Impact of Structural Alterations from Chemical Doping on the Electrical Transport Properties of Conjugated Polymers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials’ Preparation
2.2. Testing and Characterization
2.2.1. Spectroscopy Methods
2.2.2. Electrical Characterization
2.2.3. Structural Analysis
3. Results and Discussion
3.1. Charge Transport Analysis
3.2. Spectroscopy Analysis
3.3. GIWAXS Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, M.; Ryu, S.U.; Park, S.A.; Choi, K.; Kim, T.; Chung, D.; Park, T. Donor-Acceptor-Conjugated Polymer for High-Performance Organic Field-Effect Transistors: A Progress Report. Adv. Funct. Mater. 2020, 30, 1904545. [Google Scholar] [CrossRef]
- Liu, C.; Jang, J.; Xu, Y.; Kim, H.J.; Khim, D.; Park, W.T.; Kim, J.J. Effect of Doping Concentration on Microstructure of Conjugated Polymers and Characteristics in N-Type Polymer Field-Effect Transistors. Adv. Funct. Mater. 2015, 25, 758–767. [Google Scholar] [CrossRef]
- Sirringhaus, H.; Bird, M.; Richards, T.; Zhao, N. Charge Transport Physics of Conjugated Polymer Field-Effect Transistors. Adv. Mater. 2010, 22, 3893–3898. [Google Scholar] [CrossRef] [PubMed]
- Khodagholy, D.; Doublet, T.; Quilichini, P.; Gurfinkel, M.; Leleux, P.; Ghestem, A. Recordings of brain activity using organic transistors. Nat. Commun. 2013, 4, 1575. [Google Scholar] [CrossRef] [PubMed]
- Kiefer, D.; Kroon, R.; Hofmann, A.I.; Sun, H.; Liu, X.; Giovannitti, A.; Müller, C. Double doping of conjugated polymers with monomer molecular dopants. Nat. Mater. 2019, 18, 149–155. [Google Scholar] [CrossRef]
- Hofmann, A.I.; Kroon, R.; Zokaei, S.; Järsvall, E.; Malacrida, C.; Ludwigs, S.; Müller, C. Chemical Doping of Conjugated Polymers with the Strong Oxidant Magic Blue. Adv. Electron. Mater. 2020, 6, 2000249. [Google Scholar] [CrossRef]
- Zhao, W.; Ding, J.; Zou, Y.; Di, C.A.; Zhu, D. Chemical doping of organic semiconductors for thermoelectric applications. Chem. Soc. Rev. 2020, 49, 7210–7228. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, J.Y.; Pei, J. Achieving Efficient n-Doping of Conjugated Polymers by Molecular Dopants. Acc. Chem. Res. 2021, 54, 2871–2883. [Google Scholar] [CrossRef]
- Zhou, G.W.; Li, H.; Sun, H.P.; Yu, D.P.; Wang, Y.Q.; Huang, X.J.; Zhang, Z. Controlled Li doping of Si nanowires by electrochemical insertion method. Appl. Phys. Lett. 1999, 75, 2447–2449. [Google Scholar] [CrossRef]
- Liu, H.; Cao, Q.; Fu, L.J.; Li, C.; Wu, Y.P.; Wu, H. Q Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries. Electrochem. Commun. 2006, 8, 1553–1557. [Google Scholar] [CrossRef]
- Patel, S.N.; Glaudell, A.M.; Peterson, K.A.; Thomas, E.M.; O’Hara, K.A.; Lim, E.; Chabinyc, M.L. Morphology controls the thermoelectric power factor of a doped semiconducting polymer. Sci. Adv. 2017, 3, e1700434. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, Y.; Tsurumi, J.; Ohno, M.; Fujimoto, R.; Kumagai, S.; Kurosawa, T.; Okamoto, T.; Takeya, J.; Watanabe, S. Efficient molecular doping of polymeric semiconductors driven by anion exchange. Nature 2019, 572, 634–638. [Google Scholar] [CrossRef] [PubMed]
