Recent Approaches to the Modification of Collagen Biomatrix as a Corneal Biomatrix and Its Cellular Interaction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Criteria of Selection
2.3. Management of Data Extraction Table
3. Results
3.1. Searching Result
3.2. Study Characteristics
4. Discussion
4.1. New Bioresource and Its Efficacy on CECs and LESCs
4.2. Physical Modification of the Biomatrix
4.3. Crosslinking Effect on the Biocompatibility of the Construct towards CECs/LESCs
4.4. Interaction of CECs/LESCs with Other Cells and Molecules in a Collagen Biomatrix
4.5. Collagen as a Substitute for Biomatrix
4.6. In Vivo Application of a Recently Developed Collagen Biomatrix and Its Efficiency in Corneal Therapy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3D | Three-dimensional |
3D-BDCS | 3D bioprinting decellularized collagen sheet |
A2-P | L-ascorbic acid 2-phosphate |
aCM | Acellular conjunctiva matrix |
AHDCS | Adult human derived corneal stromal |
APCS-gel | Acellular porcine corneal stroma hydrogel |
BCI-gel-PEG-NHS | Bovine collagen type 1 hydrogel crosslinked to PEG-NHS |
BMP | Bone morphogenetic protein |
BPC | Bioengineered porcine collagen |
CAT | Chloramphenicol acetyltransferase |
CECs | Corneal epithelial cells |
CK | Cytokeratin |
CLP | Collagen-like peptide |
CLP-12 EDC | Collagen-like peptide type 12 crosslinked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride |
CLP-PEG-EDC-NHS | Collagen-like peptide crosslinked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide-N-hydroxy succinimide and conjugated to the polyethene glycol |
CMP | Collagen mimetic peptides |
COLLEN | Decellularized corneal lenticule embedded compressed collagen |
ColMA | Collagen methacrylate |
CSSCs | Corneal stromal stem cells |
CV | Collagen vitrigel |
dAM | Denuded amniotic membrane |
dCL | Decellularized corneal lenticule |
dFib | Diseased fibroblasts |
DHC | Decellularized human corneal tissue remnants |
DMTMM | 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride |
ECM | Extracellular matrix |
EDC | 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride |
EDC-NHS | 1–Ethyl–3-(3-dimethylaminopropyl) carbodiimide-N-hydroxysuccinimide |
FGF | Fibroblast growth factor |
FN | Fibronectin |
FSC-PE | Fish scale collagen coated with polyethene |
FTIR | Fourier-transform infrared spectroscopy |
H&E | Haematoxylin and eosin stain |
HA-DOPA | Dopamine hydrazone scaffold-crosslinked hyaluronic acid |
hADSCs | Human adipose-derived mesenchymal stem cells |
HAM | Human amniotic membrane |
hCECs | Human corneal epithelial cells |
hLESCs | Human limbal epithelial stem cells |
hLF | Human limbal fibroblast |
Hyp | Hydroxyproline |
IF | Immunofluorescence |
IHC | Immunohistochemistry |
ihCECs | Immortalized human corneal epithelial cells |
K | Keratin |
LEPC | Limbal epithelial progenitor cells |
LESCs | Limbal epithelial stem cells |
LM | Limbal melanocytes |
LMSC | Limbal mesenchymal stromal cells |
LSCD | Limbal stem cell deficiency |
MMP | Matrix metalloproteinases |
MPC | Methacyloyloxyethyl phosphorylcholine |
MTT | Tetrazolium salt (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide |
NHS | N-hydroxysuccinimide |
NS | Naproxen sodium |
OA-gel-CIV | Oxidized alginate hydrogel incorporated with collagen IV |
OCT | Optical coherence tomography |
PE | Polyethene |
PEG | Polyethene glycol |
PKP | Penetrating keratoplasty |
PLA | Poly-L/DL- lactic acid |
PLGA | Poly lactic-co-glycolic acid |
RAFT TE | Real architecture for 3D tissue equivalent |
RAFT TE-CI | Real architecture for 3D tissue equivalent treated with collagenase I |
RAFT TE-NT | Real architecture for 3D tissue equivalent treated without treatment |
RAFT TE-PBS | Real architecture for 3D tissue equivalent treated with phosphate-buffered saline |
rCECs | Rabbit corneal epithelial cells |
RHC | Recombinant human collagen |
RHCI | Recombinant human collagen type I |
RHCIII | Recombinant human collagen type III |
RTCI-gel | Rat tail collagen type I hydrogel |
RT-PCR | Reverse transcription polymerase chain reaction |
SCF | Stem cell factor |
SDS | Sodium dodecyl-sulphate |
SEM | Scanning electron microscope |
SIRC | Statens Seruminstitut Rabbit Cornea |
TEM | Transmission electron microscopy |
TGF-β1 | Transforming growth factor beta 1 |
TKE2 | Mouse corneal epithelial stem/progenitor cells |
TMSCs | Human turbinate-derived mesenchymal stem cells |
WOS | Web of Science |
YAP | Yes-associated protein |
References
- DelMonte, D.W.; Kim, T. Anatomy and physiology of the cornea. J. Cataract Refract. Surg. 2011, 37, 588–598. [Google Scholar] [CrossRef] [PubMed]
- Maurice, D.M. The cornea and sclera. In Vegetative Physiology and Biochemistry, 1st ed.; Davson, H., Ed.; Elsevier: Amsterdam, The Netherlands, 1962; Volume 1, pp. 289–368. [Google Scholar] [CrossRef]
- Sridhar, M.S. Anatomy of cornea and ocular surface. Indian J. Ophthalmol. 2018, 66, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Ghezzi, C.E.; Rnjak-Kovacina, J.; Kaplan, D.L. Corneal tissue engineering: Recent advances and future perspectives. Tissue Eng. Part B Rev. 2015, 21, 278–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espana, E.; Ti, S.; Grueterich, M.; Touhami, A.; Tseng, S. Corneal stromal changes following reconstruction by ex vivo expanded limbal epithelial cells in rabbits with total limbal stem cell deficiency. Br. J. Ophthalmol. 2003, 87, 1509–1514. [Google Scholar] [CrossRef] [Green Version]
- Gipson, I.K.; Stepp, M.A. Anatomy and cell biology of the cornea, superficial limbus, and conjunctiva. In Albert and Jakobiec’s Principles and Practice of Ophthalmology; Springer: Cham, Switzerland, 2022; pp. 3–30. [Google Scholar] [CrossRef]
- Lu, L.; Reinach, P.S.; Kao, W.W. Corneal epithelial wound healing. Exp. Biol. Med. 2001, 226, 653–664. [Google Scholar] [CrossRef]
- Krachmer, J.; Mannis, M.; Holland, E. Cornea, Volume Two: Surgery of the Cornea and Conjuctiva, 2nd ed.; Elsevier Mosby: Maryland Heights, MO, USA, 2005; pp. 997–1011. [Google Scholar] [CrossRef]
- Bergmanson, J.P. Anatomy and physiology of the cornea and related structures. In Contact Lens, 6th ed.; Anthony, J.P., Lynne, S., Eds.; Elsevier Mosby: Maryland Height, MO, USA, 2019; pp. 33–43. [Google Scholar] [CrossRef]
