Teeth Restored with Bulk–Fill Composites and Conventional Resin Composites; Investigation of Stress Distribution and Fracture Lifespan on Enamel, Dentin, and Restorative Materials via Three-Dimensional Finite Element Analysis
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Fejerskov, O.; Kidd, E.A.M.; Kidd, E. (Eds.) Dental Caries: The Disease and Its Clinical Management; Blackwell Monksgaard: Copenhagen, Denmark, 2003. [Google Scholar]
- Pitts, N.B. Are we ready to move from operative to non-operative/preventive treatment of dental caries in clinical practice? Caries Res. 2004, 38, 294–304. [Google Scholar] [CrossRef]
- Featherstone, J.D. The science and practice of caries prevention. J. Am. Dent. Assoc. 2000, 131, 887–899. [Google Scholar] [CrossRef] [PubMed]
- US Department of Health and Human Services. Oral Health in America: A Report of The Surgeon General; NIH publication: Rockville, MD, USA, 2000; pp. 155–188. [Google Scholar]
- Kidd, E.A.; Giedrys-Leeper, E.; Simons, D. Take two dentists: A tale of root caries. Dent. Update 2000, 27, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Sabbagh, J.; Fahd, J.C.; McConnell, R.J. Post-operative sensitivity and posterior composite resin restorations: A review. Dent. Update 2018, 45, 207–213. [Google Scholar] [CrossRef]
- Lee, W.C.; Eakle, W.S. Stress-induced cervical lesions: Review of advances in the past 10 years. J. Prosthet. Dentistry 1996, 75, 487–494. [Google Scholar] [CrossRef]
- Mjör, I.A.; Toffentti, F. Secondary caries: A literature review with case reports. Quintessence Int. 2000, 31, 165–179. [Google Scholar]
- Yazici, A.R.; Ustunkol, I.; Ozgunaltay, G.; Dayangac, B. Three-year clinical evaluation of different restorative resins in class I restorations. Oper. Dent. 2014, 39, 248–255. [Google Scholar] [CrossRef]
- Borgia, E.; Baron, R.; Borgia, J.L. Quality and survival of direct light-activated composite resin restorations in posterior teeth: A 5- to 20-year retrospective longitudinal study. J. Prosthodont. 2019, 28, e195–e203. [Google Scholar] [CrossRef]
- Sideridou, I.D.; Karabela, M.M.; Vouvoudi, E.C. Physical properties of current dental nanohybrid and nanofill light-cured resin composites. Dent. Mater. 2011, 27, 598–607. [Google Scholar] [CrossRef]
- Ferracane, J.L. Resin-based composite performance: Are there some things we can’t predict? Dent. Mater. 2013, 29, 51–58. [Google Scholar] [CrossRef]
- Ilie, N.; Keßler, A.; Durner, J. Influence of various irradiation processes on the mechanical properties and polymerisation kinetics of bulk-fill resin based composites. J. Dent. 2013, 41, 695–702. [Google Scholar] [CrossRef]
- Leprince, J.G.; Palin, W.M.; Vanacker, J.; Sabbagh, J.; Devaux, J.; Leloup, G. Physico-mechanical characteristics of commercially available bulk-fill composites. J. Dent. 2014, 42, 993–1000. [Google Scholar] [CrossRef] [PubMed]
- Moszner, N.; Klapdohr, S. Nanotechnology for dental composites. Int. J. Nanotechnol. 2004, 1, 130–156. [Google Scholar] [CrossRef]
- Abe, Y.; Lambrechts, P.; Inoue, S.; Braem, M.J.; Takeuchi, M.; Vanherle, G.; Van Meerbeek, B. Dynamic elastic modulus of ‘packable’composites. Dent. Mater. 2001, 17, 520–525. [Google Scholar] [CrossRef]
- Mesquita, R.V.; Axmann, D.; Geis-Gerstorfer, J. Dynamic visco-elastic properties of dental composite resins. Dent. Mater. 2006, 22, 258–267. [Google Scholar] [CrossRef]
- Chung, S.M.; Yap, A.U.; Koh, W.K.; Tsai, K.T.; Lim, C.T. Measurement of Poisson’s ratio of dental composite restorative materials. Biomaterials 2004, 25, 2455–2460. [Google Scholar] [CrossRef] [PubMed]