- Malik, S.; Fujita, N.; Mukhopadhyay, P.; Goto, Y.; Kaneko, K.; Ikeda, T.; Shinkai, S. Creation of 1D [60]fullerene superstructures and its polymerization by γ-ray irradiationt. J. Mater. Chem. 2007, 17, 2454–2458. [Google Scholar] [CrossRef]
- Lin, Y.; Dylla, M.T.; Kuo, J.J.; Male, J.P.; Kinloch, I.A.; Freer, R.; Snyder, G.J. Graphene/Strontium Titanate: Approaching Single Crystal-Like Charge Transport in Polycrystalline Oxide Perovskite Nanocomposites through Grain Boundary Engineering. Adv. Funct. Mater. 2020, 30, 1910079. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, G.J.N.; Kang, J.; Nikolka, M.; Wu, H.C.; Tran, H.; Bao, Z. An Intrinsically Stretchable High-Performance Polymer Semiconductor with Low Crystallinity. Adv. Funct. Mater. 2019, 29, 1905340. [Google Scholar] [CrossRef]
- Wu, S.; Wu, X.; Xing, W.; Sun, Y.; Zou, Y.; Xu, W.; Zhu, D. Backbone Structure Effect on the Thermoelectric Properties of IDT-Based p-Type Conjugated Polymers. Macromol. Rapid Comm. 2020, 41, 1900322. [Google Scholar] [CrossRef]
- Zhang, W.; Smith, J.; Watkins, S.E.; Gysel, R.; McGehee, M.; Salleo, A.; Kirkpatrick, J.; Ashraf, S.; Anthopoulos, T.; Heeney, M.; et al. Indacenodithiophene Semiconducting Polymers for High-Performance, Air-Stable Transistors. J. Am. Chem. Soc. 2010, 132, 11437–11439. [Google Scholar] [CrossRef]
- Nikolka, M.; Hurhangee, M.; Sadhanala, A.; Chen, H.; McCulloch, I.; Sirringhaus, H. Correlation of Disorder and Charge Transport in a Range of Indacenodithiophene-Based Semiconducting Polymers. Adv. Electron. Mater. 2018, 4, 1700410. [Google Scholar] [CrossRef]
- Kim, S.H.; Yook, H.; Sung, W.; Choi, J.; Lim, H.; Chung, S.; Han, J.W.; Cho, K. Extremely Suppressed Energetic Disorder in a Chemically Doped Conjugated Polymer. Adv. Mater. 2023, 35, 2207320. [Google Scholar] [CrossRef]
- Brant, P.; Weber, D. The Reactions of Polyacetylene with Trimethyloxonium Hexachloroantimonate—Covalent Doping of (Ch)X. J. Polym. Sci. Pol. Chem. 1983, 21, 1929–1940. [Google Scholar] [CrossRef]
- Min, J.; Im, J.; Kim, S.H.; Choi, H.H.; Cho, K. Morphology Associated Positive Correlation between Carrier Mobility and Carrier Density in Highly Doped Donor-Acceptor Conjugated Polymers. Adv. Funct. Mater. 2023, 33, 2212825. [Google Scholar] [CrossRef]
- Stephen Dongmin Kang1, A.G.J.S. Transport property analysis method for thermoelectric materials:material quality factor and the effective mass model. Nat. Mater. 2017, 16, 252. [Google Scholar]
- Zhao, L.D.; Lo, S.H.; He, J.; Li, H.; Biswas, K.; Androulakis, J.; Wu, C.I.; Hogan, T.P.; Chung, D.Y.; Dravid, V.P.; et al. High Performance Thermoelectrics from Earth-Abundant Materials: Enhanced Figure of Merit in PbS by Second Phase Nanostructures. J. Am. Chem. Soc. 2011, 133, 20476–20487. [Google Scholar] [CrossRef] [PubMed]
