Extraction and Structural Analysis of Sweet Potato Pectin and Characterization of Its Gel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Pre-Treatment of Sweet Potato Pomace
2.3. Extraction of Sweet Potato Pectin
2.4. Refinement of Sweet Potato Pectin
2.5. Basic Composition
2.6. Monosaccharide Composition
2.7. Molecular Weight
2.8. Degree of Esterification (DE) and Methoxy Content (DM)
2.9. Fourier-Transform Infrared Spectroscopy (FTIR)
2.10. Scanning Electron Microscopy (SEM)
2.11. Atomic Force Microscopy (AFM)
2.12. Gelling Properties
2.12.1. Formation Factors of Sweet Potato Pectin Gel
2.12.2. Texture Performance
2.13. Statistical Analysis
3. Results and Discussion
3.1. Effects of Extractants on the Extraction of Sweet Potato Pectin
3.2. Monosaccharide Composition Analysis of AMOP
3.3. Molecular Weight Analysis of AMOP
3.4. DE and DM Analysis of AMOP
3.5. FTIR Analysis of AMOP
3.6. Microscopic Morphology Analysis of AMOP
3.6.1. SEM Observation of AMOP
3.6.2. AFM Observation of AMOP
3.7. Gelling Property Analysis of AMOP
3.7.1. Effect of Pectin Concentration on the Texture of AMOP Gels
3.7.2. Effect of Ca2+ Concentration on the Texture of AMOP Gels
3.7.3. Effect of pH on the Texture of AMOP Gels
3.7.4. Effect of Sucrose Concentration on the Texture of AMOP Gels
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Yapo, B.M. Pectic substances: From simple pectic polysaccharides to complex pectins—A new hypothetical model. Carbohydr. polym. 2011, 86, 373–385. [Google Scholar] [CrossRef]
- Işıklan, N.; Tokmak, Ş. Microwave based synthesis and spectral characterization of thermo-sensitive poly (N, N-diethylacrylamide) grafted pectin copolymer. Int. J. Biol. Macromol. 2018, 113, 669–680. [Google Scholar] [CrossRef] [PubMed]
- Neckebroeck, B.; Verkempinck, S.H.; Van Audenhove, J.; Bernaerts, T.; de Wilde d’Estmael, H.; Hendrickx, M.; Van Loey, A. Structural and emulsion stabilizing properties of pectin rich extracts obtained from different botanical sources. Food Res. Int. 2021, 141, 110087. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ye, F.; Zhou, Y.; Zhao, G. Thiolated citrus low-methoxyl pectin: Synthesis, characterization and rheological and oxidation-responsive gelling properties. Carbohydr. Polym. 2018, 181, 964–973. [Google Scholar] [CrossRef] [PubMed]
- Wan, L.; Yang, Z.; Cai, R.; Pan, S.; Liu, F.; Pan, S. Calcium-induced-gel properties for low methoxyl pectin in the presence of different sugar alcohols. Food Hydrocoll. 2021, 112, 106252. [Google Scholar] [CrossRef]
- Kastner, H.; Einhorn-Stoll, U.; Drusch, S. Influence of enzymatic and acidic demethoxylation on structure formation in sugar containing citrus pectin gels. Food Hydrocoll. 2019, 89, 207–215. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, J.; Langrish, T. Water-based extraction of pectin from flavedo and albedo of orange peels. Chem. Eng. J. 2006, 120, 203–209. [Google Scholar] [CrossRef]