- Guler, M.S.; Guler, C.; Cakici, F.; Cakici, E.B.; Sen, S. Finite element analysis of thermal stress distribution in different restorative materials used in class V cavities. Niger. J. Clin. Pract. 2016, 19, 30–34. [Google Scholar] [CrossRef]
- Yamanel, K.; Çaglar, A.; Gülsahi, K.; Özden, U.A. Effects of different ceramic and composite materials on stress distribution in inlay and onlay cavities: 3-D finite element analysis. Dent. Mater. J. 2009, 28, 661–670. [Google Scholar] [CrossRef]
- Yaman, S.D.; Şahin, M.; Aydin, C. Finite element analysis of strength characteristics of various resin based restorative materials in Class V cavities. J. Oral Rehabil. 2003, 30, 630–641. [Google Scholar] [CrossRef]
- Korioth, T.W.; Versluis, A. Modeling the mechanical behavior of the jaws and their related structures by finite element (FE) analysis. Crit. Rev. Oral Biol. Med. 1997, 8, 90–104. [Google Scholar] [CrossRef]
- Geng, J.P.; Tan, K.B.; Liu, G.R. Application of finite element analysis in implant dentistry: A review of the literature. J. Prosthet. Dent. 2001, 85, 585–598. [Google Scholar] [CrossRef]
- Shetty, P.; Hegde, A.; Rai, K. Finite element method–an effective research tool for dentistry. J. Clin. Pediatr. Dent. 2010, 34, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Geng, J.; Yan, W.; Xu, W. (Eds.) Application of The Finite Element Method in Implant Dentistry; Springer Science & Business Media: Berlin, Germany, 2008. [Google Scholar]
- Van Staden, R.C.; Guan, H.; Loo, Y.C. Application of the finite element method in dental implant research. Comput. Methods Biomech. Biomed. Eng. 2006, 9, 257–270. [Google Scholar] [CrossRef] [PubMed]
- Reddy, M.S.; Sundram, R.; Abdemagyd, H.A. Application of finite element model in implant dentistry: A systematic review. J. Pharm. Bioallied Sci. 2019, 11 (Suppl. 2), S85. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, S.D.; Desai, H. Basic concepts of finite element analysis and its applications in dentistry: An overview. J. Oral Hyg. Health 2014, 2, 156. [Google Scholar] [CrossRef]
- Srirekha, A.; Bashetty, K. Infinite to finite: An overview of finite element analysis. Indian J. Dent. Res. 2010, 21, 425. [Google Scholar] [CrossRef]
- de Abreu, R.A.; Pereira, M.D.; Furtado, F.; Prado, G.P.; Mestriner, W., Jr.; Ferreira, L.M. Masticatory efficiency and bite force in individuals with normal occlusion. Arch. Oral Biol. 2014, 59, 1065–1074. [Google Scholar] [CrossRef]
- Gönder, H.Y.; Demirel, M.G.; Mohammadi, R.; Alkurt, S.; Fidancioğlu, Y.D.; Yüksel, I.B. The Effects of Using Cements of Different Thicknesses and Amalgam Restorations with Different Young’s Modulus Values on Stress on Dental Tissue: An Investigation Using Finite Element Analysis. Coatings 2023, 13, 6. [Google Scholar] [CrossRef]
- Allen, C.; Meyer, C.A.; Yoo, E.; Vargas, J.A.; Liu, Y.; Jalali, P. Stress distribution in a tooth treated through minimally invasive access compared to one treated through traditional access: A finite element analysis study. J. Conserv. Dent. 2018, 21, 505. [Google Scholar] [CrossRef]
- Mutluay, M.M.; Yahyazadehfar, M.; Ryou, H.; Majd, H.; Do, D.; Arola, D. Fatigue of the resin–dentin interface: A new approach for evaluating the durability of dentin bonds. Dent. Mater. 2013, 29, 437–449. [Google Scholar] [CrossRef]
- Ausiello, P.; Franciosa, P.; Martorelli, M.; Watts, D.C. Numerical fatigue 3D-FE modeling of indirect composite-restored posterior teeth. Dental Materials. 2011, 27, 423–430. [Google Scholar] [CrossRef]
- Nalla, R.K.; Kinney, J.H.; Marshall, S.J.; Ritchie, R.O. On the in vitro fatigue behavior of human dentin: Effect of mean stress. J. Dent. Res. 2004, 83, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Beitzel, D.; Mutluay, M.; Tay, F.R.; Pashley, D.H.; Arola, D. On the durability of resin–dentin bonds: Identifying the weakest links. Dent. Mater. 2015, 31, 1109–1118. [Google Scholar] [CrossRef] [PubMed]