- Downie, L.E.; Bandlitz, S.; Bergmanson, J.P.; Craig, J.P.; Dutta, D.; Maldonado-Codina, C.; Ngo, W.; Siddireddy, J.S.; Wolffsohn, J.S. BCLA CLEAR-Anatomy and physiology of the anterior eye. Contact Lens Anterior Eye 2021, 44, 132–156. [Google Scholar] [CrossRef]
- Fagerholm, P. Wound healing after photorefractive keratectomy. J. Cataract Refract. Surg. 2000, 26, 432–447. [Google Scholar] [CrossRef]
- Kuo, I.C. Corneal wound healing. Curr. Opin. Ophthalmol. 2004, 15, 311–315. [Google Scholar] [CrossRef]
- Liu, C.-Y.; Kao, W.W. Corneal Epithelial Wound Healing. Prog. Mol. Biol. Transl. Sci. 2015, 134, 61–71. [Google Scholar] [CrossRef]
- Park, M.; Richardson, A.; Pandzic, E.; Lobo, E.P.; Whan, R.; Watson, S.L.; Lyons, J.G.; Wakefield, D.; Di Girolamo, N. Visualizing the Contribution of Keratin-14(+) Limbal Epithelial Precursors in Corneal Wound Healing. Stem Cell Rep. 2019, 12, 14–28. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.S.; Joo, C.K. Wakayama symposium: New therapies for modulation of epithelialization in corneal wound healing. Ocul. Surf. 2013, 11, 16–18. [Google Scholar] [CrossRef]
- Notara, M.; Lentzsch, A.; Coroneo, M.; Cursiefen, C. The role of limbal epithelial stem cells in regulating corneal (lymph) angiogenic privilege and the micromilieu of the limbal niche following UV exposure. Stem Cells Int. 2018, 2018, 8620172. [Google Scholar] [CrossRef] [Green Version]
- Bonnet, C.; González, S.; Roberts, J.S.; Robertson, S.Y.; Ruiz, M.; Zheng, J.; Deng, S.X. Human limbal epithelial stem cell regulation, bioengineering and function. Prog. Retin. Eye Res. 2021, 85, 100956. [Google Scholar] [CrossRef]
- Le, Q.; Xu, J.; Deng, S.X. The diagnosis of limbal stem cell deficiency. Ocul. Surf. 2018, 16, 58–69. [Google Scholar] [CrossRef]
- Dua, H.S.; Joseph, A.; Shanmuganathan, V.; Jones, R. Stem cell differentiation and the effects of deficiency. Eye 2003, 17, 877–885. [Google Scholar] [CrossRef] [Green Version]
- Vieira-Potter, V.J.; Karamichos, D.; Lee, D.J. Ocular complications of diabetes and therapeutic approaches. BioMed Res. Int. 2016, 2016, 3801570. [Google Scholar] [CrossRef] [Green Version]
- Córdoba, A.; Mejía, L.F.; Mannis, M.J.; Navas, A.; Madrigal-Bustamante, J.A.; Graue-Hernandez, E.O. Current global bioethical dilemmas in corneal transplantation. Cornea 2020, 39, 529–533. [Google Scholar] [CrossRef]
- Behlau, I.; Martin, K.V.; Martin, J.N.; Naumova, E.N.; Cadorette, J.J.; Sforza, J.T.; Pineda, R.; Dohlman, C.H. Infectious endophthalmitis in Boston keratoprosthesis: Incidence and prevention. Acta Ophthalmol. 2014, 92, 546–555. [Google Scholar] [CrossRef]
- Duan, X.; Sheardown, H. Dendrimer crosslinked collagen as a corneal tissue engineering scaffold: Mechanical properties and corneal epithelial cell interactions. Biomaterials 2006, 27, 4608–4617. [Google Scholar] [CrossRef]
- Zhang, B.; Xue, Q.; Hu, H.-Y.; Yu, M.-F.; Gao, L.; Luo, Y.-C.; Li, Y.; Li, J.-T.; Ma, L.; Yao, Y.-F. Integrated 3D bioprinting-based geometry-control strategy for fabricating corneal substitutes. J. Zhejiang Univ.-Sci. B 2019, 20, 945–959. [Google Scholar] [CrossRef]
- Jameson, J.F.; Pacheco, M.O.; Nguyen, H.H.; Phelps, E.A.; Stoppel, W.L. Recent Advances in Natural Materials for Corneal Tissue Engineering. Bioengineering 2021, 8, 161. [Google Scholar] [CrossRef] [PubMed]
- Ahearne, M.; Fernandez-Perez, J.; Masterton, S.; Madden, P.W.; Bhattacharjee, P. Designing scaffolds for corneal regeneration. Adv. Funct. Mater. 2020, 30, 1908996. [Google Scholar] [CrossRef] [Green Version]
- Hong, H.; Huh, M.-I.; Park, S.M.; Lee, K.-P.; Kim, H.K.; Kim, D.S. Decellularized corneal lenticule embedded compressed collagen: Toward a suturable collagenous construct for limbal reconstruction. Biofabrication 2018, 10, 045001. [Google Scholar] [CrossRef] [PubMed]
- Man, R.C.; Yong, T.K.; Hwei, N.M.; Halim, W.H.W.A.; Zahidin, A.Z.M.; Ramli, R.; Saim, A.B.; Idrus, R.B.H. Corneal regeneration by induced human buccal mucosa cultivated on an amniotic membrane following alkaline injury. Mol. Vis. 2017, 23, 810. [Google Scholar] [PubMed]
- Rohaina, C.M.; Then, K.Y.; Ng, A.M.H.; Halim, W.H.W.A.; Zahidin, A.Z.M.; Saim, A.; Idrus, R.B. Reconstruction of limbal stem cell deficient corneal surface with induced human bone marrow mesenchymal stem cells on amniotic membrane. Transl. Res. 2014, 163, 200–210. [Google Scholar] [CrossRef]
- Rama, P.; Bonini, S.; Lambiase, A.; Golisano, O.; Paterna, P.; De Luca, M.; Pellegrini, G. Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency1. Transplantation 2001, 72, 1478–1485. [Google Scholar] [CrossRef]
- Rama, P.; Matuska, S.; Paganoni, G.; Spinelli, A.; De Luca, M.; Pellegrini, G. Limbal stem-cell therapy and long-term corneal regeneration. N. Engl. J. Med. 2010, 363, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Alaminos, M.; Sánchez-Quevedo, M.D.C.; Munoz-Ávila, J.I.; Serrano, D.; Medialdea, S.; Carreras, I.; Campos, A. Construction of a complete rabbit cornea substitute using a fibrin-agarose scaffold. Investig. Ophthalmol. Vis. Sci. 2006, 47, 3311–3317. [Google Scholar] [CrossRef] [Green Version]
- Pellegrini, G.; Traverso, C.E.; Franzi, A.T.; Zingirian, M.; Cancedda, R.; De Luca, M. Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet 1997, 349, 990–993. [Google Scholar] [CrossRef]
- Behaegel, J.; Ní Dhubhghaill, S.; Koppen, C.; Zakaria, N. Safety of cultivated limbal epithelial stem cell transplantation for human corneal regeneration. Stem Cells Int. 2017, 2017, 6978253. [Google Scholar] [CrossRef] [Green Version]
- Chae, J.J.; McIntosh, A.W.; Espinoza, F.A.; Mulreany, D.G.; Ng, S.; Takezawa, T.; Trexler, M.M.; Schein, O.D.; Chuck, R.S.; Elisseeff, J.H. Regeneration of corneal epithelium utilizing a collagen vitrigel membrane in rabbit models for corneal stromal wound and limbal stem cell deficiency. Acta Ophthalmol. 2015, 93, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Beuerman, R.W.; Chan-Park, M.; Cheng, Z.; Ang, L.P.; Tan, D.T. Enhancement of the mechanical and biological properties of a biomembrane for tissue engineering the ocular surface. Ann.-Acad. Med. Singap. 2006, 35, 210–214. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Y.; Yang, L.; Zeng, Y.; Gao, X.; Xu, H. Poly (ethylene glycol)-modified silk fibroin membrane as a carrier for limbal epithelial stem cell transplantation in a rabbit LSCD model. Stem Cell Res. Ther. 2017, 8, 256. [Google Scholar] [CrossRef] [Green Version]
