Structural Characterization of the Milled-Wood Lignin Isolated from Sweet Orange Tree (Citrus sinensis) Pruning Residue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Analysis of the Main Constituents
2.2. Isolation of the Milled-Wood Lignin from OTPs
2.3. Gel Permeation Chromatography (GPC)
2.4. Py-GC/MS Analysis of OTP-MWL
2.5. 2D-NMR Analysis of OTP-MWL
3. Results and Discussion
3.1. Main Constituents of OTPs
3.2. Molecular Weight of the OTP-MWL Determined by GPC
3.3. Lignin Composition of the OTP-MWL by Py-GC/MS
3.4. Lignin Units and Lignin Inter-Unit Linkages of the OTP-MWL by 2D-NMR
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Food and Agriculture Organization of the United Nations. Available online: https://fao.org/faostat/ (accessed on 23 January 2023).
- de Azevedo, F.A.; Lanza, N.B.; Sales, C.R.G.; Silva, K.I.; Barros, A.L.; De Negri, J.D. Pruning in citrus culture. Citrus Res. Technol. 2013, 34, 17–30. [Google Scholar] [CrossRef]
- Aliaño-González, M.J.; Gabaston, J.; Ortiz-Somovilla, V.; Cantos-Villar, E. Wood waste from fruit trees: Biomolecules and their applications in agri-food industry. Biomolecules 2022, 12, 238. [Google Scholar] [CrossRef] [PubMed]
- Velázquez-Martí, B.; Fernández-González, E.; López-Cortés, I.; Callejón-Ferre, A.J. Prediction and evaluation of biomass obtained from citrus trees pruning. J. Food Agric. Environ. 2013, 11, 1485–1491. [Google Scholar]
- González, Z.; Vargas, F.; Jiménez, L.; Rodríguez, A. Orange tree prunings as raw material for cellulose production by the kraft process. Cellul. Chem. Technol. 2013, 47, 603–611. [Google Scholar]
- González, Z.; Vega, A.; Ligero, P.; Rodríguez, A. Valorization of the orange tree pruning by ethanol process. Am. J. Environ. Eng. Sci. 2015, 2, 1–8. [Google Scholar]
- Espinach, F.X.; Espinosa, E.; Reixach, R.; Rodríguez, A.; Mutjé, P.; Tarrés, Q. Study on the macro and micromechanics tensile strength properties of orange tree pruning fiber as sustainable reinforcement on bio-polyethylene compared to oil-derived polymers and its composites. Polymers 2020, 12, 2206. [Google Scholar] [CrossRef]
- Espinosa, E.; Arrebola, R.I.; Bascón-Villegas, I.; Sánchez-Gutiérrez, M.; Domínguez-Robles, J.; Rodríguez, A. Industrial application of orange tree nanocellulose as papermaking reinforcement agent. Cellulose 2020, 27, 10781–10797. [Google Scholar] [CrossRef]
- Porto, D.S.; Forim, M.R.; Costa, E.C.; Fernandes, J.B.; da Silva, M.F.G.F. Evaluation of lignins of trunk and roots from Citrus sinensis L. Osbeck: A large available Brazilian biomass. J. Braz. Chem. Soc. 2021, 32, 29–39. [Google Scholar] [CrossRef]
- Moral, A.; Aguado, R.; Mutjé, P.; Tijero, A. Papermaking potential of Citrus sinensis prunings using organosolv pulping, chlorine-free bleaching and refining. J. Clean. Prod. 2016, 112, 980–986. [Google Scholar] [CrossRef]
- Eugenio, M.E.; Martín-Sampedro, R.; Santos, J.I.; Wicklein, B.; Ibarra, D. Chemical, thermal and antioxidant properties of lignins solubilized during Soda/AQ pulping of orange and olive tree pruning residues. Molecules 2021, 26, 3819. [Google Scholar] [CrossRef]
- Ragauskas, A.J.; Williams, C.K.; Davison, B.H.; Britovsek, G.; Cairney, J.; Eckert, C.A.; Frederick, W.J.; Hallett, J.P.; Leak, D.J.; Liotta, C.L.; et al. The path forward for biofuels and biomaterials. Science 2006, 311, 484–489. [Google Scholar] [CrossRef] [Green Version]
