Characterization of Composite Film of Gelatin and Squid Pen Chitosan Obtained by High Hydrostatic Pressure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Production of Chitosan from Squid Pens
2.3. Preparation of Composite Films
2.4. Film Thickness
2.5. Mechanical Properties
2.6. Fourier Transformation Infrared Spectroscopy (FTIR) Analysis
2.7. Thermal Analysis
2.7.1. Thermogravimetric Analysis (TGA)
2.7.2. Differential Scanning Calorimetry (DSC)
2.8. Solubility
2.9. Water Vapor Permeability (WVP)
2.10. Color and Transparency
2.11. Scanning Electron Microscopy (SEM)
2.12. Peroxide Value (PV)
2.13. Statistical Analysis
3. Results and Discussion
3.1. Thickness
3.2. Mechanical Properties of Films
3.3. FTIR Analysis
3.4. Thermogravimetric Analysis (TGA)
3.5. Differential Scanning Calorimetry (DSC)
3.6. Solubility and Water Vapor Permeability (WVP)
3.7. Color and Transparency
3.8. Scanning Electron Microscopy (SEM)
3.9. Peroxide Value (PV)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohamed, S.A.A.; El-Sakhawy, M.; El-Sakhawy, M.A.M. Polysaccharides, protein and lipid-based natural edible films in food packaging: A Review. Carbohydr. Polym. 2020, 238, 116178. [Google Scholar] [CrossRef]
- Lu, Y.N.; Luo, Q.J.; Chu, Y.C.; Tao, N.P.; Deng, S.G.; Wang, L.; Li, L. Application of gelatin in food packaging: A review. Polymers 2022, 14, 436. [Google Scholar] [CrossRef]
- Fu, B.F.; Mei, S.S.; Su, X.J.; Chen, H.B.; Zhu, J.Q.; Zheng, Z.P.; Lin, H.T.; Dai, C.J.; Luque, R.; Yang, D.P. Integrating waste fish scale-derived gelatin and chitosan into edible nanocomposite film for perishable fruits. Int. J. Biol. Macromol. 2021, 191, 1164–1174. [Google Scholar] [CrossRef]
- Wang, Y.H.; Zhang, R.; Qin, W.; Dai, J.W.; Zhang, Q.; Lee, K.J.; Liu, Y.W. Physicochemical properties of gelatin films containing tea polyphenol-loaded chitosan nanoparticles generated by electrospray. Mater. Des. 2020, 185, 108277. [Google Scholar] [CrossRef]
- Hosseini, S.F.; Rezaei, M.; Zandi, M.; Farahmandghavi, F. Development of bioactive fish gelatin/chitosan nanoparticles composite films with antimicrobial properties. Food Chem. 2016, 194, 1266–1274. [Google Scholar] [CrossRef]
- Rostamabadi, H.; Karaca, A.C.; Nowacka, M.L.; Mulla, M.Z.; Al-attar, H.; Rathnakumar, K.; Subasi, B.G.; Sehrawat, R.; Kheto, A.; Falsafi, S.R. How high hydrostatic pressure treatment modifies the physicochemical and nutritional attributes of polysaccharides? Food Hydrocoll. 2023, 137, 108375. [Google Scholar] [CrossRef]
- Goncalves, S.M.; Chavez, D.W.H.; de Oliveira, L.M.; Sarantopoulos, C.; de Carvalho, C.W.P.; de Melo, N.R.; Rosenthal, A. Effects of high hydrostatic pressure processing on structure and functional properties of biodegradable film. Heliyon 2020, 6, e05213. [Google Scholar] [CrossRef]
- Li, T.; Zhao, L.; Wang, Y.T.; Wu, X.M.; Liao, X.J. Effect of high pressure processing on the preparation and characteristic changes of biopolymer-based films in food packaging applications. Food Eng. Rev. 2021, 13, 454–464. [Google Scholar] [CrossRef]