- Dang, X.; Li, Y.; Yang, M. Biodegradable waterborne polyurethane grafted with gelatin hydrolysate via solvent-free copolymerization for potential porous scaffold material. J. Mech. Behav. Biomed. Mater. 2019, 92, 79–89. [Google Scholar] [CrossRef] [PubMed]
- de la Mata, A.; Nieto-Miguel, T.; López-Paniagua, M.; Galindo, S.; Aguilar, M.R.; Garcia-Fernandez, L.; Gonzalo, S.; Vázquez, B.; Román, J.S.; Corrales, R.M. Chitosan–gelatin biopolymers as carrier substrata for limbal epithelial stem cells. J. Mater. Sci. Mater. Med. 2013, 24, 2819–2829. [Google Scholar] [CrossRef]
- Wright, B.; De Bank, P.A.; Luetchford, K.A.; Acosta, F.R.; Connon, C.J. Oxidized alginate hydrogels as niche environments for corneal epithelial cells. J. Biomed. Mater. Res. Part A 2014, 102, 3393–3400. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Qu, Y.; Hua, X.; Zhang, L.; Liu, Z.; Pflugfelder, S.; Li, D. A hyaluronan hydrogel scaffold-based xeno-free culture system for ex vivo expansion of human corneal epithelial stem cells. Eye 2017, 31, 962–971. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.M.; AbuSamra, D.B.; Chivu, A.; Argüeso, P.; Dohlman, C.H.; Patra, H.K.; Chodosh, J.; González-Andrades, M. Optimization of collagen chemical crosslinking to restore biocompatibility of tissue-engineered scaffolds. Pharmaceutics 2021, 13, 832. [Google Scholar] [CrossRef]
- Goodarzi, H.; Jadidi, K.; Pourmotabed, S.; Sharifi, E.; Aghamollaei, H. Preparation and in vitro characterization of cross-linked collagen–gelatin hydrogel using EDC/NHS for corneal tissue engineering applications. Int. J. Biol. Macromol. 2019, 126, 620–632. [Google Scholar] [CrossRef]
- Palchesko, R.N.; Carrasquilla, S.D.; Feinberg, A.W. Natural biomaterials for corneal tissue engineering, repair, and regeneration. Adv. Healthc. Mater. 2018, 7, 1701434. [Google Scholar] [CrossRef]
- Crabb, R.A.; Chau, E.P.; Decoteau, D.M.; Hubel, A. Microstructural characteristics of extracellular matrix produced by stromal fibroblasts. Ann. Biomed. Eng. 2006, 34, 1615–1627. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.M.; Chivu, A.; AbuSamra, D.B.; Saha, A.; Chowdhuri, S.; Pramanik, B.; Dohlman, C.H.; Das, D.; Argüeso, P.; Rajaiya, J. Crosslinker-free collagen gelation for corneal regeneration. Sci. Rep. 2022, 12, 9180. [Google Scholar] [CrossRef] [PubMed]
- Varghese, T.; Jacob, J. Fish Collagen as a Potential Biocompatible Composite with Biomedical Applications. J. Sci. Technol. Manag. 2019, 12, 47–51. [Google Scholar] [CrossRef]
- Xu, S.; Zhou, S.; Mao, B.; Chen, J.; Zhang, Z. Cornea-stroma-mimicking films derived from cellulose nanocrystal templating fibrous collagen as therapeutic contact lenses. ACS Sustain. Chem. Eng. 2019, 7, 12248–12260. [Google Scholar] [CrossRef]
- Cheema, U.; Brown, R.A. Rapid fabrication of living tissue models by collagen plastic compression: Understanding three-dimensional cell matrix repair in vitro. Adv. Wound Care 2013, 2, 176–184. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Le, P.; Fernandes-Cunha, G.M.; Heilshorn, S.C.; Myung, D. Bio-orthogonally crosslinked hyaluronate-collagen hydrogel for suture-free corneal defect repair. Biomaterials 2020, 255, 120176. [Google Scholar] [CrossRef]
- Fernandes-Cunha, G.M.; Chen, K.M.; Chen, F.; Le, P.; Han, J.H.; Mahajan, L.A.; Lee, H.J.; Na, K.S.; Myung, D. In situ-forming collagen hydrogel crosslinked via multi-functional PEG as a matrix therapy for corneal defects. Sci. Rep. 2020, 10, 16671. [Google Scholar] [CrossRef]
- Kishore, V.; Iyer, R.; Frandsen, A.; Nguyen, T.-U. In vitro characterization of electrochemically compacted collagen matrices for corneal applications. Biomed. Mater. 2016, 11, 055008. [Google Scholar] [CrossRef]
- Ji, P.; Zhang, C.; Kong, Y.; Liu, H.; Guo, J.; Shi, L.; Yang, H.; Gu, Z.; Liu, Y. Collagen Film with Bionic Layered Structure and High Light Transmittance for Personalized Corneal Repair Fabricated by Controlled Solvent Evaporation Technique. J. Funct. Biomater. 2022, 13, 52. [Google Scholar] [CrossRef]
- Qin, L.; Gao, H.; Xiong, S.; Jia, Y.; Ren, L. Preparation of collagen/cellulose nanocrystals composite films and their potential applications in corneal repair. J. Mater. Sci. Mater. Med. 2020, 31, 55. [Google Scholar] [CrossRef]
- Hancox, Z.; Keshel, S.H.; Yousaf, S.; Saeinasab, M.; Shahbazi, M.-A.; Sefat, F. The progress in corneal translational medicine. Biomater. Sci. 2020, 8, 6469–6504. [Google Scholar] [CrossRef]
- Huang, G.; Ji, S.; Luo, P.; Liu, H.; Zhu, S.; Wang, G.; Zhou, P.; Xiao, S.; Xia, Z. Accelerated expansion of epidermal keratinocyte and improved dermal reconstruction achieved by engineered amniotic membrane. Cell Transplant. 2013, 22, 1831–1844. [Google Scholar] [CrossRef] [Green Version]
- Dinescu, S.; Albu Kaya, M.; Chitoiu, L.; Ignat, S.; Kaya, D.A.; Costache, M. Collagen-based hydrogels and their applications for tissue engineering and regenerative medicine. In Cellulose-Based Superabsorbent Hydrogels; Polymers and Polymeric Composites: A Reference, Series; Mondal, M., Ed.; Springer International Publishing: Edinburg, Scotland, 2019; pp. 1643–1664. [Google Scholar] [CrossRef]
- Xeroudaki, M.; Thangavelu, M.; Lennikov, A.; Ratnayake, A.; Bisevac, J.; Petrovski, G.; Fagerholm, P.; Rafat, M.; Lagali, N. A porous collagen-based hydrogel and implantation method for corneal stromal regeneration and sustained local drug delivery. Sci. Rep. 2020, 10, 16936. [Google Scholar] [CrossRef]
- Jones, R.R.; Hamley, I.W.; Connon, C.J. Ex vivo expansion of limbal stem cells is affected by substrate properties. Stem Cell Res. 2012, 8, 403–409. [Google Scholar] [CrossRef] [Green Version]
- Gouveia, R.M.; Vajda, F.; Wibowo, J.A.; Figueiredo, F.; Connon, C.J. YAP, ΔNp63, and β-catenin signaling pathways are involved in the modulation of corneal epithelial stem cell phenotype induced by substrate stiffness. Cells 2019, 8, 347. [Google Scholar] [CrossRef] [Green Version]