- Dickinson, E. Hydrocolloids acting as emulsifying agents–How do they do it? Food Hydrocoll. 2018, 78, 2–14. [Google Scholar] [CrossRef]
- Chandel, V.; Biswas, D.; Roy, S.; Vaidya, D.; Verma, A.; Gupta, A. Current advancements in pectin: Extraction, properties and multifunctional applications. Foods 2022, 11, 2683. [Google Scholar] [CrossRef]
- Muñoz-Almagro, N.; Vendrell-Calatayud, M.; Méndez-Albiñana, P.; Moreno, R.; Cano, M.P.; Villamiel, M. Extraction optimization and structural characterization of pectin from persimmon fruit (Diospyros kaki Thunb. var. Rojo brillante). Carbohydr. Polym. 2021, 272, 118411. [Google Scholar] [CrossRef]
- Faravash, R.S.; Ashtiani, F.Z. The effect of pH, ethanol volume and acid washing time on the yield of pectin extraction from peach pomace. Int. J. Food Sci. Tech. 2007, 42, 1177–1187. [Google Scholar] [CrossRef]
- Mu, T.-H.; Tan, S.-S.; Xue, Y.-L. The amino acid composition, solubility and emulsifying properties of sweet potato protein. Food Chem. 2009, 112, 1002–1005. [Google Scholar] [CrossRef]
- Vannini, M.; Marchese, P.; Sisti, L.; Saccani, A.; Mu, T.; Sun, H.; Celli, A. Integrated efforts for the valorization of sweet potato by-products within a circular economy concept: Biocomposites for packaging applications close the loop. Polymers 2021, 13, 1048. [Google Scholar] [CrossRef]
- Zhang, C.; Mu, T. Optimisation of pectin extraction from sweet potato (Ipomoea batatas, Convolvulaceae) residues with disodium phosphate solution by response surface method. Int. J. Food Sci. Tech. 2011, 46, 2274–2280. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Mu, T.H.; Zhang, M. Optimisation of acid extraction of pectin from sweet potato residues by response surface methodology and its antiproliferation effect on cancer cells. Int. J. Food Sci. Tech. 2013, 48, 778–785. [Google Scholar] [CrossRef]
- GB5009.3-2016; Determination of Moisture in Foods. National Health and Family Planning Commission of the People’s Republic of China: Beijing, China, 2016.
- GB5009.4-2016; Determination of Ash in Foods. National Health and Family Planning Commission of the People’s Republic of China: Beijing, China, 2016.
- Marcó, A.; Rubio, R.; Compañó, R.; Casals, I. Comparison of the Kjeldahl method and a combustion method for total nitrogen determination in animal feed. Talanta 2002, 57, 1019–1026. [Google Scholar] [CrossRef]
- Kazemi, M.; Khodaiyan, F.; Hosseini, S.S. Utilization of food processing wastes of eggplant as a high potential pectin source and characterization of extracted pectin. Food Chem. 2019, 294, 339–346. [Google Scholar] [CrossRef]
- Einhorn-Stoll, U.; Kastner, H.; Urbisch, A.; Kroh, L.W.; Drusch, S. Thermal degradation of citrus pectin in low-moisture environment-Influence of acidic and alkaline pre-treatment. Food Hydrocoll. 2019, 86, 104–115. [Google Scholar] [CrossRef]
