Epoxy-Acrylic Polymer In-Situ Filling Cell Lumen and Bonding Cell Wall for Wood Reinforcement and Stabilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Method
2.2.1. Polymer and Composite Preparation
2.2.2. Physical and Mechanical Properties Testing
2.2.3. Wood Preservation Testing
2.2.4. Morphology and Structure
3. Results and Discussion
3.1. Optimization of Functional Monomer Ratio
3.1.1. Optimization of GMA/PEGDMA Ratio
3.1.2. Optimization of MAN Usage
3.2. Interface Bonding of Modified Wood and Its Influence
3.2.1. Comparison of Resin Conversion Rate
3.2.2. SEM Characterization
3.2.3. FTIR Analysis
3.2.4. Dimensional Stabilization
3.2.5. Anti-Corrosion Properties
3.3. Impact Toughness and XRD Analysis of Modified Materials
3.3.1. XRD Analysis
3.3.2. Impact Toughness
3.4. Other Mechanical Properties and Thermal Stability of Polymer-Modified Wood
3.4.1. Other Mechanical Properties
3.4.2. Thermal Stability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, X.; Hu, M.; Zhang, C.; Steubing, B. Urban mining potential to reduce primary material use and carbon emissions in the dutch residential building sector. Resour. Conserv. Recycl. 2022, 180, 106215. [Google Scholar] [CrossRef]
- Plank, B.; Streeck, J.; Virag, D.; Krausmann, F.; Haberl, H.; Wiedenhofer, D. From resource extraction to manufacturing and construction: Flows of stock-building materials in 177 countries from 1900 to 2016. Resour. Conserv. Recycl. 2022, 179, 106122. [Google Scholar] [CrossRef]
- Wicke, D.; Tatis-Muvdi, R.; Rouault, P.; Baar, P.Z.V.; Duennbier, U.; Rohr, M.; Burkhardt, M. Emissions from building materials-a threat to the environment. Water 2022, 14, 303. [Google Scholar] [CrossRef]
- Unni, A.; Anjali, G. Cost-benefit analysis of conventional and modern building materials for sustainable development of social housing. Mater. Today-Proc. 2022, 51, 1649–1657. [Google Scholar] [CrossRef]
- Caldas, L.R.; Saraiva, A.B.; Lucena, A.F.P.; Da Gloria, M.H.Y.; Santos, A.S.; Toledo Filho, R.D. Building materials in a circular economy: The case of wood waste as CO2-sink in bio concrete. Resour. Conserv. Recycl. 2021, 166, 105346. [Google Scholar] [CrossRef]
- Hassanin, A.H.; Hamouda, T.; Candan, Z.; Kilic, A.; Akbulut, T. Developing high-performance hybrid green composites. Compos. Part B Eng. 2016, 92, 384–394. [Google Scholar] [CrossRef]
- Zemaitis, P.; Linkevicius, E.; Aleinikovas, M.; Tuomasjukka, D. Sustainability impact assessment of glue laminated timber and concrete-based building materials production chains—A lithuanian case study. J. Clean. Prod. 2021, 321, 129005. [Google Scholar] [CrossRef]
- Wang, X.Z.; Chen, X.Z.; Xie, X.Q.; Cai, S.X.; Yuan, Z.R.; Li, Y.J. Multi-scale evaluation of the effect of phenol formaldehyde resin impregnation on the dimensional stability and mechanical properties of Pinus massoniana lamb. Forests 2019, 10, 646. [Google Scholar] [CrossRef]
- Khalil, H.P.S.A.; Amouzgar, P.; Jawaid, M.; Abdullah, C.K.; Issam, A.M.; Zainudin, E.S.; Paridah, M.T.; Hassan, A. Physical and thermal properties of microwave-dried wood lumber impregnated with phenol formaldehyde resin. J. Compos. Mater. 2013, 47, 3565–3571. [Google Scholar] [CrossRef]
- Farah, A.N.I.; Zaidon, A.; Anwar, U.M.K.; Rabiatol-Adawiah, M.A.; Lee, S.H. Improved performance of wood polymer nanocomposite impregnated with metal oxide nanoparticle-reinforced phenol formaldehyde resin. J. Trop. For. Sci. 2021, 33, 77–87. [Google Scholar]
- Zheng, A.; Tang, Y.Y.; Zhang, M.X. Using controlled radiolysis of melamine to reinforce melamine-urea-formaldehyde resin impregnated wood. Polym. Compos. 2022, 43, 3731–3744. [Google Scholar] [CrossRef]
- Yue, K.; Cheng, X.C.; Chen, Z.J.; Tang, L.J.; Liu, W.Q. Investigation of decay resistance of poplar wood impregnated with alkaline copper, urea-formaldehyde, and phenol-formaldehyde resins. Wood Fiber Sci. 2018, 50, 392–401. [Google Scholar] [CrossRef]