- Massie, I.; Kureshi, A.K.; Schrader, S.; Shortt, A.J.; Daniels, J.T. Optimization of optical and mechanical properties of real architecture for 3-dimensional tissue equivalents: Towards treatment of limbal epithelial stem cell deficiency. Acta Biomater. 2015, 24, 241–250. [Google Scholar] [CrossRef] [Green Version]
- Then, K.Y.; Azlina, M.; Ropilah, A.; Ruszymah, B.; Rohaina, C.; Ng, M. The use of bone marrow derived mesenchymal stem cell for cornea regeneration in rabbit model. Asian J. Ophthalmol. 2017, 15, 224–233. [Google Scholar] [CrossRef]
- Hallab, N.J.; Bundy, K.J.; O’Connor, K.; Moses, R.L.; Jacobs, J.J. Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion. Tissue Eng. 2001, 7, 55–71. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Majumdar, S.; Ma, G.; Sohn, J.; Yiu, S.C.; Stark, W.; Al-Qarni, A.; Edward, D.P.; Elisseeff, J.H. Chondroitin sulfate–based biocompatible crosslinker restores corneal mechanics and collagen alignment. Investig. Ophthalmol. Vis. Sci. 2017, 58, 3887–3895. [Google Scholar] [CrossRef] [Green Version]
- Kang, K.B.; Lawrence, B.D.; Gao, X.R.; Luo, Y.; Zhou, Q.; Liu, A.; Guaiquil, V.H.; Rosenblatt, M.I. Micro-and nanoscale topographies on silk regulate gene expression of human corneal epithelial cells. Investig. Ophthalmol. Vis. Sci. 2017, 58, 6388–6398. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 105906. [Google Scholar] [CrossRef]
- Aromataris, E.; Fernandez, R.; Godfrey, C.M.; Holly, C.; Khalil, H.; Tungpunkom, P. Summarizing systematic reviews: Methodological development, conduct and reporting of an umbrella review approach. JBI Evid. Implement. 2015, 13, 132–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnan, S.; Sekar, S.; Katheem, M.F.; Krishnakumar, S.; Sastry, T.P. Fish scale collagen—A novel material for corneal tissue engineering. Artif. Organs 2012, 36, 829–835. [Google Scholar] [CrossRef] [PubMed]
- Jangamreddy, J.R.; Haagdorens, M.K.; Islam, M.M.; Lewis, P.; Samanta, A.; Fagerholm, P.; Liszka, A.; Ljunggren, M.K.; Buznyk, O.; Alarcon, E.I. Short peptide analogs as alternatives to collagen in pro-regenerative corneal implants. Acta Biomater. 2018, 69, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Qu, M.; Wang, Y.; Wang, Z.; Shi, W. Xenogeneic acellular conjunctiva matrix as a scaffold of tissue-engineered corneal epithelium. PLoS ONE 2014, 9, e111846. [Google Scholar] [CrossRef]
- Park, J.; Lee, K.P.; Kim, H.; Park, S.; Wijesinghe, R.E.; Lee, J.; Han, S.; Lee, S.; Kim, P.; Cho, D.W. Biocompatibility evaluation of bioprinted decellularized collagen sheet implanted in vivo cornea using swept-source optical coherence tomography. J. Biophotonics 2019, 12, 201900098. [Google Scholar] [CrossRef] [Green Version]
- Baratta, R.O.; Del Buono, B.J.; Schlumpf, E.; Ceresa, B.P.; Calkins, D.J. Collagen Mimetic Peptides Promote Corneal Epithelial Cell Regeneration. Front. Pharmacol. 2021, 12, 705623. [Google Scholar] [CrossRef]
- Zhou, Q.; Guaiquil, V.H.; Wong, M.; Escobar, A.; Ivakhnitskaia, E.; Yazdanpanah, G.; Jing, H.; Sun, M.; Sarkar, J.; Luo, Y. Hydrogels derived from acellular porcine corneal stroma enhance corneal wound healing. Acta Biomater. 2021, 134, 177–189. [Google Scholar] [CrossRef]
- Polisetti, N.; Roschinski, B.; Schlötzer-Schrehardt, U.; Maier, P.; Schlunck, G.; Reinhard, T. A decellularized human limbal scaffold for limbal stem cell niche reconstruction. Int. J. Mol. Sci. 2021, 22, 10067. [Google Scholar] [CrossRef]
- Sánchez-Porras, D.; Caro-Magdaleno, M.; González-Gallardo, C.; García-García, Ó.D.; Garzón, I.; Carriel, V.; Campos, F.; Alaminos, M. Generation of a biomimetic substitute of the corneal limbus using decellularized scaffolds. Pharmaceutics 2021, 13, 1718. [Google Scholar] [CrossRef]
- Chakraborty, A.; Dutta, J.; Das, S.; Datta, H. Comparison of ex vivo cultivated human limbal epithelial stem cell viability and proliferation on different substrates. Int. Ophthalmol. 2013, 33, 665–670. [Google Scholar] [CrossRef]
- Haagdorens, M.; Cėpla, V.; Melsbach, E.; Koivusalo, L.; Skottman, H.; Griffith, M.; Valiokas, R.; Zakaria, N.; Pintelon, I.; Tassignon, M.-J. In vitro cultivation of limbal epithelial stem cells on surface-modified crosslinked collagen scaffolds. Stem Cells Int. 2019, 2019, 7867613. [Google Scholar] [CrossRef] [Green Version]
- Kureshi, A.K.; Drake, R.A.; Daniels, J.T. Challenges in the development of a reference standard and potency assay for the clinical production of RAFT tissue equivalents for the cornea. Regen. Med. 2014, 9, 167–177. [Google Scholar] [CrossRef]
- Lake, J.; Zaniolo, K.; Gingras, M.-È.; Couture, C.; Salesse, C.; Guérin, S.L. Functional Impact of Collagens on the Activity Directed by the Promoter of the α5 Integrin Subunit Gene in Corneal Epithelial Cells. Investig. Ophthalmol. Vis. Sci. 2015, 56, 6217–6232. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Tang, Q.; Yang, Y.; Yi, J.; Wei, W.; Hong, Y.; Zhang, X.; Zhou, F.; Yao, X.; Ouyang, H. Wound dressing gel with resisted bacterial penetration and enhanced re-epithelization for corneal epithelial-stromal regeneration. Appl. Mater. Today 2021, 24, 101119. [Google Scholar] [CrossRef]
- Chen, J.; Lan, J.; Liu, D.; Backman, L.J.; Zhang, W.; Zhou, Q.; Danielson, P. Ascorbic acid promotes the stemness of corneal epithelial stem/progenitor cells and accelerates epithelial wound healing in the cornea. Stem Cells Transl. Med. 2017, 6, 1356–1365. [Google Scholar] [CrossRef]
- Wilson, S.L.; Yang, Y.; El Haj, A.J. Corneal stromal cell plasticity: In vitro regulation of cell phenotype through cell-cell interactions in a three-dimensional model. Tissue Eng. Part A 2014, 20, 225–238. [Google Scholar] [CrossRef] [Green Version]
