Effect of Starch Type and Pre-Treatment on the Properties of Gelatin–Starch Foams Produced by Mechanical Foaming
Abstract
:1. Introduction
2. Experimental Details
2.1. Materials
2.2. Sample Reparation
2.2.1. Thermoplastic Starch Preparation
2.2.2. Foams Preparation
2.3. Characterization of the Starch Powders
2.3.1. Crystallinity
2.3.2. Morphology
2.4. Characterization of the Suspensions
2.4.1. Differential Scanning Calorimetry (D.S.C.)
2.4.2. Microscopic Assessment of the T.P.S. Preparation Process
2.4.3. Viscosity
2.4.4. Surface Tension
2.5. Characterization of the Gels
2.6. Characterization of the Foams
2.6.1. Expansion Ratio
2.6.2. Bulk Density, Relative Density and Porosity
2.6.3. Foam Structure
2.6.4. Compression Properties
2.7. Statistical Analysis
3. Results and Discussion
3.1. Thermoplastic Starch (TPS)
3.2. Gelatin-TPS-SDS Suspensions and Gels
3.3. Gelatin–Starch Foams
3.3.1. Density
3.3.2. Foam Structure
3.3.3. Compression Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WRAP. «Redesigning the Plastics System». Available online: https://wrap.org.uk/taking-action/plastic-packaging (accessed on 6 September 2022).
- Fan, B.; Zhao, X.; Liu, Z.; Xiang, Y.; Zheng, X. Inter-component synergetic corrosion inhibition mechanism of Passiflora edulia Sims shell extract for mild steel in pickling solution: Experimental, DFT and reactive dynamics investigations. Sustain. Chem. Pharm. 2022, 29, 100821. [Google Scholar] [CrossRef]
- Gowthaman, K.; Lim, H.N.; Sreeraj, T.R.; Amalraj, A.; Gopi, S. Advantages of biopolymers over synthetic polymers: Social, economic, and environmental aspects. In Biopolymers and Their Industrial Applications; Elsevier: Amsterdam, The Netherlands, 2021; pp. 351–372. [Google Scholar] [CrossRef]
- Mort, R.; Vorst, K.; Curtzwiler, G.; Jiang, S. Biobased foams for thermal insulation: Material selection, processing, modelling, and performance. RSC Adv. 2021, 11, 4375–4394. [Google Scholar] [CrossRef] [PubMed]
- Combrzyński, M.; Wójtowicz, A.; Mitrus, M.; Oniszczuk, T.; Matwijczuk, A.; Pawelczyk, P.; Mościcki, L. Effect of starch type and screw speed on mechanical properties of extrusion-cooked starch-based foams. Int. Agrophys. 2019, 33, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Abinader, G.; Lacoste, C.; Le Baillif, M.; Erre, D.; Copinet, A. Effect of the formulation of starch-based foam cushions on the morphology and mechanical properties. J. Cell. Plast. 2014, 51, 31–44. [Google Scholar] [CrossRef]
- Tapia-Blácido, D.R.; Aguilar, G.J.; de Andrade, M.T.; Rodrigues-Júnior, M.F.; Guareschi-Martins, F.C. Trends and challenges of starch-based foams for use as food packaging and food container. Trends Food Sci. Technol. 2021, 119, 257–271. [Google Scholar] [CrossRef]
- Aygün, A.; Uslu, M.K.; Polat, S. Effects of Starch Sources and Supplementary Materials on Starch Based Foam Trays. J. Polym. Environ. 2016, 25, 1163–1174. [Google Scholar] [CrossRef]
- Jones, M.; Huynh, T.; Dekiwadia, C.; Daver, F.; John, S. Mycelium Composites: A Review of Engineering Characteristics and Growth Kinetics. J. Bionanosci. 2017, 11, 241–257. [Google Scholar] [CrossRef]