- Cieśla, J.; Koczańska, M.; Pieczywek, P.; Szymańska-Chargot, M.; Cybulska, J.; Zdunek, A. Structural properties of diluted alkali-soluble pectin from Pyrus communis L. in water and salt solutions. Carbohydr. Polym. 2021, 273, 118598. [Google Scholar] [CrossRef]
- Kumar, M.; Tomar, M.; Saurabh, V.; Sasi, M.; Punia, S.; Potkule, J.; Maheshwari, C.; Changan, S.; Bhushan, B.; Singh, S. Delineating the inherent functional descriptors and biofunctionalities of pectic polysaccharides. Carbohydr. Polym. 2021, 269, 118319. [Google Scholar] [CrossRef]
- Ogutu, F.O.; Mu, T.-H. Ultrasonic degradation of sweet potato pectin and its antioxidant activity. Ultrason. Sonochem. 2017, 38, 726–734. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Cao, J.; Huang, J.; Cai, Y.; Yao, J. Extraction of pectins with different degrees of esterification from mulberry branch bark. Bioresour. Technol. 2010, 101, 3268–3273. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.-S.; Mu, T.-H.; Ma, M.-M. Extraction, structure, and emulsifying properties of pectin from potato pulp. Food Chem. 2018, 244, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Yang, G.; Yue, Q.; Ren, X.; Zhou, Y.; Zhang, M. The film-forming characterization and structural analysis of pectin from sunflower heads. Int. J. Polym. Sci. 2021, 2021, 8859108. [Google Scholar] [CrossRef]
- Singthong, J.; Cui, S.W.; Ningsanond, S.; Goff, H.D. Structural characterization, degree of esterification and some gelling properties of Krueo Ma Noy (Cissampelos pareira) pectin. Carbohydr. Polym. 2004, 58, 391–400. [Google Scholar] [CrossRef]
- Lefsih, K.; Giacomazza, D.; Dahmoune, F.; Mangione, M.R.; Bulone, D.; San Biagio, P.L.; Passantino, R.; Costa, M.A.; Guarrasi, V.; Madani, K. Pectin from Opuntia ficus indica: Optimization of microwave-assisted extraction and preliminary characterization. Food Chem. 2017, 221, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Manrique, G.D.; Lajolo, F.M. FT-IR spectroscopy as a tool for measuring degree of methyl esterification in pectins isolated from ripening papaya fruit. Postharvest Biol. Technol. 2002, 25, 99–107. [Google Scholar] [CrossRef]
- Liu, X.C.; Zhu, Z.Y.; Tang, Y.L.; Wang, M.F.; Wang, Z.; Liu, A.J.; Zhang, Y.M. Structural properties of polysaccharides from cultivated fruit bodies and mycelium of Cordyceps militaris. Carbohydr. Polym. 2016, 142, 63–72. [Google Scholar] [CrossRef]
- Vignon, M.R.; Garcia-Jaldon, C. Structural features of the pectic polysaccharides isolated from retted hemp bast fibres. Carbohydr. Res. 1996, 296, 249–260. [Google Scholar] [CrossRef]
- Kyomugasho, C.; Christiaens, S.; Shpigelman, A.; Van Loey, A.M.; Hendrickx, M.E. FT-IR spectroscopy, a reliable method for routine analysis of the degree of methylesterification of pectin in different fruit-and vegetable-based matrices. Food Chem. 2015, 176, 82–90. [Google Scholar] [CrossRef]