- Kureshi, A.K.; Dziasko, M.; Funderburgh, J.L.; Daniels, J.T. Human corneal stromal stem cells support limbal epithelial cells cultured on RAFT tissue equivalents. Sci. Rep. 2015, 5, 16186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massie, I.; Dale, S.B.; Daniels, J.T. Limbal fibroblasts maintain normal phenotype in 3D RAFT tissue equivalents suggesting potential for safe clinical use in treatment of ocular surface failure. Tissue Eng. Part C Methods 2015, 21, 576–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de la Mata, A.; Mateos-Timoneda, M.A.; Nieto-Miguel, T.; Galindo, S.; López-Paniagua, M.; Planell, J.A.; Engel, E.; Calonge, M. Poly-l/dl-lactic acid films functionalized with collagen IV as carrier substrata for corneal epithelial stem cells. Colloids Surf. B Biointerfaces 2019, 177, 121–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Çelebier, S.K.; Pehlivan, S.B.; Demirbilek, M.; Akıncı, M.; Vural, İ.; Akdağ, Y.; Yürüker, S.; Ünlü, N. Development of an anti-inflammatory drug-incorporated biomimetic scaffold for corneal tissue engineering. J. Ocul. Pharmacol. Ther. 2020, 36, 433–446. [Google Scholar] [CrossRef]
- Luo, Y.; Kang, K.B.; Sartaj, R.; Sun, M.G.; Zhou, Q.; Guaiquil, V.H.; Rosenblatt, M.I. Silk films with nanotopography and extracellular proteins enhance corneal epithelial wound healing. Sci. Rep. 2021, 11, 8168. [Google Scholar] [CrossRef]
- Polisetti, N.; Schmid, A.; Schlötzer-Schrehardt, U.; Maier, P.; Lang, S.J.; Steinberg, T.; Schlunck, G.; Reinhard, T. A decellularized human corneal scaffold for anterior corneal surface reconstruction. Sci. Rep. 2021, 11, 2992. [Google Scholar] [CrossRef]
- Miyamoto, K.; Kobayashi, T.; Hayashi, Y.; Zhang, Y.; Hara, Y.; Higashine, M.; Shiraishi, A.; Ohashi, Y. Involvement of stem cell factor and c-kit in corneal wound healing in mice. Mol. Vis. 2012, 18, 1505–1515. [Google Scholar]
- Antoine, E.E.; Vlachos, P.P.; Rylander, M.N. Review of collagen I hydrogels for bioengineered tissue microenvironments: Characterization of mechanics, structure, and transport. Tissue Eng. Part B Rev. 2014, 20, 683–696. [Google Scholar] [CrossRef] [Green Version]
- Davison-Kotler, E.; Marshall, W.S.; García-Gareta, E. Sources of collagen for biomaterials in skin wound healing. Bioengineering 2019, 6, 56. [Google Scholar] [CrossRef] [Green Version]
- Dyrlund, T.F.; Poulsen, E.T.; Scavenius, C.; Nikolajsen, C.L.; Thøgersen, I.B.; Vorum, H.; Enghild, J.J. Human cornea proteome: Identification and quantitation of the proteins of the three main layers including epithelium, stroma, and endothelium. J. Proteome Res. 2012, 11, 4231–4239. [Google Scholar] [CrossRef]
- Montanino, A.; Gizzi, A.; Vasta, M.; Angelillo, M.; Pandolfi, A. Modeling the biomechanics of the human cornea accounting for local variations of the collagen fibril architecture. ZAMM-J. Appl. Math. Mech. 2018, 98, 2122–2134. [Google Scholar] [CrossRef]
- Qin, D.; Bi, S.; You, X.; Wang, M.; Cong, X.; Yuan, C.; Yu, M.; Cheng, X.; Chen, X.-G. Development and application of fish scale wastes as versatile natural biomaterials. Chem. Eng. J. 2022, 428, 131102. [Google Scholar] [CrossRef]
- Lee, E.; Lee, W.-H.; Kaetzel, C.S.; Parry, G.; Bissell, M.J. Interaction of mouse mammary epithelial cells with collagen substrata: Regulation of casein gene expression and secretion. Proc. Natl. Acad. Sci. USA 1985, 82, 1419–1423. [Google Scholar] [CrossRef] [Green Version]
- Chattopadhyay, S.; Raines, R.T. Collagen-based biomaterials for wound healing. Biopolymers 2014, 101, 821–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chattopadhyay, S.; Murphy, C.J.; McAnulty, J.F.; Raines, R.T. Peptides that anneal to natural collagen in vitro and ex vivo. Org. Biomol. Chem. 2012, 10, 5892–5897. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Jones, R.R.; Mi, S.; Foster, J.; Alcock, S.G.; Hamley, I.W.; Connon, C.J. The mechanical properties of amniotic membrane influence its effect as a biomaterial for ocular surface repair. Soft Matter 2012, 8, 8379–8387. [Google Scholar] [CrossRef] [Green Version]
- Foster, J.W.; Jones, R.R.; Bippes, C.A.; Gouveia, R.M.; Connon, C.J. Differential nuclear expression of Yap in basal epithelial cells across the cornea and substrates of differing stiffness. Exp. Eye Res. 2014, 127, 37–41. [Google Scholar] [CrossRef] [Green Version]
- Moers, K.; Steinberg, T.; Schlunck, G.; Reinhard, T.; Tomakidi, P.; Eberwein, P. Substrate elasticity as biomechanical modulator of tissue homeostatic parameters in corneal keratinocytes. Exp. Cell Res. 2013, 319, 1889–1901. [Google Scholar] [CrossRef]
- Yazdanpanah, G.; Haq, Z.; Kang, K.; Jabbehdari, S.; Rosenblatt, M.I.; Djalilian, A.R. Strategies for reconstructing the limbal stem cell niche. Ocul. Surf. 2019, 17, 230–240. [Google Scholar] [CrossRef]
- Gouveia, R.M.; Koudouna, E.; Jester, J.; Figueiredo, F.; Connon, C.J. Template curvature influences cell alignment to create improved human corneal tissue equivalents. Adv. Biosyst. 2017, 1, 1700135. [Google Scholar] [CrossRef]
- Calderón-Colón, X.; Xia, Z.; Breidenich, J.L.; Mulreany, D.G.; Guo, Q.; Uy, O.M.; Tiffany, J.E.; Freund, D.E.; McCally, R.L.; Schein, O.D. Structure and properties of collagen vitrigel membranes for ocular repair and regeneration applications. Biomaterials 2012, 33, 8286–8295. [Google Scholar] [CrossRef]
- Mouw, J.K.; Ou, G.; Weaver, V.M. Extracellular matrix assembly: A multiscale deconstruction. Nat. Rev. Mol. Cell Biol. 2014, 15, 771–785. [Google Scholar] [CrossRef] [Green Version]
- Hermanson, G.T. Bioconjugate Techniques, 3rd ed.; Academic Press: Cambridge, MA, USA, 2013; pp. 259–273. [Google Scholar]
- Wissink, M.; Beernink, R.; Pieper, J.; Poot, A.; Engbers, G.; Beugeling, T.; Van Aken, W.; Feijen, J. Immobilization of heparin to EDC/NHS-crosslinked collagen. Characterization and in vitro evaluation. Biomaterials 2001, 22, 151–163. [Google Scholar] [CrossRef]
- Nair, M.; Best, S.M.; Cameron, R.E. Crosslinking collagen constructs: Achieving cellular selectivity through modifications of physical and chemical properties. Appl. Sci. 2020, 10, 6911. [Google Scholar] [CrossRef]
- Zeeman, R.; Dijkstra, P.J.; van Wachem, P.B.; van Luyn, M.J.; Hendriks, M.; Cahalan, P.T.; Feijen, J. Successive epoxy and carbodiimide cross-linking of dermal sheep collagen. Biomaterials 1999, 20, 921–931. [Google Scholar] [CrossRef]
- Lee, H.J.; Lee, J.-S.; Chansakul, T.; Yu, C.; Elisseeff, J.H.; Seungju, M.Y. Collagen mimetic peptide-conjugated photopolymerizable PEG hydrogel. Biomaterials 2006, 27, 5268–5276. [Google Scholar] [CrossRef]