- Ragauskas, A.J.; Beckham, G.T.; Biddy, M.J.; Chandra, R.; Chen, F.; Davis, M.F.; Davison, B.H.; Dixon, R.A.; Gilna, P.; Keller, M.; et al. Lignin valorization: Improving lignin processing in the biorefinery. Science 2014, 344, 1246843. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, R.; Jastrzebshi, R.; Clough, M.T.; Ralph, J.; Kennema, M.; Bruijnincx, P.C.A.; Weckhuysen, B.M. Paving the way for lignin valorisation: Recent advances in bioengineering, biorefining and catalysis. Angew. Chem. Int. Ed. 2016, 55, 8164–8215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schutyser, W.; Renders, T.; Van den Bosch, S.; Koelewijn, S.F.; Beckham, G.T.; Sels, B.F. Chemicals from lignin: An interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem. Soc. Rev. 2018, 47, 852–908. [Google Scholar] [CrossRef]
- Galbe, M.; Wallberg, O. Pretreatment for biorefineries: A review of common methods for efficient utilisation of lignocellulosic materials. Biotechnol. Biofuels 2019, 12, 294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mankar, A.R.; Pandey, A.; Modak, A.; Pant, K.K. Pretreatment of lignocellulosic biomass: A review on recent advances. Bioresour. Technol. 2021, 334, 125235. [Google Scholar] [CrossRef] [PubMed]
- Abu-Omar, M.M.; Barta, K.; Beckham, G.T.; Luterbacher, J.S.; Ralph, J.; Rinaldi, R.; Román-Leshkov, Y.; Samec, J.S.M.; Sels, B.F.; Wang, F. Guidelines for performing lignin-first biorefining. Energy Environ. Sci. 2021, 14, 262–292. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Phan, D.P.; Sarwar, A.; Tran, M.H.; Lee, O.K.; Lee, E.Y. Valorization of industrial lignin to value-added chemicals by chemical depolymerization and biological conversion. Ind. Crop. Prod. 2021, 161, 113219. [Google Scholar] [CrossRef]
- Björkman, A. Studies on finely divided wood. Part I. Extraction of lignin with neutral solvents. Sven. Papperstidn. 1956, 59, 477–485. [Google Scholar]
- Rencoret, J.; Marques, G.; Gutiérrez, A.; Nieto, L.; Santos, J.I.; Jiménez-Barbero, J.; Martínez, Á.T.; del Río, J.C. HSQC-NMR analysis of lignin in woody (Eucalyptus globulus and Picea abies) and non-woody (Agave sisalana) ball-milled plant materials at the gel state. Holzforschung 2009, 63, 691–698. [Google Scholar] [CrossRef]
- Tappi. Tappi Test Methods 2004-2005; Tappi Press: Norcoss, GA, USA, 2004. [Google Scholar]
- Browning, B.L. Methods of Wood Chemistry; Wiley-Interscience: New York, NY, USA, 1967. [Google Scholar] [CrossRef]
- Darvill, A.; McNeil, M.; Albersheim, P.; Delmer, D. The primary cell walls of flowering plants. In The Biochemistry of Plants; Tolbert, N., Ed.; Academic Press: New York, NY, USA, 1980; pp. 91–162. [Google Scholar]
- del Río, J.C.; Prinsen, P.; Rencoret, J.; Nieto, L.; Jiménez-Barbero, J.; Ralph, J.; Martínez, A.T.; Gutiérrez, A. Structural characterization of the lignin in the cortex and pith of elephant grass (Pennisetum purpureum) stems. J. Agric. Food Chem. 2012, 60, 3619–3634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faix, O.; Meier, D.; Fortman, I. Thermal degradation products of wood: A collection of electron impact (EI) mass spectra of monomeric lignin derived products. Holz Roh Werkst. 1990, 48, 351–354. [Google Scholar] [CrossRef]
- Ralph, J.; Hatfield, R.D. Pyrolysis-GC-MS characterization of forage materials. J. Agric. Food Chem. 1991, 39, 1426–1437. [Google Scholar] [CrossRef]
- Ralph, S.A.; Landucci, L.L.; Ralph, J. NMR Database of Lignin and Cell Wall Model Compounds. 2009. Available online: https://www.glbrc.org/databases_and_software/nmrdatabase (accessed on 29 April 2022).