- Snyder, G.J.; Toberer, E.S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Ma, G.; Leng, M.; Zhang, S.; Chen, J.; Do, C.; Hong, K.; Fang, L.; Gu, X. Variable-Temperature Scattering and Spectroscopy Characterizations for Temperature-Dependent Solution Assembly of PffBT4T-Based Conjugated Polymers. ACS Appl. Polym. Mater. 2022, 4, 3023–3033. [Google Scholar] [CrossRef]
- Gregory, S.A.; Hanus, R.; Atassi, A.; Rinehart, J.M.; Wooding, J.P.; Menon, A.K.; Losego, M.D.; Snyder, G.J.; Yee, S.K. Quantifying charge carrier localization in chemically doped semiconducting polymers. Nat. Mater. 2021, 20, 1414–1421. [Google Scholar] [CrossRef]
- Liu, C.; Lu, B.; Yan, J.; Xu, J.; Yue, R.; Zhu, Z.; Zhou, S.; Hu, X.; Zhang, Z.; Chen, P. Highly conducting free-standing poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) films with improved thermoelectric performances. Synth. Met. 2010, 160, 2481–2485. [Google Scholar] [CrossRef]
- Peterson, K.A.; Thomas, E.M.; Chabinyc, M.L. Thermoelectric Properties of Semiconducting Polymers. Annu. Rev. Mater. Res. 2020, 50, 551–574. [Google Scholar] [CrossRef]
- Kim, J.; Ju, D.; Kim, S.; Cho, K. Disorder-Controlled Efficient Doping of Conjugated Polymers for High-Performance Organic Thermoelectrics. Adv. Funct. Mater. 2024, 34, 2309156. [Google Scholar] [CrossRef]
- Park, Y.W. Structure and Morphology—Relation to Thermopower Properties of Conductive Polymers. Synth. Met. 1991, 45, 173–182. [Google Scholar] [CrossRef]
- Hu, Y.; Shi, H.; Song, H.; Liu, C.; Xu, J.; Zhang, L.; Jiang, Q. Effects of a proton scavenger on the thermoelectric performance of free-standing polythiophene and its derivative films. Synth. Met. 2013, 181, 23–26. [Google Scholar] [CrossRef]
- Chen, R.; Zhou, Y.; Zhao, J.; Liu, Y.; Zhang, T.; Liu, X.; Li, J.; Li, H.; Liu, Y.; Sun, Z.; et al. Introduction of Metal Coordination Bonds into Conjugated Polymers to Increase Carrier Mobility and Stretchability. Macromolecules 2023, 56, 10067–10081. [Google Scholar] [CrossRef]
- Venkateshvaran, D.; Nikolka, M.; Sadhanala, A.; Lemaur, V.; Zelazny, M.; Kepa, M.; Hurhangee, M.; Kronemeijer, A.J.; Pecunia, V.; Nasrallah, I.; et al. Approaching disorder-free transport in high-mobility conjugated polymers. Nature 2014, 515, 384–388. [Google Scholar] [CrossRef]
- Zhang, Y.; Zou, J.; Yip, H.L.; Chen, K.S.; Zeigler, D.F.; Sun, Y.; Jen, A.K.Y. Indacenodithiophene and Quinoxaline-Based Conjugated Polymers for Highly Efficient Polymer Solar Cells. Chem. Mater. 2011, 23, 2289–2291. [Google Scholar] [CrossRef]
- Chen, H.; Wadsworth, A.; Ma, C.; Nanni, A.; Zhang, W.; Nikolka, M.; Luci, A.M.; Perdigão, L.M.; Thorley, K.J.; Cendra, C.; et al. The Effect of Ring Expansion in Thienobenzo[b]indacenodithiophene Polymers for Organic Field-Effect Transistors. J. Am. Chem. Soc. 2019, 141, 18806–18813. [Google Scholar] [CrossRef]
