Lu, H.; Hao, C.; Guo, X.W.; Gao, Y.N.; et al. A 3D covalent organic framework with exceptionally high iodine capture capability. Chem. Eur. J. 2018, 24, 585–589. [Google Scholar] [CrossRef]
- Wang, Y.; Tao, J.; Xiong, S.H.; Lu, P.G.; Tang, J.T.; He, J.Q.; Javaid, M.U.; Pan, C.Y.; Yu, G.P. Ferrocene-based porous organic polymers for high-affinity iodine capture. Chem. Eng. J. 2020, 380, 122420. [Google Scholar] [CrossRef]
- Wang, H.; Hu, H.P.; Peng, Q.F. Superior removal of iodine via cyclophosphazene-based conjugation-enriched cross-linking hybrid polymers. Colloids Surf. A 2021, 627, 127185. [Google Scholar]
- Huang, Y.L.; Li, W.; Xu, Y.W.; Ding, M.; Ding, J.; Zhang, Y.; Wang, Y.H.; Chen, S.Y.; Jin, Y.D.; Xia, C.Q. Rapid iodine adsorption from vapor phase and solution by a nitrogen-rich covalent piperazine-triazine-based polymer. New J. Chem. 2021, 45, 5363–5370. [Google Scholar] [CrossRef]
- Svensson, P.H.; Kloo, L. Synthesis, structure, and bonding in polyiodide and metal iodide-iodine systems. Chem. Rev. 2003, 103, 1649–1684. [Google Scholar] [CrossRef] [PubMed]
- Li, D.W.; Zhou, L.; Li, M.; Yang, J.F.; Yao, Z.W.; Zhang, L.; Meng, Z.; Yang, L.M.; Shi, H.; Tang, H.; et al. Selective capture of palladium by protonation-armed pyridine nitrogen in extreme water environments. Chem. Eng. J. 2023, 466, 143235. [Google Scholar] [CrossRef]
- Schiebel, J.; Gaspari, R.; Sandner, A.; Ngo, K.; Gerber, H.D.; Cavalli, A.; Ostermann, A.; Heine, A.; Klebe, G. Charges shift protonation: Neutron diffraction reveals that aniline and 2- aminopyridine become protonated upon binding to trypsin. Angew. Chem. Int. Ed. 2017, 56, 4887–4890. [Google Scholar] [CrossRef] [PubMed]
- Pašalić, H.; Aquino, A.J.A.; Tunega, D.; Haberhauer, G.; Gerzabek, M.H.; Lischka, H. Cation-π interactions in competition with cation microhydration: A theoretical study of alkali metal cation-pyrene complexes. J. Mol. Model. 2017, 23, 131. [Google Scholar] [CrossRef]
- Kumar, N.; Gaur, A.S.; Sastry, G.N. A perspective on the nature of cation-π interactions. J. Chem. Sci. 2021, 133, 97. [Google Scholar] [CrossRef]
- Huang, M.; Yang, L.; Li, X.Y.; Chang, G.J. An indole-derived porous organic polymer for the efficient visual colorimetric capture of iodine in aqueous media via the synergistic effects of cation-π and electrostatic forces. Chem. Commun. 2020, 56, 1401–1404. [Google Scholar] [CrossRef]
- Wang, J.; Li, Z.L.; Wang, Y.; Wei, C.T.; Ai, K.L.; Lu, L.H. Hydrogen bond-mediated strong adsorbent-I3− interactions enable high-efficiency radioiodine capture. Mater. Horiz. 2019, 6, 1517–1525. [Google Scholar] [CrossRef]
- Schlamadinger, D.E.; Daschbach, M.M.; Gokel, G.W.; Kim, J.E. UV resonance Raman study of cation-π interactions in an indole crown ether. J. Raman Spectrosc. 2011, 42, 633–638. [Google Scholar] [CrossRef]
- Cripps, R.; Venuat, L.; Bruchertseifer, H. Quick analytical method for the determination of iodide and iodate ions in aqueous solutions. J. Radioanal. Nucl. Chem. 2003, 256, 357–360. [Google Scholar] [CrossRef]
- Bruchertseifer, H.; Cripps, R.; Guentay, S.; Jaeckel, B. Analysis of iodine species in aqueous solutions. Anal. Bioanal. Chem. 2003, 375, 1107–1110. [Google Scholar] [CrossRef] [PubMed]