- Sivaprasad, S.; Byju, S.K.; Prajith, C.; Shaju, J.; Rejeesh, C. Development of a novel mycelium bio-composite material to substitute for polystyrene in packaging applications. Mater. Today Proc. 2021, 47, 5038–5044. [Google Scholar] [CrossRef]
- Abhijith, R.; Ashok, A.; Rejeesh, C. Sustainable packaging applications from mycelium to substitute polystyrene: A review. Mater. Today Proc. 2018, 5, 2139–2145. [Google Scholar] [CrossRef]
- Abu Hassan, N.A.; Ahmad, S.; Chen, R.S.; Natarajan, V.D. Synergistically enhanced mechanical, combustion and acoustic properties of biopolymer composite foams reinforcement by kenaf fibre. Compos. Part A Appl. Sci. Manuf. 2022, 155, 106826. [Google Scholar] [CrossRef]
- Kim, B.S.; Garcia, C.V.; Shin, G.H.; Kim, J.T. Development of soy protein concentrate/hemp fiber-based biocomposite foams: Effects of alkaline treatment and poly(lactic acid) coating. Ind. Crop. Prod. 2022, 186, 115288. [Google Scholar] [CrossRef]
- Wu, S.P.; Hu, J.; Rong, M.Z.; Zhang, M.Q.; Qiu, J.F. Environmentally friendly soybean oil based foam plastics and their sisal fiber reinforced composites. In Dans Soybean Oil Uses, Properties and Role in Human Health; Nova Science Pub Inc.: Hauppauge, NY, USA, 2016. [Google Scholar]
- Bergeret, A.; Benezet, J.C. Natural Fibre-Reinforced Biofoams. Int. J. Polym. Sci. 2011, 2011, 569871. [Google Scholar] [CrossRef] [Green Version]
- Hou, Q.; Wang, X. Effect of fiber surface characteristics on foam properties. Cellulose 2018, 25, 3315–3325. [Google Scholar] [CrossRef]
- Pérez-Fonseca, A.; Teymoorzadeh, H.; Robledo-Ortíz, J.; González-Nuñez, R.; Rodrigue, D. Polylactic Acid Composites and Composite Foams Based on Natural Fibers. In Handbook of Composites from Renewable Materials, Structure and Chemistry; John Wiley & Sons: New York, NY, USA, 2017; pp. 25–59. [Google Scholar] [CrossRef]
- Engel, J.B.; Ambrosi, A.; Tessaro, I.C. Development of biodegradable starch-based foams incorporated with grape stalks for food packaging. Carbohydr. Polym. 2019, 225, 115234. [Google Scholar] [CrossRef]
- Phaodee, P.; Tangjaroensirirat, N.; Sakdaronnarong, C. Biobased Polystyrene Foam-like Material from Crosslinked Cassava Starch and Nanocellulose from Sugarcane Bagasse. Bioresources 2014, 10, 348–368. [Google Scholar] [CrossRef] [Green Version]
- Yildirim, N.; Shaler, S.M.; Gardner, D.J.; Rice, R.; Bousfield, D.W.W. Cellulose nanofibril (CNF) reinforced starch insulating foams. Cellulose 2014, 21, 4337–4347. [Google Scholar] [CrossRef]
- Rosenboom, J.-G.; Langer, R.; Traverso, G. Bioplastics for a circular economy. Nat. Rev. Mater. 2022, 7, 117–137. [Google Scholar] [CrossRef]
- Schrieber, R.; Gareis, H. Glossary; John Wiley & Sons, Inc.: New York, NY, USA, 2007; pp. 319–330. [Google Scholar] [CrossRef] [Green Version]
- Torrejon, V.M.; Song, J.; Yu, Z.; Hang, S. Gelatin-based cellular solids: Fabrication, structure and properties. J. Cell. Plast. 2022, 58, 797–858. [Google Scholar] [CrossRef]