- Thomas, T.H.; Harkin, D.J.; Gillett, A.J.; Lemaur, V.; Nikolka, M.; Sadhanala, A.; Richter, J.M.; Armitage, J.; Chen, H.; McCulloch, I.; et al. Short contacts between chains enhancing luminescence quantum yields and carrier mobilities in conjugated copolymers. Nat. Commun. 2019, 10, 2614. [Google Scholar] [CrossRef]
- Jacobs, I.E.; d’Avino, G.; Lemaur, V.; Lin, Y.; Huang, Y.; Chen, C.; Harrelson, T.F.; Wood, W.; Spalek, L.J.; Mustafa, T.; et al. Structural and Dynamic Disorder, Not Ionic Trapping, Controls Charge Transport in Highly Doped Conducting Polymers. J. Am. Chem. Soc. 2022, 144, 3005–3019. [Google Scholar] [CrossRef]
- Jacobs, I.E.; Lin, Y.; Huang, Y.; Ren, X.; Simatos, D.; Chen, C.; Tjhe, D.; Statz, M.; Lai, L.; Finn, P.A.; et al. High-Efficiency Ion-Exchange Doping of Conducting Polymers. Adv. Mater. 2022, 34, 2102988. [Google Scholar] [CrossRef]
- Winkler, S.; Amsalem, P.; Frisch, J.; Oehzelt, M.; Heimel, G.; Koch, N. Probing the energy levels in hole-doped molecular semiconductors. Mater. Horiz. 2015, 2, 427–433. [Google Scholar] [CrossRef]
- Ju, D.; Kim, D.; Yook, H.; Han, J.W.; Cho, K. Controlling Electrostatic Interaction in PEDOT:PSS to Overcome Thermoelectric Tradeoff Relation. Adv. Funct. Mater. 2019, 29, 1905590. [Google Scholar] [CrossRef]
- Zhang, X.; Bronstein, H.; Kronemeijer, A.J.; Smith, J.; Kim, Y.; Kline, R.J.; Richter, L.J.; Anthopoulos, T.D.; Sirringhaus, H.; Song, K.; et al. Molecular origin of high field-effect mobility in an indacenodithiophene-benzothiadiazole copolymer. Nat. Commun. 2013, 4, 2238. [Google Scholar] [CrossRef]
- Wadsworth, A.; Chen, H.; Thorley, K.J.; Cendra, C.; Nikolka, M.; Bristow, H.; Moser, M.; Salleo, A.; Anthopoulos, T.D.; Sirringhaus, H.; et al. Modification of Indacenodithiophene-Based Polymers and Its Impact on Charge Carrier Mobility in Organic Thin-Film Transistors. J. Am. Chem. Soc. 2020, 142, 652–664. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, B.; Zhang, X.; Lu, K.; Ma, H.; Chen, C.; Lin, Y. Impact of Structural Alterations from Chemical Doping on the Electrical Transport Properties of Conjugated Polymers. Polymers 2024, 16, 2467. https://doi.org/10.3390/polym16172467
Yue B, Zhang X, Lu K, Ma H, Chen C, Lin Y. Impact of Structural Alterations from Chemical Doping on the Electrical Transport Properties of Conjugated Polymers. Polymers. 2024; 16(17):2467. https://doi.org/10.3390/polym16172467
Chicago/Turabian StyleYue, Baiqiao, Xiaoxuan Zhang, Kaiqing Lu, Haibao Ma, Chen Chen, and Yue Lin. 2024. "Impact of Structural Alterations from Chemical Doping on the Electrical Transport Properties of Conjugated Polymers" Polymers 16, no. 17: 2467. https://doi.org/10.3390/polym16172467
APA StyleYue, B., Zhang, X., Lu, K., Ma, H., Chen, C., & Lin, Y. (2024). Impact of Structural Alterations from Chemical Doping on the Electrical Transport Properties of Conjugated Polymers. Polymers, 16(17), 2467. https://doi.org/10.3390/polym16172467