- Gottardi, W. Redox-potentiometric/titrimetric analysis of aqueous iodine solutions. Fresenius J. Anal. Chem. 1998, 362, 263–269. [Google Scholar] [CrossRef]
- Jung, S.H.; Yeon, J.W.; Kang, Y.; Song, K. Determination of triiodide ion concentration using UV-Visible spectrophotometry. Asian J. Chem. 2014, 26, 4084–4086. [Google Scholar] [CrossRef]
- Moreno, C.; Baeza-Romero, M.T.; Sanz, M.; GálvezÓscar, A.V.L.; Ianni, J.C.; Espíldora, E. Iodide conversion to iodate in aqueous and solid aerosols exposed to ozone. Phys. Chem. Chem. Phys. 2020, 22, 5625–5637. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.W.; Song, L.N.; Wang, Y.S.; Bai, T.H.; Long, C.M.; Wu, M.M.; Feng, Y.; Mi, J. Three novel indole-based porous organic polymers for efficient iodine capture in water. J. Radioanal. Nucl. Ch. 2023, 332, 4271–4290. [Google Scholar] [CrossRef]
- Xiong, S.H.; Tang, X.; Pan, C.Y.; Li, L.; Tang, J.T.; Yu, G.P. Carbazole-bearing porous organic polymers with a mulberry-like morphology for efficient iodine capture. ACS Appl. Mater. Interfaces. 2019, 11, 27335–27342. [Google Scholar] [CrossRef]
- Chen, D.Y.; Fu, Y.; Yu, W.G.; Yu, G.P.; Pan, C.Y. Versatile adamantane-based porous polymers with enhanced microporosity for efficient CO2 capture and iodine removal. Chem. Eng. J. 2018, 334, 900–906. [Google Scholar] [CrossRef]
- Zeng, Z.Y.; Lou, Z.C.; Hu, L.R.; Dou, W.T.; Zhao, X.L.; Li, X.D.; Fang, J.F.; Qian, X.H.; Yang, H.B.; Xu, L. Metal-organic cages for efficient capture and convenient detection of iodine from vapor and aqueous solutions. Chem. Eng. J. 2024, 496, 154091. [Google Scholar] [CrossRef]
- Das, M.; Sarkar, S.K.; Patra, Y.S.; Manna, A.; Mukherjee, S.; Das, S. Soft self-templating approach-derived covalent triazine framework with bimodal nanoporosity for efficient radioactive iodine capture for safe nuclear energy. ACS Appl. Nano Mater. 2022, 5, 8783–8793. [Google Scholar] [CrossRef]
- Jiao, J.M.; Xie, W.; Li, Y.M.; Lin, C.; Jiang, J.L.; Wang, L.Y. Effective iodine capture behavior by a censer-shaped macrocycle in vapor phase and aqueous solution. Chem. Eur. J. 2022, 28, e202201933. [Google Scholar] [CrossRef]
- Jin, P.Y.; Liang, W.T.; Rong, Y.Q.; Wu, W.A.H.; Gou, M.; Tang, Y.Q.; Yang, C. Remarkable iodine uptake by aniline-based macrocyclic arenes through a reverse dissolution mechanism. J. Mater. Chem. A. 2023, 11, 11126–11132. [Google Scholar] [CrossRef]
- Shreeraj, G.; Sah, A.; Sarkar, S.; Giri, A.; Sahoo, A.; Patra, A. Structural modulation of nitrogen-rich covalent organic frameworks for iodine capture. Langmuir. 2023, 39, 16069–16078. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Yu, Z.C.; Zhang, T.T.; Pan, D.W.; Dai, J.J.; Li, Q.; Tao, Z.; Xiao, X. A cucurbit[8]uril-based supramolecular framework material for reversible iodine capture in the vapor phase and solution. Small 2024, 20, 2308175. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.Q.; Li, Z.W.; Lin, F.; Tang, R.Z.; Zhang, W.Q.; Liu, H.W.; Ouyang, G.F.; Tan, Y. The paradigm for exceptional iodine capture by nonporous amorphous electron-deficient cyclophanes. J. Hazard. Mater. 2024, 465, 133449. [Google Scholar] [CrossRef]
- Li, B.; Wang, B.; Huang, X.Y.; Dai, L.; Cui, L.; Li, J.; Jia, X.S.; Li, C.J. Terphen[n]arenes and quaterphen[n]arenes (n=3-6): One-c supramolecular gels, and iodine capture. Angew. Chem. Int. Ed. 2019, 58, 3885–3889. [Google Scholar] [CrossRef]