- Huang, Y.L.; Tsai, Y.H. Extraction of chitosan from squid pen waste by high hydrostatic pressure: Effects on physicochemical properties and antioxidant activities of chitosan. Int. J. Biol. Macromol. 2020, 160, 677–687. [Google Scholar] [CrossRef] [PubMed]
- Roshandel-hesari, N.; Mokaber-Esfahani, M.; Taleghani, A.; Akbari, R. Investigation of physicochemical properties, antimicrobial and antioxidant activity of edible films based on chitosan/casein containing Origanum vulgare L. essential oil and its effect on quality maintenance of cherry tomato. Food Chem. 2022, 396, 133650. [Google Scholar] [CrossRef]
- Dai, L.M.; Zhang, J.; Cheng, F. Effects of starches from different botanical sources and modification methods on physicochemical properties of starch-based edible films. Int. J. Biol. Macromol. 2019, 132, 897–905. [Google Scholar] [CrossRef]
- Jakubowska, E.; Gierszewska, M.; Nowaczyk, J.; Olewnik-Kruszkowska, E. Physicochemical and storage properties of chitosan-based films plasticized with deep eutectic solvent. Food Hydrocoll. 2020, 108, 106007. [Google Scholar] [CrossRef]
- Prateepchanachai, S.; Thakhiew, W.; Devahastin, S.; Soponronnarit, S. Improvement of mechanical and heat-sealing properties of edible chitosan films via addition of gelatin and CO2 treatment of film-forming solutions. Int. J. Biol. Macromol. 2019, 131, 589–600. [Google Scholar] [CrossRef]
- Kim, S.; Yang, S.Y.; Chun, H.H.; Bin Song, K. High hydrostatic pressure processing for the preparation of buckwheat and tapioca starch films. Food Hydrocoll. 2018, 81, 71–76. [Google Scholar] [CrossRef]
- Tavares, L.; Souza, H.K.S.; Goncalves, M.P.; Rocha, C.M.R. Physicochemical and microstructural properties of composite edible film obtained by complex coacervation between chitosan and whey protein isolate. Food Hydrocoll. 2021, 113, 106471. [Google Scholar] [CrossRef]
- Stanton, J.; Xue, Y.; Pandher, P.; Malek, L.; Brown, T.; Hu, X.; Salas-de la Cruz, D. Impact of ionic liquid type on the structure, morphology and properties of silk-cellulose biocomposite materials. Int. J. Biol. Macromol. 2018, 108, 333–341. [Google Scholar] [CrossRef]
- Shankar, S.; Reddy, J.P.; Rhim, J.W.; Kim, H.Y. Preparation, characterization, and antimicrobial activity of chitin nanofibrils reinforced carrageenan nanocomposite films. Carbohydr. Polym. 2015, 117, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Benbettaieb, N.; Kurek, M.; Bornaz, S.; Debeaufort, F. Barrier, structural and mechanical properties of bovine gelatin-chitosan blend films related to biopolymer interactions. J. Sci. Food Agric. 2014, 94, 2409–2419. [Google Scholar] [CrossRef]
- Doyle, B.B.; Bendit, E.G.; Blout, E.R. Infrared spectroscopy of collagen and collagen-like polypeptides. Bioplymers 2010, 14, 937–957. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Mudai, A.; Roy, B.; Basumatary, I.B.; Mukherjee, A.; Dutta, J. Biodegradable hybrid nanocomposite of chitosan/gelatin and green synthesized zinc oxide nanoparticles for food packaging. Foods 2020, 9, 1143. [Google Scholar] [CrossRef]