- Rahman, M.R. Mechanical and Thermal Characterization of Urea-Formaldehyde Impregnated Wood Polymer Nanocomposites (WPNCs). Wood Polym. Nanocompos. 2018, 123–136. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, X.; Song, S.; Xu, K.; Lyu, J.; Li, X. Curing characteristics of low molecular weight melamine-urea-formaldehyde (muf) resin-impregnated poplar wood. Constr. Build. Mater. 2022, 325, 126814. [Google Scholar] [CrossRef]
- Wang, J.; Yao, Y.; Huang, Y.; Ma, Y.; Xi, J.; Wang, X.; Li, H.; Yang, Z. Effects of the combination of compression and impregnation with phenolic resin on the dimensional stability in the multiscale wood structure of chinese fir. Constr. Build. Mater. 2022, 327, 126960. [Google Scholar] [CrossRef]
- Nabil, F.L.; Zaidon, A.; Anwar, U.M.K.; Bakar, E.S.; Lee, S.H.; Paridah, T. Impregnation of sesenduk (Endospermum diadenum) wood with phenol formaldehyde and nanoclay admixture: Effect on fungal decay and termites attack. Sains Malays. 2016, 45, 255–262. [Google Scholar]
- Biziks, V.; Bicke, S.; Koch, G.; Militz, H. Effect of phenol-formaldehyde (pf) resin oligomer size on the decay resistance of beech wood. Holzforschung 2021, 75, 574–583. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, W.; Hughes, M.; Wu, M.; Zhang, S.; Li, J. Various polymeric monomers derived from renewable rosin for the modification of fast-growing poplar wood. Compos. Part B Eng. 2019, 174, 106902. [Google Scholar] [CrossRef]
- Ang, A.F.; Ashaari, Z.; Bakar, E.S.; Ibrahim, N.A. Possibility of enhancing the dimensional stability of jelutong (Dyera costulata) wood using glyoxalated alkali lignin-phenolic resin as bulking agent. Eur. J. Wood Wood Prod. 2018, 76, 269–282. [Google Scholar] [CrossRef]
- Samaržija-Jovanović, S.; Jovanović, V.; Petković, B.; Jovanović, S.; Marković, G.; Porobić, S.; Marinović-Cincović, M. Radiation stability and thermal behaviour of modified uf resin using biorenewable raw material-furfuryl alcohol. Compos. Part B Eng. 2019, 167, 161–166. [Google Scholar] [CrossRef]
- Li, Y.F.; Liu, Y.X.; Wang, X.M.; Wu, Q.L.; Yu, H.P.; Li, J.A. Wood-polymer composites prepared by the in situ polymerization of monomers within wood. J. Appl. Polym. Sci. 2011, 119, 3207–3216. [Google Scholar] [CrossRef]
- Li, Y.F.; Wu, Q.L.; Li, J.; Liu, Y.X.; Wang, X.M.; Liu, Z.B. Improvement of dimensional stability of wood via combination treatment: Swelling with maleic anhydride and grafting with glycidyl methacrylate and methyl methacrylate. Holzforschung 2012, 66, 59–66. [Google Scholar] [CrossRef]
- Li, Y.F.; Dong, X.Y.; Liu, Y.X.; Li, J.; Wang, F.H. Improvement of decay resistance of wood via combination treatment on wood cell wall: Swell-bonding with maleic anhydride and graft copolymerization with glycidyl methacrylate and methyl methacrylate. Int. Biodeterior. Biodegrad. 2011, 65, 1087–1094. [Google Scholar] [CrossRef]
- Dong, X.Y.; Zhuo, X.; Wei, J.; Zhang, G.; Li, Y.F. Wood-based nanocomposite derived by in-situ formation of organic-inorganic hybrid polymer within wood via a sol-gel method. ACS Appl. Mater. Interfaces 2017, 9, 9070–9078. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Fan, J.; Yao, F.; Gao, X.; Zhao, Y.; Liu, B.; Dong, X.; Li, Y. Epoxy-Acrylic Polymer In-Situ Filling Cell Lumen and Bonding Cell Wall for Wood Reinforcement and Stabilization. Polymers 2024, 16, 152. https://doi.org/10.3390/polym16010152
Liu Y, Fan J, Yao F, Gao X, Zhao Y, Liu B, Dong X, Li Y. Epoxy-Acrylic Polymer In-Situ Filling Cell Lumen and Bonding Cell Wall for Wood Reinforcement and Stabilization. Polymers. 2024; 16(1):152. https://doi.org/10.3390/polym16010152
Chicago/Turabian StyleLiu, Yiliang, Jilong Fan, Fengbiao Yao, Xudong Gao, Yueying Zhao, Baoxuan Liu, Xiaoying Dong, and Yongfeng Li. 2024. "Epoxy-Acrylic Polymer In-Situ Filling Cell Lumen and Bonding Cell Wall for Wood Reinforcement and Stabilization" Polymers 16, no. 1: 152. https://doi.org/10.3390/polym16010152
APA StyleLiu, Y., Fan, J., Yao, F., Gao, X., Zhao, Y., Liu, B., Dong, X., & Li, Y. (2024). Epoxy-Acrylic Polymer In-Situ Filling Cell Lumen and Bonding Cell Wall for Wood Reinforcement and Stabilization. Polymers, 16(1), 152. https://doi.org/10.3390/polym16010152