- Doillon, C.J.; Côté, M.-F.; Pietrucha, K.; Laroche, G.; Gaudreault, R.C. Porosity and biological properties of polyethylene glycol-conjugated collagen materials. J. Biomater. Sci. Polym. Ed. 1995, 6, 715–728. [Google Scholar] [CrossRef]
- Rafat, M.; Li, F.; Fagerholm, P.; Lagali, N.S.; Watsky, M.A.; Munger, R.; Matsuura, T.; Griffith, M. PEG-stabilized carbodiimide crosslinked collagen–chitosan hydrogels for corneal tissue engineering. Biomaterials 2008, 29, 3960–3972. [Google Scholar] [CrossRef]
- Lin, S.; Gu, L. Influence of crosslink density and stiffness on mechanical properties of type I collagen gel. Materials 2015, 8, 551–560. [Google Scholar] [CrossRef]
- Kang, S.J.; Kim, E.K.; Kim, H.B. Expression and distribution of extracellular matrices during corneal wound healing after keratomileusis in rabbits. Ophthalmologica 1999, 213, 20–24. [Google Scholar] [CrossRef]
- Nishida, T.; Nakamura, M.; Mishima, H.; Otori, T. Differential modes of action of fibronectin and epidermal growth factor on rabbit corneal epithelial migration. J. Cell. Physiol. 1990, 145, 549–554. [Google Scholar] [CrossRef]
- Murakami, J.; Nishida, T.; Otori, T. Coordinated appearance of β1 integrins and fibronectin during corneal wound healing. J. Lab. Clin. Med. 1992, 120, 86–93. [Google Scholar]
- Zheng, M.; Tian, C.; Fan, T.; Xu, B. Fibronectin regulates the self-renewal of rabbit limbal epithelial stem cells by stimulating the Wnt11/Fzd7/ROCK non-canonical Wnt pathway. Exp. Eye Res. 2019, 185, 107681. [Google Scholar] [CrossRef]
- Martin, G.R.; Timpl, R. Laminin and other basement membrane components. Annu. Rev. Cell Biol. 1987, 3, 57–85. [Google Scholar] [CrossRef] [PubMed]
- Nakayasu, K.; Tanaka, M.; Konomi, H.; Hayashi, T. Distribution of types I, II, III, IV and V collagen in normal and keratoconus corneas. Ophthalmic Res. 1986, 18, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, D.R.; Trüeb, B.; Winterhalter, K.H.; Witmer, R.; Fischer, R.W. Type VI collagen is a major component of the human cornea. FEBS Lett. 1986, 197, 55–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koulikovska, M.; Rafat, M.; Petrovski, G.; Veréb, Z.; Akhtar, S.; Fagerholm, P.; Lagali, N. Enhanced regeneration of corneal tissue via a bioengineered collagen construct implanted by a nondisruptive surgical technique. Tissue Eng. Part A 2015, 21, 1116–1130. [Google Scholar] [CrossRef] [Green Version]
- Kureshi, A.; Cheema, U.; Alekseeva, T.; Cambrey, A.; Brown, R. Alignment hierarchies: Engineering architecture from the nanometre to the micrometre scale. J. R. Soc. Interface 2010, 7, 707–716. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yeh, L.-K.; Zhang, S.; Call, M.; Yuan, Y.; Yasunaga, M.; Kao, W.W.-Y.; Liu, C.-Y. Wnt/β-catenin signaling modulates corneal epithelium stratification via inhibition of Bmp4 during mouse development. Development 2015, 142, 3383–3393. [Google Scholar] [CrossRef] [Green Version]
- Li, X.-K.; Cai, S.-X.; Liu, B.; Xu, Z.-L.; Dai, X.-Z.; Ma, K.-W.; Li, S.-Q.; Yang, L.; Sung, K.P.; Fu, X.-B. Characteristics of PLGA–gelatin complex as potential artificial nerve scaffold. Colloids Surf. B Biointerfaces 2007, 57, 198–203. [Google Scholar] [CrossRef]
- Campos, Y.; Almirall, A.; Fuentes, G.; Bloem, H.L.; Kaijzel, E.L.; Cruz, L.J. Tissue engineering: An alternative to repair cartilage. Tissue Eng. Part B Rev. 2019, 25, 357–373. [Google Scholar] [CrossRef]
Authors | Type of Biomatrix | Modification Techniques | Type of Cell | Test and Result (Physicochemical Properties) | Test and Result (In Vitro Biocompatibility) | Conclusion |
---|---|---|---|---|---|---|
Krishnan et al., 2012 [68] | FSC-PE | Decalcification and demineralization of the biomatrix, followed by coating with PE. | Limbal tissue. |
|
| FSC-PE has good mechanical properties and supports the differentiation of LESCs and the proliferation of differentiated CECs. |
Zhao et al., 2014 [70] | aCM | Xenogeneic decellularization of the conjunctiva with 0.1% sodium dodecyl sulphate (SDS). | iCECs and primary rabbit corneal epithelial cells (rCECs). |
|
| aCM possesses favorable physical properties and supports multi-layered CEC growth. |
Sánchez-Porras et al., 2021 [75] | Decellularized porcine limbus | Decellularization (four methods) and recellularization. | SIRC and hADSCs |
|
| 0.1% SDS is the best way to decellularized limbal. This biomatrix is able to regenerate the stratified epithelium. |
Naresh et al., 2021 [88] | Decellularized human corneal tissue remnants (DHC) | Decellularization (1% sodium deoxycholate, DNAse I, and 4% dextran), followed by recellularization. | Limbal epithelial progenitor cells (LEPC), limbal mesenchymal stromal cells (LMSC), and Limbal Melanocytes (LM). |
|
| DHC (with 4% dextran) complete the removal of cellular component, maintain the tissue architecture, ECM composition and biocompatible with LEPCs and LMs. |
Zhou et al., 2021 [73] | Acellular porcine corneal stroma hydrogel (APCS-gel) | Decellularization | rCECs and rabbit corneal stromal cells (rCSCs) |
|
| APCS-gel is suitable for CEC reconstruction by maintaining stemness and enhanced proliferation of the ocular surface. |
Baratta et al., 2021 [72] | CMP | Damaged collagen type 1-coated Petri dish treated with CMP. | Not specified |
| Not specified | CMP re-aligns the damaged collagen by enzymatic digestion. |
Jones et al., 2012 [59] | RTCI-gel | Compression by nylon mesh (50 µm mesh size, 134 g) for 5 min at room temperature. | hLESCs |
|
| The compression improved the mechanical strength, surface topography, and capacity of the RTC-gel to support the attachment and differentiation of LESCs and the viability of differentiated CECs. |
Gouveia et al., 2019 [60] | RAFT TE | Treated with: collagenase I (RAFT TE-CI), phosphate-buffered saline (PBS) (RAFT TE—PBS), or none (RAFT TE-NT). Laminin surface coating. | hLESCs |
|
| RAFT TE-CI supports LESCs compared to RAFT TE-PBS and RAFT TE-NT. RAFT TE-PBS and RAFT TE-NT (stiffer hydrogel supports the differentiation via mechanotransduction factor YAP and BMP4. |
Massie et al., 2015 [61] | RAFT TE | Different concentration and volume of collagen used. | hLESCs |