- Lin, Y.X.; Jiang, X.F.; Kim, S.T.; Alahakoon, S.B.; Hou, X.S.; Zhang, Z.Y.; Thompson, C.M.; Smaldone, R.A.; Ke, C.F. An elastic hydrogen-bonded cross-linked organic framework for effective iodine capture in water. J. Am. Chem. Soc. 2017, 139, 7172–7175. [Google Scholar] [CrossRef]
- Zheng, Z.Y.; Lin, Q.Y.; Xie, L.H.; Chen, X.L.; Zhou, H.; Lin, K.H.; Zhang, D.S.; Chi, X.D.; Sessler, J.L.; Wang, H.Y. Macrocycle polymeric networks based on a chair-like calix[4]pyrrole for the rapid and efficient adsorption of iodine from water. J. Mater. Chem. A. 2023, 11, 13399–13408. [Google Scholar] [CrossRef]
- Cao, J.J.; Zhu, H.T.Z.; Shangguan, L.Q.; Liu, Y.Z.; Liu, P.R.; Li, Q.; Wu, Y.T.; Huang, F.H. A pillar[5]arene-based 3D polymer network for efficient iodine capture in aqueous solution. Polym. Chem. 2021, 12, 3517–3521. [Google Scholar] [CrossRef]
- Gao, R.; An, B.H.; Zhou, C.; Zhang, X. Synthesis of a triazaisotruxene-based porous organic polymer and its application in iodine capture. Molecules 2022, 27, 8722. [Google Scholar] [CrossRef]
Characteristic Absorption Wavelength λmax (nm) | Experimental Adsorption Capacity at Equilibrium qe, exp (g g−1) | Parameters of Pseudo-Second-Order Model | ||
---|---|---|---|---|
qe, cal (g g−1) | k2 (g g−1 min−1) | R2 | ||
290 | 0.542 | 0.545 | 12.125 | 1.00000 |
354 | 0.543 | 0.546 | 12.506 | 0.99999 |
456 | 0.574 | 0.582 | 3.589 | 0.99996 |
Characteristic Absorption Wavelength λmax (nm) | The First Stage | The Second Stage | ||||
---|---|---|---|---|---|---|
kp (g g−1 min−0.5) | C (g g−1) | R2 | kp (g g−1 min−0.5) | C (g g−1) | R2 | |
290 | 0.01382 | 0.49546 | 0.99947 | 0.00172 | 0.53318 | 0.90717 |
354 | 0.01164 | 0.50157 | 0.95437 | 0.00143 | 0.53513 | 0.93978 |
456 | 0.02988 | 0.46206 | 0.94966 | 0.00703 | 0.5354 | 0.95255 |
Adsorbent | The Mass of Adsorbent (mg) | Iodine Adsorption Capacity of 1 g Adsorbent (g g−1) | Iodine Adsorption Efficiency (%) | ||
---|---|---|---|---|---|
290 nm | 456 nm | 290 nm | 456 nm | ||
Original 7AIn-PiP | 5.0 | 0.542 | 0.574 | 100 | 100 |
After the 1st regeneration | 5.1 | 0.531 | 0.563 | 98.0 | 98.1 |
After the 2nd regeneration | 5.2 | 0.518 | 0.548 | 95.6 | 95.5 |
After the 3rd regeneration | 5.2 | 0.516 | 0.545 | 95.2 | 94.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Song, L.; Han, B.; Hu, J.; Li, Z.; Mi, J. Synthesis of a Novel Zwitterionic Hypercrosslinked Polymer for Highly Efficient Iodine Capture from Water. Polymers 2024, 16, 2846. https://doi.org/10.3390/polym16192846
Yu J, Song L, Han B, Hu J, Li Z, Mi J. Synthesis of a Novel Zwitterionic Hypercrosslinked Polymer for Highly Efficient Iodine Capture from Water. Polymers. 2024; 16(19):2846. https://doi.org/10.3390/polym16192846
Chicago/Turabian StyleYu, Jingwen, Luna Song, Bingying Han, Jiangliang Hu, Zhong Li, and Jie Mi. 2024. "Synthesis of a Novel Zwitterionic Hypercrosslinked Polymer for Highly Efficient Iodine Capture from Water" Polymers 16, no. 19: 2846. https://doi.org/10.3390/polym16192846
APA StyleYu, J., Song, L., Han, B., Hu, J., Li, Z., & Mi, J. (2024). Synthesis of a Novel Zwitterionic Hypercrosslinked Polymer for Highly Efficient Iodine Capture from Water. Polymers, 16(19), 2846. https://doi.org/10.3390/polym16192846