- Chuang, S.F.; Chang, C.H.; Chen, T.Y. Contraction behaviors of dental composite restorations—Finite element investigation with DIC validation. J. Mech. Behav. Biomed. Mater. 2011, 4, 2138–2149. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Rong, Q.; Luan, Q.; Yu, X. Effect of partial restorative treatment on stress distributions in non-carious cervical lesions: A three-dimensional finite element analysis. BMC Oral Health 2022, 22, 607. [Google Scholar] [CrossRef]
- Pałka, K.; Bieniaś, J.; Dębski, H.; Niewczas, A. Finite element analysis of thermo-mechanical loaded teeth. Comput. Mater. Sci. 2012, 64, 289–294. [Google Scholar] [CrossRef]
- Rodrigues, M.D.; Soares, P.B.; Gomes, M.A.; Pereira, R.A.; Tantbirojn, D.; Versluis, A.; Soares, C.J. Direct resin composite restoration of endodontically-treated permanent molars in adolescents: Bite force and patient-specific finite element analysis. J. Appl. Oral Sci. 2020, 28, e20190544. [Google Scholar] [CrossRef]
- Jiang, W.; Bo, H.; Yongchun, G.; LongXing, N. Stress distribution in molars restored with inlays or onlays with or without endodontic treatment: A three-dimensional finite element analysis. J. Prosthet. Dent. 2010, 103, 6–12. [Google Scholar] [CrossRef]
- Ausiello, P.; Ciaramella, S.; Fabianelli, A.; Gloria, A.; Martorelli, M.; Lanzotti, A.; Watts, D.C. Mechanical behavior of bulk direct composite versus block composite and lithium disilicate indirect Class II restorations by CAD-FEM modeling. Dent. Mater. 2017, 33, 690–701. [Google Scholar] [CrossRef]
- Juloski, J.; Apicella, D.; Ferrari, M. The effect of ferrule height on stress distribution within a tooth restored with fibre posts and ceramic crown: A finite element analysis. Dent. Mater. 2014, 30, 1304–1315. [Google Scholar] [CrossRef]
- Ulusoy, M.; Aydın, K. Diş Hekimliğinde Hareketli Bölümlü Protezler Cilt 1-2, 3.; Baskı, Ankara Üniversitesi Diş Hekimliği Yayınları: Ankara, Turkey, 2010. [Google Scholar]
- Ausiello, P.; Rengo, S.; Davidson, C.L.; Watts, D.C. Stress distributions in adhesively cemented ceramic and resin-composite Class II inlay restorations: A 3D-FEA study. Dent. Mater. 2004, 20, 862–872. [Google Scholar] [CrossRef] [PubMed]
- Roberson, T.M.; Heymann, H.O.; Swift, E.J. Sturdevant’s Art & Science of Operative Dentistry, 2nd ed.; Mosby: Copenhagen, Denmark, 2002; Volume 65. [Google Scholar]
- Henry, P.J.; Bower, R.C. Post core systems in crown and bridgework. Aust. Dent. J. 1977, 22, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Pierrisnard, L.; Bohin, F.; Renault, P.; Barquins, M. Corono-radicular reconstruction of pulpless teeth: A mechanical study using finite element analysis. J. Prosthet. Dent. 2002, 88, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Hatzikyriakos, A.H.; Reisis, G.I.; Tsingos, N. A 3-year postoperative clinical evaluation of posts and cores beneath existing crowns. J. Prosthet. Dent. 1992, 67, 454–458. [Google Scholar] [CrossRef] [PubMed]
- Tian, K.V.; Yang, B.; Yue, Y.; Bowron, D.T.; Mayers, J.; Donnan, R.S.; Dobó-Nagy, C.; Nicholson, J.W.; Fang, D.C.; Greer, A.L.; et al. Atomic and vibrational origins of mechanical toughness in bioactive cement during setting. Nat. Commun. 2015, 6, 8631. [Google Scholar] [CrossRef]
- Perez, C.R. Alternative technique for class V resin composite restorations with minimum finishing/polishing procedures. Oper. Dent. 2010, 35, 375–379. [Google Scholar] [CrossRef]