- Alves, Z.; Ferreira, N.M.; Ferreira, P.; Nunes, C. Design of heat sealable starch-chitosan bioplastics reinforced with reduced graphene oxide for active food packaging. Carbohydr. Polym. 2022, 291, 119517. [Google Scholar] [CrossRef]
- Debnath, B.; Duarah, P.; Haldar, D.; Purkait, M.K. Improving the properties of corn starch films for application as packaging material via reinforcement with microcrystalline cellulose synthesized from elephant grass. Food Packag. Shelf Life 2022, 34, 100937. [Google Scholar] [CrossRef]
- Omar, F.N.; Hafid, H.S.; Zhu, J.; Bahrin, E.K.; Nadzri, F.Z.M.; Wakisaka, M. Starch-based composite film reinforcement with modified cellulose from bamboo for sustainable packaging application. Mater. Today Commun. 2022, 33, 104392. [Google Scholar] [CrossRef]
- Rosseto, M.; Krein, D.D.; Balbé, N.P.; Dettmer, A. Starch–gelatin film as an alternative to the use of plastics in agriculture: A review. J. Sci. Food Agric. 2019, 99, 6671–6679. [Google Scholar] [CrossRef] [PubMed]
- Gourilekshmi, S.S.; Jyothi, A.N.; Sreekumar, J. Physicochemical and Structural Properties of Starch from Cassava Roots Differing in Growing Duration and Ploidy Level; John Wiley & Sons, Inc.: New York, NY, USA, 2020; Volume 72. [Google Scholar] [CrossRef]
- Jane, J. Starch Properties, Modifications, and Applications. J. Macromol. Sci. Part A 1995, 32, 751–757. [Google Scholar] [CrossRef]
- Chaléat, C.; Halley, P.J.; Truss, R. Mechanical Properties of Starch-Based Plastics. In Starch Polymers; Elsevier: Amsterdam, The Netherlands, 2014; pp. 187–209. [Google Scholar] [CrossRef]
- Hu, X.; Xu, X.; Jin, Z.; Tian, Y.; Bai, Y.; Xie, Z. Retrogradation properties of rice starch gelatinized by heat and high hydrostatic pressure (HHP). J. Food Eng. 2011, 106, 262–266. [Google Scholar] [CrossRef]
- Nara, S.; Mori, A.; Komiya, T. Study on Relative Crystallinity of Moist Potato Starch. Starch-Stärke 1978, 30, 111–114. [Google Scholar] [CrossRef]
- Gelatin Manufacturers Institute of America. Gelatin Handbook; GMIA: Sergeant Bluff, IA, USA, 2012. [Google Scholar]
- Enzendorfer, C.; Harris, R.A.; Valko, P.; Economides, M.J.; Fokker, P.; Davies, D.D. Pipe viscometry of foams. J. Rheol. 1995, 39, 345–358. [Google Scholar] [CrossRef]
- Gibson, L.J.; Ashby, M.F. Cellular Solids: Structure & Properties; Cambridge University Press: Oxford, UK, 1988. [Google Scholar] [CrossRef]
- Rao, M.; Tattiyakul, J. Granule size and rheological behavior of heated tapioca starch dispersions. Carbohydr. Polym. 1999, 38, 123–132. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, X.; Wang, S.; Copeland, L. Changes of multi-scale structure during mimicked DSC heating reveal the nature of starch gelatinization. Sci. Rep. 2016, 6, 28271. [Google Scholar] [CrossRef] [Green Version]
- Ratnayake, W.S.S.; Otani, C.; Jackson, D.S. DSC enthalpic transitions during starch gelatinisation in excess water, dilute sodium chloride and dilute sucrose solutions. J. Sci. Food Agric. 2009, 89, 2156–2164. [Google Scholar] [CrossRef]