- Qiao, C.D.; Ma, X.G.; Zhang, J.L.; Yao, J.S. Molecular interactions in gelatin/chitosan composite films. Food Chem. 2017, 235, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Hiremani, V.D.; Khanapure, S.; Gasti, T.; Goudar, N.; Vootla, S.K.; Masti, S.P.; Malabadi, R.B.; Mudigoudra, B.S.; Chougale, R.B. Preparation and physicochemical assessment of bioactive films based on chitosan and starchy powder of white turmeric rhizomes (Curcuma zedoaria) for green packaging applications. Int. J. Biol. Macromol. 2021, 193, 2192–2201. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, S.; Fathi, M.; Kadivar, M. Production and characterization of chitosan-gelatin nanofibers by nozzle-less electrospinning and their application to enhance edible film’s properties. Food Packag. Shelf Life 2019, 22, 100387. [Google Scholar] [CrossRef]
- Al-Maqtari, Q.A.; Al-Gheethi, A.A.S.; Ghaleb, A.D.S.; Mahdi, A.A.; Al-Ansi, W.; Noman, A.E.; Al-Adeeb, A.; Odjo, A.K.O.; Du, Y.H.; Wei, M.P.; et al. Fabrication and characterization of chitosan/gelatin films loaded with microcapsules of Pulicaria jaubertii extract. Food Hydrocoll. 2022, 129, 107624. [Google Scholar] [CrossRef]
- Jridi, M.; Hajji, S.; Ben Ayed, H.; Lassoued, I.; Mbarek, A.; Kammoun, M.; Souissi, N.; Nasri, M. Physical, structural, antioxidant and antimicrobial properties of gelatin-chitosan composite edible films. Int. J. Biol. Macromol. 2014, 67, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Lian, Z.X.; Zhang, Y.F.; Zhao, Y.Y. Nano-TiO2 particles and high hydrostatic pressure treatment for improving functionality of polyvinyl alcohol and chitosan composite films and nano-TiO2 migration from film matrix in food simulants. Innov. Food Sci. Emerg. Technol. 2016, 33, 145–153. [Google Scholar] [CrossRef]
- Molinaro, S.; Cruz-Romero, M.; Sensidoni, A.; Morris, M.; Lagazio, C.; Kerry, J.P. Combination of high-pressure treatment, mild heating and holding time effects as a means of improving the barrier properties of gelatin-based packaging films using response surface modeling. Innov. Food Sci. Emerg. Technol. 2015, 30, 15–23. [Google Scholar] [CrossRef]
- Yadav, S.; Mehrotra, G.K.; Bhartiya, P.; Singh, A.; Dutta, P.K. Preparation, physicochemical and biological evaluation of quercetin based chitosan-gelatin film for food packaging. Carbohydr. Polym. 2020, 227, 115348. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, R.; Mohammadifar, M.A.; Rouhi, M.; Kariminejad, M.; Mortazavian, A.M.; Sadeghi, E.; Hasanvand, S. Physico-mechanical and structural properties of eggshell membrane gelatin-chitosan blend edible films. Int. J. Biol. Macromol. 2018, 107, 406–412. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.T.; Yuan, Y.; Duan, S.Q.; Li, C.; Hu, B.; Liu, A.P.; Wu, D.T.; Cui, H.Y.; Lin, L.; He, J.L.; et al. Preparation and characterization of chitosan films with three kinds of molecular weight for food packaging. Int. J. Biol. Macromol. 2020, 155, 249–259. [Google Scholar] [CrossRef]
- Ghaderi, J.; Hosseini, S.F.; Keyvani, N.; Gomez-Guillen, M.C. Polymer blending effects on the physicochemical and structural features of the chitosan/poly(vinyl alcohol)/fish gelatin ternary biodegradable films. Food Hydrocoll. 2019, 95, 122–132. [Google Scholar] [CrossRef]
- CODEX STAN 210-1999; Codex Standard for Named Vegetable Oils. Codex Alimentarius Commission: Ottawa, ON, Canada, 1999.