- Bicalho, A.A.; Pereira, R.D.; Zanatta, R.F.; Franco, S.D.; Tantbirojn, D.; Versluis, A.; Soares, C.J. Incremental filling technique and composite material—Part I: Cuspal deformation, bond strength, and physical properties. Oper. Dent. 2014, 39, e71–e82. [Google Scholar] [CrossRef]
- Bicalho, A.A.; Valdívia, A.D.; Barreto, B.D.; Tantbirojn, D.; Versluis, A.; Soares, C.J. Incremental filling technique and composite material—Part II: Shrinkage and shrinkage stresses. Oper. Dent. 2014, 39, e83–e92. [Google Scholar] [CrossRef]
- Wilson, E.G.; Mandradjieff, M.; Brindock, T. Controversies in posterior composite resin restorations. Dent. Clin. North Am. 1990, 34, 27–44. [Google Scholar] [CrossRef]
- Kwon, Y.; Ferracane, J.; Lee, I.B. Effect of layering methods, composite type, and flowable liner on the polymerization shrinkage stress of light cured composites. Dent. Mater. 2012, 28, 801–809. [Google Scholar] [CrossRef]
- Park, J.; Chang, J.; Ferracane, J.; Lee, I.B. How should composite be layered to reduce shrinkage stress: Incremental or bulk filling? Dent. Mater. 2008, 24, 1501–1505. [Google Scholar] [CrossRef]
- Scolavino, S.; Paolone, G.; Orsini, G.; Devoto, W.; Putignano, A. The Simultaneous Modeling Technique: Closing gaps in posteriors. Int. J. Esthet. Dent. 2016, 11, 58–81. [Google Scholar] [PubMed]
- Ausiello, P.; Apicella, A.; Davidson, C.L.; Rengo, S. 3D-finite element analyses of cusp movements in a human upper premolar, restored with adhesive resin-based composites. J. Biomech. 2001, 34, 1269–1277. [Google Scholar] [CrossRef] [PubMed]
- Sagsen, B.; Aslan, B. Effect of bonded restorations on the fracture resistance of root filled teeth. Int. Endod. J. 2006, 39, 900–904. [Google Scholar] [CrossRef] [PubMed]
- McCabe, J.F.; Wang, Y.; Braem, M.J. Surface contact fatigue and flexural fatigue of dental restorative materials. J. Biomed. Mater. Res. 2000, 50, 375–380. [Google Scholar] [CrossRef]
- Gladys, S.; Van Meerbeek, B.; Braem, M.; Lambrechts, P.; Vanherle, G. Comparative physico-mechanical characterization of new hybrid restorative materials with conventional glass-ionomer and resin composite restorative materials. J. Dent. Res. 1997, 76, 883–894. [Google Scholar] [CrossRef]
- Kuijs, R.H.; Fennis, W.M.; Kreulen, C.M.; Roeters, F.J.; Verdonschot, N.; Creugers, N.H. A comparison of fatigue resistance of three materials for cusp-replacing adhesive restorations. J. Dent. 2006, 34, 19–25. [Google Scholar] [CrossRef]
- de Kok, P.; Kanters, G.F.; Kleverlaan, C.J. Fatigue resistance of composite resins and glass-ceramics on dentin and enamel. J. Prosthet. Dent. 2022, 127, 593–598. [Google Scholar] [CrossRef]
- Boschian Pest, L.; Guidotti, S.; Pietrabissa, R.; Gagliani, M. Stress distribution in a post-restored tooth using the three-dimensional finite element method. J. Oral Rehabil. 2006, 33, 690–697. [Google Scholar] [CrossRef]
- Htang, A.; Ohsawa, M.; Matsumoto, H. Fatigue resistance of composite restorations: Effect of filler content. Dent. Mater. 1995, 11, 7–13. [Google Scholar] [CrossRef]
- Drummond, J.L. Degradation, fatigue, and failure of resin dental composite materials. J. Dent. Res. 2008, 87, 710–719. [Google Scholar] [CrossRef]
- Shembish, F.A.; Tong, H.; Kaizer, M.; Janal, M.N.; Thompson, V.P.; Opdam, N.J.; Zhang, Y. Fatigue resistance of CAD/CAM resin composite molar crowns. Dent. Mater. 2016, 32, 499–509. [Google Scholar] [CrossRef] [PubMed]