- van Soest, J.J.; Hulleman, S.; de Wit, D.; Vliegenthart, J. Crystallinity in starch bioplastics. Ind. Crop. Prod. 1996, 5, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Breuninger, W.F.; Piyachomkwan, K.; Sriroth, K. Tapioca/Cassava Starch. Starch 2009, 541–568. [Google Scholar] [CrossRef]
- Torrejon, V.M.; Deng, Y.; Luo, G.; Wu, B.; Song, J.; Hang, S.; Wang, D. Role of Sodium Dodecyl Sulfate in Tailoring the Rheological Properties of High-Strength Gelatin Hydrogels. Gels 2021, 7, 271. [Google Scholar] [CrossRef] [PubMed]
- Piliugina, I.; Artamonova, M.; Murlykina, N.; Shidakova-Kamenyuka, O. Study of the foaming properties of gelatin with solubilized substances for the production of marshmallows. Food Sci. Technol. 2019, 13. [Google Scholar] [CrossRef]
- Walstra, P. Physical Chemistry of Foods/Pieter Walstra; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- van Soest, J.J.J.; Vliegenthart, J.F. Crystallinity in starch plastics: Consequences for material properties. Trends Biotechnol. 1997, 15, 208–213. [Google Scholar] [CrossRef]
- Zhou, J.; Song, J.; Parker, R. Structure and properties of starch-based foams prepared by microwave heating from extruded pellets. Carbohydr. Polym. 2006, 63, 466–475. [Google Scholar] [CrossRef]
Material | Protein (wt.%) | Fat (wt.%) | Carbohydrates | Water (wt.%) | Ash (wt.%) | ||
---|---|---|---|---|---|---|---|
Amylose (%) | Fiber (wt.%) | Total (wt.%) | |||||
Gelatin | 86.1 | 0.17 | - | - | 1.08 | 12.1 | 0.55 |
Native tapioca | 0.21 | 0.18 | 26.4 ± 0.9 | 0.1 | 86.73 | 12.7 | 0.18 |
Pregelatinized tapioca | 0.33 | 0.15 | 24.6 ± 0.4 | 2.6 | 87.56 | 11.8 | 0.16 |
Native corn | 0.39 | 0.19 | 31 ± 1.2 | 1.3 | 86.35 | 12.9 | 0.17 |
Pregelatinized corn | 0.69 | 0.74 | 35.7 ± 1.1 | 1.6 | 89.26 | 9.15 | 0.16 |
Sample | Water (wt.%) | Gelatin–Starch Solid Content (wt.%) | Gelatin (wt.%) | Starch (wt.%) | Starch Type |
---|---|---|---|---|---|
20 wt.% gelatin | 75 | 20 | 20 | - | - |
25 wt.% gelatin | 75 | 25 | 25 | - | - |
Native tapioca | 75 | 25 | 20 | 5 | native tapioca |
Pregelatinized tapioca | 75 | 25 | 20 | 5 | pregelatinized tapioca |
Native corn | 75 | 25 | 20 | 5 | native corn |
Pregelatinized corn | 75 | 25 | 20 | 5 | pregelatinized corn |
Starch Type | Water Content (wt.%) | Average Granule Size (μm) | Crystal Pattern | Crystallinity Degree (%) |
---|---|---|---|---|
Native tapioca | 12.7 | 17 | C | 36 ± 2 |
Pregelatinized tapioca | 11.8 | 46 | C | 26 ± 1 |
Native corn | 12.9 | 16 | A | 34 ± 1 |
Pregelatinized corn | 9.15 | 71 | - * | 9 ± 2 |
Sample | Density of the Liquid (kg/m3) | Surface Tension at 45 °C (N/m) | Apparent Viscosity at 45 °C (mPa·s) | Expansion Ratio (mm/mm) | Gel Strength (N) |
---|---|---|---|---|---|
20 wt.% gelatin | 1020 ± 20 | 31.24 ± 1.86 | 720 ± 42 | 13.66 ± 0.04 | 15.75 ± 0.27 |
25 wt.% gelatin | 1060 ± 20 | 29.84 ± 1.79 | 1464 ± 141 | 10.93 ± 0.36 | 22.09 ± 0.74 |
Native Tapioca | 1050 ± 10 | 39.28 ± 0.74 | 1768 ± 158 | 10.31 ± 0.41 | 14.51 ± 0.32 |
Pregelatinized Tapioca | 1040 ± 20 | 36.80 ± 1.00 | 2066 ± 43 | 9.60 ± 0.55 | 17.87 ± 0.84 |