- Wang, S.; Xia, P.; Wang, S.Z.; Liang, J.; Sun, Y.; Yue, P.X.; Gao, X.L. Packaging films formulated with gelatin and anthocyanins nanocomplexes: Physical properties, antioxidant activity and its application for olive oil protection. Food Hydrocoll. 2019, 96, 617–624. [Google Scholar] [CrossRef]
Film Samples | Thickness (mm) | TS (MPa) | EAB (%) |
---|---|---|---|
Commercial | |||
100C:0G | 0.081 ± 0.004 f | 7.54 ± 0.11 d | 26.41 ± 0.86 h |
80C:20G | 0.095 ± 0.004 e | 7.52 ± 0.25 d | 29.68 ± 0.27 g |
60C:40G | 0.106 ± 0.101 d | 6.39 ± 0.42 e | 31.91 ± 0.72 f |
40C:60G | 0.121 ± 0.004 c | 5.31 ± 0.67 f | 33.06 ± 0.42 f |
20C:80G | 0.134 ± 0.005 b | 5.29 ± 0.49 e | 39.29 ± 0.63 e |
0C:100G | 0.168 ± 0.002 a | 4.21 ± 0.32 g | 60.88 ± 0.28 a |
Untreated | |||
100C:0G | 0.074 ± 0.003 g | 9.24 ± 0.21 b | 26.87 ± 1.27 h |
80C:20G | 0.083 ± 0.002 f | 7.84 ± 0.20 d | 33.14 ± 0.86 f |
60C:40G | 0.104 ± 0.002 d | 6.42 ± 0.27 e | 35.17 ± 1.28 f |
40C:60G | 0.112 ± 0.002 d | 6.33 ± 0.15 e | 43.15 ± 1.02 d |
20C:80G | 0.131 ± 0.001 b | 6.03 ± 0.33 e | 50.26 ± 1.16 c |
0C:100G | 0.168 ± 0.002 a | 4.21 ± 0.32 g | 60.88 ± 0.28 a |
HHP | |||
100C:0G | 0.066 ± 0.002 h | 11.08 ± 0.18 a | 27.18 ± 1.20 h |
80C:20G | 0.075 ± 0.002 g | 9.55 ± 0.29 b | 38.97 ± 0.04 e |
60C:40G | 0.102 ± 0.001 d | 8.91 ± 0.19 c | 44.62 ± 0.67 d |
40C:60G | 0.107 ± 0.002 d | 8.37 ± 0.54 c | 53.80 ± 1.42 b |
20C:80G | 0.124 ± 0.002 c | 7.40 ± 0.62 d | 58.33 ± 1.24 a |
0C:100G | 0.168 ± 0.002 a | 4.21 ± 0.32 g | 60.88 ± 0.28 a |
Film Samples | Solubility (%) | WVP (g.mm)/(m2.h.kPa) |
---|---|---|
Commercial | ||
100C:0G | 33.67 ± 0.20 h | 0.172 ± 0.005 d |
80C:20G | 35.16 ± 0.31 g | 0.175 ± 0.012 d |
60C:40G | 35.90 ± 0.73 g | 0.180 ± 0.004 d |
40C:60G | 42.47 ± 0.51 e | 0.185 ± 0.005 c |
20C:80G | 45.85 ± 0.16 d | 0.189 ± 0.003 b |
0C:100G | 84.16 ± 0.19 a | 0.195 ± 0.001 a |
Untreated | ||
100C:0G | 32.07 ± 0.19 h | 0.161 ± 0.006 e |
80C:20G | 43.60 ± 0.85 e | 0.167 ± 0.003 e |
60C:40G | 47.35 ± 1.26 c | 0.177 ± 0.004 d |
40C:60G | 48.26 ± 1.16 c | 0.180 ± 0.005 c |
20C:80G | 54.74 ± 1.34 b | 0.187 ± 0.008 b |
0C:100G | 84.16 ± 0.19 a | 0.195 ± 0.001 a |
HHP | ||
100C:0G | 28.48 ± 0.04 i | 0.155 ± 0.001 f |
80C:20G | 38.44 ± 1.43 f | 0.157 ± 0.009 f |
60C:40G | 43.44 ± 1.43 e | 0.167 ± 0.013 e |
40C:60G | 43.96 ± 0.86 e | 0.175 ± 0.009 d |
20C:80G | 48.82 ± 0.78 c | 0.180 ± 0.005 c |
0C:100G | 84.16 ± 0.19 a | 0.195 ± 0.001 a |
Film Samples | L* | a* | b* | ΔE | Opacity |