- Rencoret, J.; Gutiérrez, A.; Castro, E.; del Río, J.C. Structural characteristics of lignin in pruning residues of olive tree (Olea europaea L.). Holzforschung 2019, 73, 25–34. [Google Scholar] [CrossRef]
- Zinovyev, G.; Sumerskii, I.; Rosenau, T.; Balakshin, M.; Potthast, A. Ball milling’s effect on pine milled wood lignin’s structure and molar mass. Molecules 2018, 23, 2223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tolbert, A.; Akinosho, H.; Khunsupat, R.; Naskar, A.K.; Ragauskas, A.J. Characterization and analysis of the molecular weight of lignin for biorefining studies. Biofuel. Bioprod. Biorefin. 2014, 8, 836–856. [Google Scholar] [CrossRef]
- Brosse, N.; El Hage, R.; Chaouch, M.; Pétrissans, M.; Dumarçay, S.; Gérardin, P. Investigation of the chemical modifications of beech wood lignin during heat treatment. Polym. Degrad. Stab. 2010, 95, 1721–1726. [Google Scholar] [CrossRef]
- Wang, H.M.; Wang, B.; Wen, J.L.; Yuan, T.Q.; Sun, R.C. Structural characteristics of lignin macromolecules from different Eucalyptus species. ACS Sustain. Chem. Eng. 2017, 5, 11618–11627. [Google Scholar] [CrossRef]
- del Río, J.C.; Gutiérrez, A.; Hernando, M.; Landín, P.; Romero, J.; Martínez, A.T. Determining the influence of eucalypt lignin composition in paper pulp yield using Py-GC/MS. J. Anal. Appl. Pyrol. 2005, 74, 110–115. [Google Scholar] [CrossRef] [Green Version]
- Rencoret, J.; Gutiérrez, A.; Nieto, L.; Jiménez-Barbero, J.; Faulds, C.B.; Kim, H.; Ralph, J.; Martínez, A.T.; del Río, J.C. Lignin composition and structure in young versus adult Eucalyptus globulus plants. Plant Physiol. 2011, 155, 667–682. [Google Scholar] [CrossRef] [Green Version]
- Tsutsumi, Y.; Kondo, R.; Sakai, K.; Imamura, H. The difference of reactivity between syringyl lignin and guaiacyl lignin in alkaline systems. Holzforschung 1995, 49, 423–428. [Google Scholar] [CrossRef]
- Prinsen, P.; Rencoret, J.; Gutiérrez, A.; Liitiä, T.; Tamminen, T.; Colodette, J.L.; Berbis, M.A.; Jiménez-Barbero, J.; Martínez, A.T.; del Río, J.C. Modification of the lignin structure during alkaline delignification of eucalyptus wood by kraft, soda-AQ and soda-O2 cooking. Ind. Eng. Chem. Res. 2013, 52, 15702–15712. [Google Scholar] [CrossRef] [Green Version]
- Karhunen, P.; Rummakko, P.; Sipilä, J.; Brunow, G.; Kilpeläinen, I. Dibenzodioxocins; a novel type of linkage in softwood lignins. Tetrahedron Lett. 1995, 36, 169–170. [Google Scholar] [CrossRef]
- Ralph, J.; Lapierre, C.; Boerjan, W. Lignin structure and its engineering. Curr. Opin. Biotechnol. 2019, 56, 240–249. [Google Scholar] [CrossRef]
Abundance a | |
---|---|
Acetone extractives | 3.0 ± 0.3 |
Methanol extractives | 0.6 ± 0.0 |
Water-soluble material | 0.3 ± 0.0 |
Klason lignin b | 19.0 ± 0.4 |
Acid-soluble lignin | 2.2 ± 0.3 |