- Batalha-Silva, S.; de Andrada, M.A.; Maia, H.P.; Magne, P. Fatigue resistance and crack propensity of large MOD composite resin restorations: Direct versus CAD/CAM inlays. Dent. Mater. 2013, 29, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Thaungwilai, K.; Tantilertanant, Y.; Singhatanadgit, W.; Singhatanadgid, P. Finite Element Analysis of the Mechanical Performance of Non-Restorable Crownless Primary Molars Restored with Intracoronal Core-Supported Crowns: A Proposed Treatment Alternative to Extraction for Severe Early Childhood Caries. J. Clin. Med. 2023, 12, 1872. [Google Scholar] [CrossRef] [PubMed]
- Magne, P.; Schlichting, L.H.; Maia, H.P.; Baratieri, L.N. In vitro fatigue resistance of CAD/CAM composite resin and ceramic posterior occlusal veneers. J. Prosthet. Dent. 2010, 104, 149–157. [Google Scholar] [CrossRef]
- Garcia-Godoy, F.; Frankenberger, R.; Lohbauer, U.; Feilzer, A.J.; Krämer, N. Fatigue behavior of dental resin composites: Flexural fatigue in vitro versus 6 years in vivo. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012, 100, 903–910. [Google Scholar] [CrossRef]
Material | A (MPa) | B | b | |
---|---|---|---|---|
Enamel | 310 | −0.111 | ||
Dentin | 247 | −0.111 | ||
Bulk–fill composite | 54 | −0.020 | ||
Resin composite | 84 | −0.035 |
Material | Young’s Modulus (GPa) | Poisson’s Ratio | Compressive Strength (MPa) | Flexural Strength (MPa) | Shear Strength (MPa) | Fracture Toughness (Mpa m1/2) | Microhardness (HV) |
---|---|---|---|---|---|---|---|
Enamel | 84.1 | 0.33 | 384 | 11.5 | 60 | 0.8 | 3–6 |
Dentin | 18.6 | 0.31 | 297 | 105.5 | 12–138 | 3.08 | 0.13–0.51 |
Adhesive | 1 | 0,24 | |||||
Pulp | 0.002 | 0.45 | |||||
Bulk–fill composite | 12 | 0.25 | 169 | 42 | |||
Resin composite | 16.6 | 0.24 | 294 | 77 |
Total Elements | Total Nodes | Mesh Type |
---|---|---|
7,428,602 | 1,368,958 | Linear tetrahedral elements of C3D4 |
Restoration Material | Restoration | Enamel | Dentin | Adhesive |
---|---|---|---|---|
Bulk–fill composite | 22.15 | 51.92 | 27.76 | 0.5365 |
Resin composite | 24.13 | 51.06 | 26.76 | 0.5169 |
Material Group | Restoration | Enamel | Dentin |
---|---|---|---|
Bulk–fill composite | 1.583 × 1032 | 45.047 × 106 | 7.252 × 108 |
Resin composite | 8.067 × 1034 | 54.369 × 106 | 6.103 × 109 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gönder, H.Y.; Mohammadi, R.; Harmankaya, A.; Yüksel, İ.B.; Fidancıoğlu, Y.D.; Karabekiroğlu, S. Teeth Restored with Bulk–Fill Composites and Conventional Resin Composites; Investigation of Stress Distribution and Fracture Lifespan on Enamel, Dentin, and Restorative Materials via Three-Dimensional Finite Element Analysis. Polymers 2023, 15, 1637. https://doi.org/10.3390/polym15071637
Gönder HY, Mohammadi R, Harmankaya A, Yüksel İB, Fidancıoğlu YD, Karabekiroğlu S. Teeth Restored with Bulk–Fill Composites and Conventional Resin Composites; Investigation of Stress Distribution and Fracture Lifespan on Enamel, Dentin, and Restorative Materials via Three-Dimensional Finite Element Analysis. Polymers. 2023; 15(7):1637. https://doi.org/10.3390/polym15071637
Chicago/Turabian StyleGönder, Hakan Yasin, Reza Mohammadi, Abdulkadir Harmankaya, İbrahim Burak Yüksel, Yasemin Derya Fidancıoğlu, and Said Karabekiroğlu. 2023. "Teeth Restored with Bulk–Fill Composites and Conventional Resin Composites; Investigation of Stress Distribution and Fracture Lifespan on Enamel, Dentin, and Restorative Materials via Three-Dimensional Finite Element Analysis" Polymers 15, no. 7: 1637. https://doi.org/10.3390/polym15071637
APA StyleGönder, H. Y., Mohammadi, R., Harmankaya, A., Yüksel, İ. B., Fidancıoğlu, Y. D., & Karabekiroğlu, S. (2023). Teeth Restored with Bulk–Fill Composites and Conventional Resin Composites; Investigation of Stress Distribution and Fracture Lifespan on Enamel, Dentin, and Restorative Materials via Three-Dimensional Finite Element Analysis. Polymers, 15(7), 1637. https://doi.org/10.3390/polym15071637