Native Corn | 1070 ± 50 | 37.36 ± 0.58 | 2210 ± 67 | 9.64 ± 0.31 | 16.38 ± 0.42 |
Pregelatinized Corn | 1120 ± 100 | 35.65 ± 1.97 | 2411 ± 98 | 8.88 ± 0.64 | 13.06 ± 0.32 |
Sample | Expansion Ratio (ER.) | Bulk Density (kg/m3) | Relative Density | Porosity (%) |
---|---|---|---|---|
20 wt.% gelatin | 13.66 ± 0.04 | 28.58 ± 2.30 | 0.029 | 97.1 |
25 wt.% gelatin | 10.93 ± 0.36 | 42.08 ± 0.63 | 0.042 | 95.8 |
Native Tapioca | 10.31 ± 0.41 | 44.86 ± 2.64 | 0.046 | 95.4 |
Pregelatinized tapioca | 9.60 ± 0.55 | 45.61 ± 1.87 | 0.045 | 95.5 |
Native Corn | 9.42 ± 0.35 | 48.20 ± 1.23 | 0.042 | 95.8 |
Pregelatinized Corn | 9.64 ± 0.31 | 49.45 ± 0.48 | 0.044 | 95.6 |
Sample | Mean Pore Area (mm2) | Mean Cell Area (mm2) |
---|---|---|
20 wt.% gelatin | 0.098 ± 0.080 | 1.490 ± 1.228 |
25 wt.% gelatin | 0.058 ± 0.040 | 0.775 ± 0.984 |
Native tapioca | 0.058 ± 0.047 | 1.522 ± 2.413 |
Pregelatinized tapioca | 0.039 ± 0.032 | 0.882 ± 0.875 |
Native corn | 0.059 ± 0.067 | 1.351 ± 1.153 |
Pregelatinized corn | 0.038 ± 0.033 | 0.839 ± 0.927 |
Sample | Bulk Density (kg/m3) | Compression Modulus (E*) (kPa) | Compression Strength (σ*el) (kPa) | Compression Strain (kPa) | Elastic Deformation Energy (kJ/m3) | Deformation Energy at 50% Strain (kJ/m3) |
---|---|---|---|---|---|---|
20 wt.% gelatin | 28.58 ± 2.30 | 1.687 ± 100 | 62 ± 3 | 6.28 ± 0.61 | 2.60 ± 0.52 | 32.56 ± 2.03 |
25 wt.% gelatin | 42.08 ± 0.63 | 4.062 ± 265 | 147 ± 11 | 6.45 ± 0.45 | 6.46 ± 1.41 | 80.60 ± 6.84 |
Native tapioca | 44.86 ± 2.64 | 2.803 ± 453 | 117 ± 12 | 6.68 ± 1.43 | 4.54 ± 1.53 | 64.24 ± 3.83 |
Pregelatinized tapioca | 45.61 ± 1.87 | 4.579 ± 688 | 160 ± 3 | 5.73 ± 0.35 | 6.34 ± 0.24 | 92.58 ± 8.19 |
Native corn | 48.20 ± 1.23 | 4.929 ± 351 | 180 ± 8 | 5.03 ± 0.19 | 6.47 ± 0.29 | 98.60 ± 1.70 |
Pregelatinized corn | 49.45 ± 0.48 | 4.181 ± 149 | 166 ± 3 | 6.16 ± 0.13 | 5.81 ± 0.35 | 86.63 ± 3.52 |
EPS 20 kg/m3 | 20 ± 1.03 | 1.932 ± 162 | 56 ± 2 | - * | 4.11 ± 0.12 | 38.96 ± 0.50 |
EPS 30 kg/m3 | 30 ± 1.26 | 4.102 ± 127 | 106 ± 2 | - * | 8.03 ± 0.17 | 67.30 ± 1.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin Torrejon, V.; Song, H.; Wu, B.; Luo, G.; Song, J. Effect of Starch Type and Pre-Treatment on the Properties of Gelatin–Starch Foams Produced by Mechanical Foaming. Polymers 2023, 15, 1775. https://doi.org/10.3390/polym15071775
Martin Torrejon V, Song H, Wu B, Luo G, Song J. Effect of Starch Type and Pre-Treatment on the Properties of Gelatin–Starch Foams Produced by Mechanical Foaming. Polymers. 2023; 15(7):1775. https://doi.org/10.3390/polym15071775
Chicago/Turabian StyleMartin Torrejon, Virginia, Hang Song, Bingjie Wu, Guidong Luo, and Jim Song. 2023. "Effect of Starch Type and Pre-Treatment on the Properties of Gelatin–Starch Foams Produced by Mechanical Foaming" Polymers 15, no. 7: 1775. https://doi.org/10.3390/polym15071775
APA StyleMartin Torrejon, V., Song, H., Wu, B., Luo, G., & Song, J. (2023). Effect of Starch Type and Pre-Treatment on the Properties of Gelatin–Starch Foams Produced by Mechanical Foaming. Polymers, 15(7), 1775. https://doi.org/10.3390/polym15071775