---|---|---|---|---|---|
Commercial | |||||
100C:0G | 95.15 ± 0.06 b | −0.52 ± 0.02 h | 3.80 ± 0.01 d | 6.14 ± 0.04 e | 0.68 ± 0.11 e |
80C:20G | 95.37 ± 0.08 b | −0.40 ± 0.01 g | 4.07 ± 0.01 c | 6.17 ± 0.06 e | 0.69 ± 0.01 e |
60C:40G | 95.69 ± 0.01 b | −0.40 ± 0.01 g | 5.49 ± 0.01 b | 6.99 ± 0.01 c | 0.62 ± 0.05 e |
40C:60G | 95.88 ± 0.01 b | −0.41 ± 0.02 g | 6.21 ± 0.01 a | 7.46 ± 0.01 b | 0.50 ± 0.01 f |
20C:80G | 96.18 ± 0.01 a | −0.36 ± 0.02 f | 6.10 ± 0.01 a | 6.94 ± 0.07 c | 0.37 ± 0.02 g |
0C:100G | 96.50 ± 0.02 a | −0.10 ± 0.01 b | 0.86 ± 0.01 l | 3.57 ± 0.01 c | 0.24 ± 0.05 h |
Untreated | |||||
100C:0G | 88.73 ± 0.24 e | 0.08 ± 0.01 a | 2.71 ± 0.02 g | 11.26 ± 0.04 a | 1.16 ± 0.01 a |
80C:20G | 94.77 ± 0.01 c | −0.41 ± 0.02 g | 2.48 ± 0.01 h | 5.80 ± 0.01 g | 1.53 ± 0.01 c |
60C:40G | 95.62 ± 0.01 b | −0.32 ± 0.01 e | 2.05 ± 0.01 i | 4.85 ± 0.01 i | 1.25 ± 0.05 d |
40C:60G | 95.82 ± 0.39 b | −0.39 ± 0.01 g | 2.64 ± 0.01 g | 4.60 ± 0.01 j | 0.63 ± 0.02 e |
20C:80G | 95.26 ± 0.02 b | −0.17 ± 0.01 c | 1.33 ± 0.01 j | 3.94 ± 0.10 l | 0.34 ± 0.01 g |
0C:100G | 96.50 ± 0.02 a | −0.10 ± 0.02 b | 0.86 ± 0.01 l | 3.57 ± 0.01 n | 0.24 ± 0.05 h |
HHP | |||||
100C:0G | 93.76 ± 0.01 d | −0.28 ± 0.01 e | 2.88 ± 0.01 f | 6.87 ± 0.01 d | 0.71 ± 0.01 e |
80C:20G | 94.80 ± 0.01 c | −0.41 ± 0.03 g | 2.90 ± 0.01 f | 5.96 ± 0.01 f | 0.97 ± 0.01 b |
60C:40G | 95.54 ± 0.06 b | −0.33 ± 0.05 e | 3.44 ± 0.01 e | 5.63 ± 0.05 h | 0.51 ± 0.01 f |
40C:60G | 95.83 ± 0.01 b | −0.21 ± 0.02 c | 2.63 ± 0.01 g | 4.93 ± 0.02 i | 0.42 ± 0.01 g |
20C:80G | 96.43 ± 0.02 a | −0.26 ± 0.01 d | 1.81 ± 0.01 i | 4.01 ± 0.02 k | 0.40 ± 0.01 g |
0C:100G | 96.50 ± 0.02 a | −0.10 ± 0.02 b | 0.86 ± 0.01 k | 3.57 ± 0.01 m | 0.24 ± 0.05 h |
Film Samples | PV (meq/Kg) | |||||
---|---|---|---|---|---|---|
0 Day | 7 Days | 14 Days | 21 Days | 28 Days | 35 Days | |
Without film | 5.08 ± 0.01 a | 11.11 ± 0.01 a | 19.57 ± 0.02 a | 22.26 ± 0.01 a | 47.70 ± 0.02 a | 51.07 ± 0.29 a |
Commercial | ||||||
100C:0G | 5.06 ± 0.02 a | 7.95 ± 0.01 d | 10.37 ± 0.10 d | 15.89 ± 0.01 b | 38.13 ± 0.03 c | 44.29 ± 0.18 c |
80C:20G | 5.07 ± 0.02 a | 6.36 ± 0.01 e | 9.05 ± 0.02 e | 13.35 ± 0.01 i | 25.44 ± 0.01 g | 41.02 ± 0.03 f |
60C:40G | 5.07 ± 0.02 a | 9.53 ± 0.01 c | 9.01 ± 0.05 e | 14.62 ± 0.01 e | 28.60 ± 0.02 f | 42.26 ± 0.02 e |
40C:60G | 5.07 ± 0.02 a | 9.54 ± 0.01 c | 10.55 ± 0.01 c | 14.94 ± 0.01 d | 31.77 ± 0.01 e | 43.22 ± 0.08 d |