| Optimal RAFT TE (0.6 mL of 3 mg/mL):Phase contrast microscopy: 8.0 ± 3.0 days to achieve confluence comparable rates to HAM (10.5 ± 0.5 days);Morphology: small, tightly packed, scant cytoplasm with cobblestone shape;IHC: high p63a. Superficial layer: high K3/K12. | Optimal RAFT TE (0.6 mL of 3 mg/mL collagen) has suitable physical properties and supports hLESC growth. |
Kureshi et al., 2014 [78] | RAFT TE | Incorporated with hLF and DMEM. A 1 mm wide strip defect was created on the epithelial surface of the construct (using algerbrush II corneal rust ring removal) and analysis was continued. | LESCs |
|
| RAFT TE incorporated with hLF supports the cultivation LESCs but is poorly differentiated and promotes wound closure. |
Hong et al., 2018 [27] | COLLEN | dCL embedded by compressed collagen. | hCECs, rabbit LESCs |
|
| COLLEN has suturable mechanical properties, is resistant to degradation, and supports LESC and CEC growth. |
Jangamreddy et al., 2018 [69] | CLP-PEG-EDC-NHS and RHCIII-MPC (control). | Crosslinked to MPC and EDC-NHS. Conjugated to PEG. | ihCECs |
|
| CLP-PEG-EDC-NHS are functionally equivalent to control, RHCIII-MPC biomatrix, and biocompatible to the corneal cells. |
Fernandes-Cunha et al., 2020 [51] | Bovine collagen type 1 hydrogel crosslinked to PEG-NHS (BCI-gel-PEG-NHS) | Crosslinked to NHS. Conjugated to PEG (4 or 8 arms and 4%, 8%, or 16% concentration of PEG. | iCECs and corneal stromal stem cells (CSSCs) |
|
| Mechanical properties of BCI-gel-PEG-NHS depend on PEG’s arms and concentration. BCI-gel-PEG-NHS support the iCEC and CSSC proliferation, adherence, and morphology compared to the non-crosslink hydrogel. |
Haagdorens et al., 2019 [77] | Unmodified RHCI, RHCI FN-pattern, CLP-12-EDC/NHS, CLP-12-DMTMM, CLP-12-FN-pattern, CLP-12-3D grooved, and CLP-18-DMTMM. | Different crosslinker: EDC, DMTMM. Surface modification: FN surface pattern, 3D grooved surface topography. | iCECs and primary hLESCs |
|
| RHCI and CLP-12 DMTMM, irrespective of surface modification, support the cultivation of primary hLESCs and iCECs. The regenerated epithelium maintained similar characteristics to HAM-based cultures. |
Xeroudaki et al., 2020 [58] | BPC-EDC-NHS | Crosslinked with EDC-NHS. Compression by compress mold method. | Primary hCECs |
|
| BPC-EDC-NHS is transparent, has regularly arranged collagen, optimal mechanical properties and is biocompatible with CECs in vitro. |
Chen et al., 2017 [81] | Collagen type 1 coated 6-well plate. | A2-P | TKE2 | Not specified |
| A2-P and collagen 1 enhanced the stemness and proliferation of TKE2 which depends on its regulation of ECM components, including collagen I and IV. |
Miyamoto et al., 2012 [89] | Collagen type IV coated dished. | Exposure to anti-SCF antibody, genistein, and Arg-Gly-Asp peptide. | Mouse CECs iCECs. | Not specified |
| SCF and c-kit play a role in the cornea wound healing by altering CEC attachment. |
Lake et al., 2015 [79] | Culture plates coated with 2–200 lg/cm2 collagen I, III, IV and VI. | Transfect a5 promoter/chloramphenicol acetyltransferase (CAT) plasmids into CECs cultured on collagen. | hCECs rabbit CECs. | Not specified |
| FN promoted the adhesive and migratory properties of CECs which were then altered by collagen to suppress a5 gene expression, especially during confluence rabbit CECs. |
Chakraborty et al., 2013 [76] | A variety of substrates, including collagen IV coating the dishes. | Not specified | Primary hLESCs | Not specified |
| Collagen IV support the viability and proliferation of LESCs supported by the MMP-9 and MMP-2 (a key regulator of LESCs migration and proliferation). |
Qin et al., 2021 [80] | ColMA | Modifying collagen with methacrylate group, followed by photo crosslinking—photopolymerized in situ. | hCECs |
|
| ColMA is a transparent biomatrix, with high-pressure overload capacity and is compatible with hCECs. |
Wilson et al., 2014 [82] | RTCI-gel-FN-coated-AHDCS. | FN-coating encapsulated the AHDCS, treated with transforming growth factor beta-1 (TGF-β1) media followed by wortmannin. | AHDCS, CECs (three different co-cultures on the biomatrix: explant, transwell, and conditioned media co-cultured) |
|
| Mutual interactions between CECs and CSSCs. A collagen hydrogel environment can retain the plasticity of CSSCs, and the mechanical properties of the cornea are defined by epithelial-stromal interactions. |
Kureshi et al., 2015 [83] | RAFT TE | Not specified | Human CSSCs, hLESCs | Not specified |
| Cultivation of CSSCs support hLESCs on RAFT TE. |
Massie et al., 2015 [84] | RAFT TE-dFib RAFT TE-hLF | Incorporated with hLF or dFib. | hLESCs | Not specified |
| hLF remained quiescent while dFib maintained activated, pro-scarring phenotype properties in RAFT TE. |
De La Mata et al., 2019 [85] | PLA-collagen IV film | Functionalization of PLA film (70:30). | hCECs hLESCs |
|
| PLA-collagen IV has suitable physical properties to support the attachment, viability, and proliferation of CECs and LESCs. It also maintains undifferentiated LESCs. |
Wright et al., 2014 [40] | Oxidized alginate hydrogel-collagen 1 V (OA-gel-CIV) | Incorporated by collagen IV. | Primary bovine LESCs and hCECs |
|
| OA-gel-CIV enhanced CECs viability but does not influence LESCs viability and differentiation. |
Kayiran Celebier et al., 2020 [86] | PLGA- collagen I | Incorporated by collagen I. | Primary rabbit CECs |
|
| PLGA-collagen I promote CECs adhesion, viability and proliferation without causing toxic effects for at least 10 days. |
Yuncin et al., 2021 [87] | Silk film coated collagen 1 | Nanotopography: flat, 2000, 1000, 80 nm parallel ridge. Coating with ECM (including collagen I). | Primary mouse CECs, primary rabbit CECs. | Not specified |
| Collagen 1 coating and 800 nm ridge enhanced CEC growth, better cell spreading and wound recovery. |
Authors | Type of Biomatrix | Modification Techniques | Animal Model/Injury | Physicochemical Properties | Test and Result (In Vivo) | Conclusion |
---|---|---|---|---|---|---|
Zhao et al., 2014 [70] | aCM | Xenogeneic decellularization of the conjunctiva with 0.1% sodium dodecyl-sulphate (SDS). | Mechanical injury by deep limbal lamellar keratectomy and chemical trauma on the CECs with n-heptanol. | aCM is highly transparent, with a high tensile strength and regularly arranged collagen fibrils. |