- Han, W.; Meng, Y.; Hu, C.; Dong, G.; Qu, Y.; Deng, H.; Guo, Y. Mathematical model of Ca2+ concentration, pH, pectin concentration and soluble solids (sucrose) on the gelation of low methoxyl pectin. Food Hydrocoll. 2017, 66, 37–48. [Google Scholar] [CrossRef]
- Said, N.S.; Olawuyi, I.F.; Lee, W.Y. Pectin hydrogels: Gel-forming behaviors, mechanisms, and food applications. Gels 2023, 9, 732. [Google Scholar] [CrossRef] [PubMed]
- Kruk, K.; Winnicka, K. Alginates combined with natural polymers as valuable drug delivery platforms. Mar. Drugs 2022, 21, 11. [Google Scholar] [CrossRef] [PubMed]
- Evageliou, V.; Richardson, R.; Morris, E. Effect of pH, sugar type and thermal annealing on high-methoxy pectin gels. Carbohydr. polym. 2000, 42, 245–259. [Google Scholar] [CrossRef]
Extractant | Dosage | Extraction Rate (%) | Ash Content (%) | Protein (%) | Mw (kg/mol) * |
---|---|---|---|---|---|
Trisodium citrate | 0.50% | 10.34 ± 0.22 h | 5.25 ± 0.01 c | 1.50 ± 0.05 cd | 174.7 ± 2.0 c |
0.80% | 12.96 ± 0.17 c | 5.37 ± 0.08 b | 1.55 ± 0.03 abc | ||
1.00% | 12.05 ± 0.07 f | 5.52 ± 0.08 a | 1.58 ± 0.015 a | ||
Ammonium oxalate | 0.50% | 12.80 ± 0.11 d | 2.16 ± 0.04 i | 1.45 ± 0.03 f | 182.5 ± 2.2 a |
0.80% | 14.42 ± 0.08 a | 2.30 ± 0.05 h | 1.50 ± 0.02 cd | ||
1.00% | 13.71 ± 0.10 b | 2.45 ± 0.06 g | 1.56 ± 0.02 ab | ||
Disodium hydrogen phosphate | 0.50% | 9.85 ± 0.07 i | 4.47 ± 0.05 f | 1.46 ± 0.04 de | 176.0 ± 2.1 b |
0.80% | 12.42 ± 0.03 e | 4.62 ± 0.02 e | 1.52 ± 0.03 bc | ||
1.00% | 11.61 ± 0.05 g | 4.82 ± 0.07 d | 1.55 ± 0.03 abc | ||
Citric acid | pH 2 | 7.61 ± 0.05 l | 1.52 ± 0.02 j | 1.42 ± 0.02 f | 152.5 ± 1.9 d |
Hydrochloric acid | pH 2 | 8.91 ± 0.04 k | 1.49 ± 0.02 j | 1.46 ± 0.04 de | 144.9 ± 1.7 e |
AMOP | |
---|---|
Moisture (%) | 7.82 ± 0.15 |
Ash (%) | 0.78 ± 0.21 |
Protein (%) | 0.35 ± 0.10 |
Mw (kg/mol) * | 192.5 ± 2.3 |
Monosaccharide Composition (mol%) | |
---|---|
Rha | 6.12 ± 0.05 d |
Fuc | 0.26 ± 0.02 f |
Ara | 21.08 ± 0.20 c |
Gal | 29.84 ± 0.10 b |
Glc | 1.69 ± 0.07 e |
Gal-A | 41.00 ± 0.10 a |
Sugar molar ratios (mol%) | |
HG | 34.88 |
RG-I | 63.16 |
Rha/Gal-A | 0.1 |
(Gal + Ara)/Rha | 8.32 |
AMOP | |
---|---|
Mw (kg/mol) * | 192.5 ± 2.3 |
Mn (kg/mol) * | 174.7 ± 1.9 |
PD * | 1.10 |
DE (%) | 12.76 ± 1.02 |
DM (%) | 1.92 ± 1.02 |
Concentration (%) | Hardness (g) | Stickiness (mJ) | Elasticity (mm) | Cohesiveness | Chewiness (mJ) |
---|---|---|---|---|---|
0.5 | 4.60 ± 0.72 d | 0.01 ± 0.00 d | 1.80 ± 0.35 b | 0.31 ± 0.90 b | 1.82 ± 0.05 e |
1 | 41.30 ± 0.85 c | 0.09 ± 0.12 c | 3.65 ± 0.13 a | 0.48 ± 0.10 a | 5.21 ± 0.06 d |
1.5 | 80.43 ± 9.70 b | 0.14 ± 0.38 b | 3.82 ± 0.96 a | 0.48 ± 0.21 a | 7.76 ± 017 b |
2 | 102.20 ± 7.74 a | 0.20 ± 0.01 a | 3.93 ± 0.55 a | 0.52 ± 0.05 a | 8.16 ± 0.14 a |
2.5 | 99.53 ± 3.76 a | 0.15 ± 0.15 b | 3.72 ± 0.68 a | 0.49 ± 0.36 a | 7.36 ± 0.22 c |
Ca2+ (mg/g) | Hardness (g) | Stickiness (mJ) | Elasticity (mm) | Cohesiveness | Chewiness (mJ) |