Hemicelluloses | 29.3 ± 1.8 |
Cellulose | 40.5 ± 0.3 |
Proteins | 2.7 ± 0.1 |
Ash | 2.4 ± 0.0 |
Label | Compound | Ret. Time (Min) | MS Fragments | Origin | % |
---|---|---|---|---|---|
1 | phenol | 7.15 | 65/66/94 | H | 0.1 |
2 | guaiacol | 7.21 | 81/109/124 | G | 9.5 |
3 | 3-methylphenol | 7.88 | 77/107/108 | H | 0.3 |
4 | 4-methylphenol | 8.60 | 77/107/108 | H | 0.5 |
5 | 4-methylguaiacol | 9.01 | 95/123/138 | G | 12.9 |
6 | 4-ethylphenol | 9.35 | 77/107/122 | H | 0.4 |
7 | 4-ethylguaiacol | 10.51 | 122/137/152 | G | 3.0 |
8 | 4-vinylguaiacol | 11.70 | 107/135/150 | G | 9.0 |
9 | eugenol | 12.11 | 131/149/164 | G | 3.4 |
10 | syringol | 12.90 | 111/139/154 | S | 8.6 |
11 | cis-isoeugenol | 13.20 | 131/149/164 | G | 2.5 |
12 | trans-isoeugenol | 14.29 | 131/149/164 | G | 7.1 |
13 | 4-methylsyringol | 14.65 | 125/153/168 | S | 9.0 |
14 | vanillin | 15.09 | 109/151/152 | G | 4.6 |
15 | 4-ethylsyringol | 15.93 | 107/167/182 | S | 3.8 |
16 | vanillic acid methyl ester | 16.32 | 123/151/182 | G | 0.6 |
17 | acetoguaiacone | 16.64 | 123/151/166 | G | 1.8 |
18 | 4-vinylsyringol | 17.12 | 137/165/180 | S | 4.2 |
19 | 4-allylsyringol | 17.37 | 167/179/194 | S | 1.2 |
20 | guaiacylacetone | 17.47 | 122/137/180 | G | 1.4 |
21 | propiovanillone | 18.10 | 123/151/180 | G | 0.3 |
22 | cis-4-propenylsyringol | 18.37 | 167/179/194 | S | 1.0 |
23 | trans-4-propenylsyringol | 19.45 | 167/179/194 | S | 4.2 |
24 | syringaldehyde | 20.29 | 167/181/182 | S | 4.7 |
25 | syringic acid methyl ester | 21.15 | 123/181/212 | S | 0.8 |
26 | acetosyringone | 21.40 | 153/181/196 | S | 2.0 |
27 | syringylacetone | 22.05 | 123/167/210 | S | 1.3 |
28 | trans-coniferaldehyde | 22.24 | 135/147/178 | G | 0.8 |
29 | propiosyringone | 22.56 | 151/181/210 | S | 1.0 |
%H= | 1.3 | ||||
%G= | 56.9 | ||||
%S= | 41.8 | ||||
S/G= | 0.73 |
Label | δC/δH | Assignment |
---|---|---|
Bβ | 53.0/3.45 | Cβ/Hβ in β–5′ phenylcoumarans (B) |
Cβ | 53.4/3.05 | Cβ/Hβ in β–β′ resinols (C) |
-OCH3 | 55.5/3.72 | C/H in methoxyls |
Aγ | 59.7/3.38 and 3.69 | Cγ/Hγ in β–O–4′ alkyl–aryl ethers (A) |
Fβ | 59.5/2.74 | Cβ/Hβ in β–1′ spirodienones (F) |
Iγ | 61.3/4.08 | Cγ/Hγ in cinnamyl alcohol end-groups (I) |
Bγ | 62.5/3.67 | Cγ/Hγ in β–5′ phenylcoumarans (B) |
Aα(G) | 70.9/4.73 | Cα/Hα in β–O–4′ alkyl–aryl ethers (A) linked to G-units |
Cγ | 70.9/3.81 and 4.18 | Cγ/Hγ in β–β′ resinols (C) |
Aα(S) | 71.8/4.83 | Cα/Hα in β–O–4′ alkyl–aryl ethers (A) linked to S-units |
Fβ′ | 79.2/4.11 | Cβ′/Hβ′ in β–1′ spirodienones (F) |
Fα | 81.0/5.04 | Cα/Hα in β–1′ spirodienones (F) |
Dα | 83.1/4.81 | Cα/Hα in 5-5′ dibenzodioxocins (D) |
Aβ(G) | 83.5/4.28 | Cβ/Hβ in β–O–4′ alkyl–aryl ethers (A) linked to G-units |
Fα′ | 83.5/4.71 | Cα′/Hα′ in β–1′ spirodienones (F) |
Cα | 84.8/4.65 | Cα/Hα in β–β′ resinols (C) |