| aCM support multilayered epithelial structure and is effective in the reconstruction of the ocular surface for the rabbit with the LSCD model compared to dAM. |
Zhou et al., 2021 [73] | APCS-gel | Decellularization | Removal of 2 mm central corneal epithelium in mice. | Highly light transmission, highly porosity, permeable, and high diffusion rate properties. |
| APCS-gel is suitable for CEC reconstruction by maintaining stemness and enhanced proliferation of the ocular surface. |
Park et al., 2019 [71] | 3D-BDCS | Encapsulated human turbinate-derived mesenchymal stem cells (TMSCs) and followed by crosslinked in vivo. | Mechanical injury by the lamellar dissection by using a crescent knife. | The thickness can be easily modified based on the application. Certain modulation can be applied based on specific corneal therapy. |
| The changes in corneal thickness and the distributions of inflammatory cells and histology confirmed the biocompatibility of the 3D-BDCS. |
Baratta et al., 2021 [72] | CMP | Short synthetic collagen peptide. | Removal of epithelium and epithelial basement membranes of the mouse (360° lamellar keratectomy) by using an Algerbrush with a 0.5 mm burr. | CMP successfully enhanced injured collagen re-alignment; however, the specific physicochemical properties were not specified. |
| CMP re-aligns the damaged collagen. CMP enhanced the closure of the wound process and promoted the re-epithelization process with forming of organized epithelium layers. |
Qin et al., 2021 [80] | ColMA | Modifying collagen with methacrylate group, followed by photocrosslinking: photopolymerized in situ. | Rabbit and pig corneal defect (partial thickness corneal defect). | High light transmission, transparent, low biodegradation rate and more resistant to the high pressure compared to human eye pressure. |
| ColMA has a high-pressure overload capacity, a barrier against bacterial penetration, and dehydration. Nanogranules from dislodging ColMA adhere to stromal tissue promote re-epithelization, reduce myofibroblast activation, and decrease scar formation. |
Hong et al., 2018 [27] | COLLEN-based limbal graft | dCL embedded by compressed collagen. | Rabbit model of LSCD (induced by alkali burn), COLLEN was sutured onto the incised bed with 10–0 thilon nylon suture. | Highly resistant to the enzymatic degradation, high suture retention strength. |
| The COLLEN-based limbal graft was successfully transplanted and verified its clinical efficacy on the ocular surface reconstruction of LSCD in a rabbit model. |
Chae et al., 2015 [35] | CV | Vitrification process | CV-fibrin glue group: stromal injury by lamellar keratectomy. CV-hLESCs group: LSCD induced by chemical injury. | High light transmission, have high density of collagen type I fibrils, high mechanical strength. | In the CV- fibrin glue group:
CV-hLESCs group:
| CV support CECs and prevents epithelial hypertrophy, shows no complication after implantation, and can serve as an hLESCs carrier. |
Jangamreddy et al., 2018 [69] | CLP- PEG- EDC NHS and RHC III-MPC (control). | Crosslinked to MPC and EDC-NHS, conjugated to PEG. | Mechanical surgery of the mini pig’s cornea. | High light transmission, comprised very fine fibrils, and highly resistant to biodegradation. RHCIII-MPC has a higher tensile strength compared to CLP-PEG-EDC NHS. Meanwhile, CLP-PEG-EDC NHS is more elastic compared to RHCIII-MPC. |
| CLP-PEG-EDC-NHS is functionally equivalent to RHCIII-MPC (control) and have pro-regenerative effects by stimulating the in-growing endogenous host cells to produce ECM via secretory extracellular vesicles. |
Fernandes-Cunha et al., 2020 [51] | BCI-gel-PEG-NHS | Crosslinked to NHS, conjugated to PEG (4 or 8 arms and 4%, 8%, or 16% concentration of PEG). | Mechanical injury of the cornea of an adult white rabbit by lamellar keratectomy. | BCI-gel-PEG-NHS hydrogel is transparent, has a high storage modulus and low degradation rate. |
| BCI-gel-PEG-NHS is safely integrated and supports the multilayers of CECs. |
Xeroudaki et al., 2020 [58] | BPC-EDC-NHS | Crosslinked with EDC-NHS. Compression by compress mold method. | Subcutaneous and rabbit’s cornea (epithelial and stroma layer damaged). | BPC-EDC-NHS has high optical transmission, high mechanical strength and have a smooth surface with fine, unidirectional collagen fiber structure. | Subcutaneous implantation:
Implantation into the rabbit corneal:
| BPC-EDC-NHS has suitable mechanical properties, is safely integrated, and is biocompatible with native corneal cells in vivo. |
Chen et al., 2017 [81] | A2-P eye drop | A stable form of ascorbic acid. | Mechanical injury (epithelium layer) induced by using algerbrush II corneal rust remover. | Physicochemical properties of A2-P were not specified since the collagen was part of the ECM that is produced by LESCs. |
| A2-P promoted corneal wound healing and supported viability and the proliferation of LESCs. A2-P also promoted endogenous ECM production of LESCs. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ra’oh, N.A.; Man, R.C.; Fauzi, M.B.; Ghafar, N.A.; Buyong, M.R.; Hwei, N.M.; Halim, W.H.W.A. Recent Approaches to the Modification of Collagen Biomatrix as a Corneal Biomatrix and Its Cellular Interaction. Polymers 2023, 15, 1766. https://doi.org/10.3390/polym15071766
Ra’oh NA, Man RC, Fauzi MB, Ghafar NA, Buyong MR, Hwei NM, Halim WHWA. Recent Approaches to the Modification of Collagen Biomatrix as a Corneal Biomatrix and Its Cellular Interaction. Polymers. 2023; 15(7):1766. https://doi.org/10.3390/polym15071766
Chicago/Turabian StyleRa’oh, Nur Amalia, Rohaina Che Man, Mh Busra Fauzi, Norzana Abd Ghafar, Muhamad Ramdzan Buyong, Ng Min Hwei, and Wan Haslina Wan Abdul Halim. 2023. "Recent Approaches to the Modification of Collagen Biomatrix as a Corneal Biomatrix and Its Cellular Interaction" Polymers 15, no. 7: 1766. https://doi.org/10.3390/polym15071766
APA StyleRa’oh, N. A., Man, R. C., Fauzi, M. B., Ghafar, N. A., Buyong, M. R., Hwei, N. M., & Halim, W. H. W. A. (2023). Recent Approaches to the Modification of Collagen Biomatrix as a Corneal Biomatrix and Its Cellular Interaction. Polymers, 15(7), 1766. https://doi.org/10.3390/polym15071766