---|---|---|---|---|---|
10 | 29.67 ± 3.11 c | 0.09 ± 0.01 d | 3.23 ± 0.12 c | 0.48 ± 0.02 c | 6.35 ± 0.05 e |
20 | 56.80 ± 2.84 b | 0.14 ± 0.01 c | 3.87 ± 0.12 ab | 0.55 ± 0.02 b | 6.52 ± 0.03 d |
30 | 105.39 ± 2.95 a | 0.3 ± 0.03 a | 4.31 ± 0.18 a | 0.65 ± 0.06 a | 8.90 ± 0.08 a |
40 | 102.20 ± 7.74 a | 0.20 ± 0.01 b | 3.93 ± 0.55 ab | 0.52 ± 0.05 bc | 8.72 ± 0.14 c |
50 | 103.37 ± 1.72 a | 0.09 ± 0.08 d | 3.76 ± 0.42 b | 0.48 ± 0.02 c | 8.66 ± 0.06 b |
pH | Hardness (g) | Stickiness (mJ) | Elasticity (mm) | Cohesiveness | Chewiness (mJ) |
---|---|---|---|---|---|
2 | 25.20 ± 0.40 e | 0.23 ± 0.12 c | 4.22 ± 0.02 a | 0.45 ± 0.04 b | 1.67 ± 0.07 e |
3 | 39.20 ± 0.30 d | 0.24 ± 0.01 c | 4.26 ± 0.05 a | 0.62 ± 0.02 a | 5.52 ± 0.08 d |
3.5 | 102.69 ± 0.41 b | 0.27 ± 0.15 ab | 4.28 ± 0.01 a | 0.63 ± 0.01 a | 6.53 ± 0.49 c |
4 | 105.39 ± 2.95 a | 0.30 ± 0.03 a | 4.31 ± 0.18 a | 0.65 ± 0.06 a | 8.89 ± 0.08 a |
5 | 102.58 ± 2.26 b | 0.26 ± 0.06 bc | 4.29 ± 0.02 a | 0.46 ± 0.09 b | 8.84 ± 0.06 a |
6 | 88.20 ± 0.32 c | 0.25 ± 0.06 bc | 4.26 ± 0.06 a | 0.42 ± 0.02 b | 8.56 ± 0.04 a |
7 | 85.71 ± 0.94 c | 0.23 ± 0.06 c | 4.24 ± 0.01 a | 0.42 ± 0.01 b | 8.15 ± 0.13 b |
Sucrose (%) | Hardness (g) | Stickiness (mJ) | Elasticity (mm) | Cohesiveness | Chewiness (mJ) |
---|---|---|---|---|---|
0 | 105.39 ± 2.95 e | 0.30 ± 0.03 bc | 4.31 ± 0.18 a | 0.65 ± 0.06 a | 8.90 ± 0.08 a |
10 | 110.27 ± 0.30 d | 0.29 ± 0.02 c | 4.32 ± 0.07 c | 0.56 ± 0.03 b | 8.92 ± 0.08 d |
20 | 114.80 ± 0.12 c | 0.31 ± 0.03 bc | 4.46 ± 0.04 bc | 0.51 ± 0.03 b | 9.27 ± 0.06 c |
30 | 120.60 ± 0.79 b | 0.33 ± 0.03 bc | 4.00 ± 0.06 d | 0.50 ± 0.03 b | 10.32 ± 0.03 b |
40 | 128.87 ± 0.48 a | 0.63 ± 0.03 a | 4.62 ± 0.13 a | 0.66 ± 0.05 a | 11.72 ± 0.09 a |
50 | 120.00 ± 0.95 b | 0.35 ± 0.04 b | 4.52 ± 0.07 ab | 0.52 ± 0.02 b | 10.41 ± 0.06 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, C.; Zhao, X.; Yang, L.; Yao, M.; Zhang, J.; He, Q.; Liu, J.; Liu, L. Extraction and Structural Analysis of Sweet Potato Pectin and Characterization of Its Gel. Polymers 2024, 16, 1977. https://doi.org/10.3390/polym16141977
Han C, Zhao X, Yang L, Yao M, Zhang J, He Q, Liu J, Liu L. Extraction and Structural Analysis of Sweet Potato Pectin and Characterization of Its Gel. Polymers. 2024; 16(14):1977. https://doi.org/10.3390/polym16141977
Chicago/Turabian StyleHan, Chunmeng, Xiangying Zhao, Liping Yang, Mingjing Yao, Jiaxiang Zhang, Qiangzhi He, Jianjun Liu, and Liping Liu. 2024. "Extraction and Structural Analysis of Sweet Potato Pectin and Characterization of Its Gel" Polymers 16, no. 14: 1977. https://doi.org/10.3390/polym16141977
APA StyleHan, C., Zhao, X., Yang, L., Yao, M., Zhang, J., He, Q., Liu, J., & Liu, L. (2024). Extraction and Structural Analysis of Sweet Potato Pectin and Characterization of Its Gel. Polymers, 16(14), 1977. https://doi.org/10.3390/polym16141977