Dβ | 85.2/3.84 | Cβ/Hβ in 5-5′ dibenzodioxocins (D) |
Aβ(S) | 85.8/4.10 | Cβ/Hβ in β–O–4′ alkyl–aryl ethers (A) linked to S-units |
Bα | 86.7/5.45 | Cα/Hα in β–5′ phenylcoumarans (B) |
S2,6 | 103.9/6.69 | C2/H2 and C6/H6 in etherified syringyl units (S) |
J2,6(S) | 106.0/7.03 | C2/H2 and C6/H6 in sinapaldehyde end-groups (J) |
S′2.6 | 106.2/7.30 and 106.4/7.18 | C2/H2 and C6/H6 in Cα-oxidized syringyl units (S′) |
G2 | 110.9/6.97 | C2/H2 in guaiacyl units (G) |
J2(G) | 112.4/7.31 | C2/H2 in coniferaldehyde end-groups C5-linked (J) |
F2′(G) | 112.8/6.16 | C2′/H2′ in guaiacyl β–1′ spirodienones (F) |
F2′(S) | 113.4/6.25 | C2′/H2′ in syringyl β–1′ spirodienones (F) |
G5/G6 | 114.8/6.93 | C5/H5 in guaiacyl units + C6/H6 in C5-linked guaiacyl units (G) |
G6 | 118.8/6.77 | C6/H6 in guaiacyl units (G) |
J6(G) | 118.7/7.30 | C6/H6 in coniferaldehyde end-groups C5-linked (J) |
F6′(S) | 118.8/6.06 | C6′/H6′ in syringyl β–1′ spirodienones (F) |
J8 | 125.9/6.75 | C8/H8 in cinnamaldehyde end-groups (J) |
H2,6 | 127.7/7.20 | C2/H2 and C6/H6 in p-hydroxyphenyl units (H) |
F5′(G) | 127.8/6.05 | C5′/H5′ in guaiacyl β–1′ spirodienones (F) |
Iβ | 128.1/6.21 | Cβ/Hβ in cinnamyl alcohol end-groups (I) |
Iα | 128.3/6.44 | Cα/Hα in cinnamyl alcohol end-groups (I) |
F6′(G) | 151.0/7.08 | C6′/H6′ in guaiacyl β–1′ spirodienones (F) |
J7 | 153.5/7.62 | C7/H7 in cinnamaldehyde end-groups (J) |
Lignin Inter-Unit Linkages (%) | |
---|---|
β–O–4′ aryl ethers (A) | 70 |
β–5′ phenylcoumarans (B) | 15 |
β–β′ resinols (C) | 9 |
5–5′ dibenzodioxocins (D) | 3 |
β–1′ spirodienones (F) | 3 |
Lignin end-groups a | |
Cinnamyl alcohol end-groups (I) | 6 |
Cinnamaldehyde end-groups (J) | 6 |
Lignin aromatic units b | |
H (%) | 1 |
G (%) | 62 |
S (%) | 37 |
S/G ratio | 0.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosado, M.J.; Rencoret, J.; Gutiérrez, A.; del Río, J.C. Structural Characterization of the Milled-Wood Lignin Isolated from Sweet Orange Tree (Citrus sinensis) Pruning Residue. Polymers 2023, 15, 1840. https://doi.org/10.3390/polym15081840
Rosado MJ, Rencoret J, Gutiérrez A, del Río JC. Structural Characterization of the Milled-Wood Lignin Isolated from Sweet Orange Tree (Citrus sinensis) Pruning Residue. Polymers. 2023; 15(8):1840. https://doi.org/10.3390/polym15081840
Chicago/Turabian StyleRosado, Mario J., Jorge Rencoret, Ana Gutiérrez, and José C. del Río. 2023. "Structural Characterization of the Milled-Wood Lignin Isolated from Sweet Orange Tree (Citrus sinensis) Pruning Residue" Polymers 15, no. 8: 1840. https://doi.org/10.3390/polym15081840
APA StyleRosado, M. J., Rencoret, J., Gutiérrez, A., & del Río, J. C. (2023). Structural Characterization of the Milled-Wood Lignin Isolated from Sweet Orange Tree (Citrus sinensis) Pruning Residue. Polymers, 15(8), 1840. https://doi.org/10.3390/polym15081840