20C:80G | 5.06 ± 0.02 a | 9.54 ± 0.01 c | 10.56 ± 0.01 c | 15.25 ± 0.01 c | 38.16 ± 0.02 c | 44.50 ± 0.03 c |
0C:100G | 5.07 ± 0.02 a | 11.13 ± 0.01 a | 11.39 ± 0.08 b | 15.90 ± 0.01 b | 41.58 ± 0.01 b | 47.99 ± 0.04 b |
Untreated | ||||||
100C:0G | 5.07 ± 0.02 a | 9.54 ± 0.01 c | 10.53 ± 0.02 c | 14.30 ± 0.02 f | 34.97 ± 0.03 d | 42.29 ± 0.03 e |
80C:20G | 5.07 ± 0.02 a | 7.94 ± 0.01 d | 8.92 ± 0.08 f | 13.68 ± 0.01 h | 25.43 ± 0.05 g | 38.16 ± 0.02 i |
60C:40G | 5.07 ± 0.02 a | 11.12 ± 0.01 a | 10.39 ± 0.03 d | 13.99 ± 0.01 g | 28.60 ± 0.01 f | 39.08 ± 0.08 h |
40C:60G | 5.07 ± 0.02 a | 11.13 ± 0.01 a | 10.42 ± 0.04 c | 14.30 ± 0.01 f | 34.96 ± 0.01 d | 40.70 ± 0.02 g |
20C:80G | 5.07 ± 0.02 a | 11.12 ± 0.01 a | 10.50 ± 0.01 c | 14.62 ± 0.01 e | 38.14 ± 0.01 c | 43.86 ± 0.04 d |
0C:100G | 5.07 ± 0.02 a | 11.13 ± 0.01 a | 11.39 ± 0.08 b | 15.90 ± 0.01 b | 41.58 ± 0.02 b | 47.99 ± 0.04 b |
HHP | ||||||
100C:0G | 5.07 ± 0.02 a | 7.95 ± 0.01 d | 9.05 ± 0.01 e | 13.34 ± 0.01 i | 31.80 ± 0.01 e | 39.72 ± 0.02 h |
80C:20G | 5.07 ± 0.02 a | 6.36 ± 0.01 e | 7.53 ± 0.01 h | 11.76 ± 0.01 l | 22.25 ± 0.01 g | 34.98 ± 0.01 k |
60C:40G | 5.07 ± 0.02 a | 9.53 ± 0.01 c | 8.44 ± 0.02 g | 12.08 ± 0.01 k | 25.44 ± 0.01 g | 36.56 ± 0.03 j |
40C:60G | 5.07 ± 0.02 a | 9.54 ± 0.01 c | 9.04 ± 0.01 e | 12.72 ± 0.02 j | 28.59 ± 0.01 f | 38.14 ± 0.01 i |
20C:80G | 5.07 ± 0.02 a | 10.33 ± 0.01 b | 10.56 ± 0.02 c | 13.34 ± 0.01 i | 31.79 ± 0.01 e | 39.74 ± 0.08 h |
0C:100G | 5.07 ± 0.02 a | 11.13 ± 0.01 a | 11.39 ± 0.08 b | 15.90 ± 0.01 b | 41.58 ± 0.50 b | 47.99 ± 0.04 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.-L.; Wang, D.-M. Characterization of Composite Film of Gelatin and Squid Pen Chitosan Obtained by High Hydrostatic Pressure. Polymers 2023, 15, 1608. https://doi.org/10.3390/polym15071608
Huang Y-L, Wang D-M. Characterization of Composite Film of Gelatin and Squid Pen Chitosan Obtained by High Hydrostatic Pressure. Polymers. 2023; 15(7):1608. https://doi.org/10.3390/polym15071608
Chicago/Turabian StyleHuang, Ya-Ling, and Da-Ming Wang. 2023. "Characterization of Composite Film of Gelatin and Squid Pen Chitosan Obtained by High Hydrostatic Pressure" Polymers 15, no. 7: 1608. https://doi.org/10.3390/polym15071608
APA StyleHuang, Y.-L., & Wang, D.-M. (2023). Characterization of Composite Film of Gelatin and Squid Pen Chitosan Obtained by High Hydrostatic Pressure. Polymers, 15(7), 1608. https://doi.org/10.3390/polym15071608