Color Stability of Resin Cements after Water Aging
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alshali, R.Z.; Salim, N.A.; Satterthwaite, J.D.; Silikas, N. Long-Term Sorption and Solubility of Bulk-Fill and Conventional Resin-Composites in Water and Artificial Saliva. J. Dent. 2015, 43, 1511–1518. [Google Scholar] [CrossRef] [PubMed]
- Scholz, K.J.; Tabenski, I.M.; Vogl, V.; Cieplik, F.; Schmalz, G.; Buchalla, W.; Hiller, K.A.; Federlin, M. Randomized clinical split-mouth study on the performance of CAD/CAM-partial ceramic crowns luted with a self-adhesive resin cement or a universal adhesive and a conventional resin cement after 39 months. J. Dent. 2021, 115, 103837. [Google Scholar] [CrossRef] [PubMed]
- Bresser, R.A.; Gerdolle, D.; van den Heijkant, I.A.; Sluiter-Pouwels, L.M.A.; Cune, M.S.; Gresnigt, M.M.M. Up to 12 years clinical evaluation of 197 partial indirect restorations with deep margin elevation in the posterior region. J. Dent. 2019, 91, 103227. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Q.; Meng, X.; Ye, Y.; Feng, D.; Xue, J.; Wang, H.; Huang, H.; Wang, M.; Wang, J. Rheological and Mechanical Properties of Resin-Based Materials Applied in Dental Restorations. Polymers 2021, 13, 2975. [Google Scholar] [CrossRef] [PubMed]
- Borgia, E.; Baron, R.; Borgia, J.L. Quality and Survival of Direct Light-Activated Composite Resin Restorations in Posterior Teeth: A 5- to 20-Year Retrospective Longitudinal Study. J. Prosthet. 2019, 28, e195–e203. [Google Scholar] [CrossRef] [PubMed]
- Kürklü, D.; Azer, S.S.; Yilmaz, B.; Johnston, W.M. Porcelain Thickness and Cement Shade Effects on the Colour and Translucency of Porcelain Veneering Materials. J. Dent. 2013, 41, 1043–1050. [Google Scholar] [CrossRef]
- Basso, G.R.; Kodama, A.B.; Pimentel, A.H.; Kaizer, M.R.; Bona, A.D.; Moraes, R.R.; Boscato, N. Masking Colored Substrates Using Monolithic and Bilayer CAD-CAM Ceramic Structures. Oper. Dent. 2017, 42, 387–395. [Google Scholar] [CrossRef]
- Basegio, M.M.; Pecho, O.E.; Ghinea, R.; Perez, M.M.; Della Bona, A. Masking Ability of Indirect Restorative Systems on Tooth-Colored Resin Substrates. Dent. Mater. 2019, 35, e122–e130. [Google Scholar] [CrossRef]
- Sonza, Q.N.; Della Bona, A.; Pecho, O.E.; Borba, M. Effect of Substrate and Cement on the Final Color of Zirconia-Based All-Ceramic Crowns. J. Esthet. Restor. Dent. 2021, 33, 891–898. [Google Scholar] [CrossRef]
- Comba, A.; Paolone, G.; Baldi, A.; Vichi, A.; Goracci, C.; Bertozzi, G.; Scotti, N. Effects of Substrate and Cement Shade on the Translucency and Color of CAD/CAM Lithium-Disilicate and Zirconia Ceramic Materials. Polymers 2022, 14, 1778. [Google Scholar] [CrossRef]
- Petropoulou, A.; Vrochari, A.D.; Hellwig, E.; Stampf, S.; Polydorou, O. Water Sorption and Water Solubility of Self-Etching and Self-Adhesive Resin Cements. J. Prosthet. Dent. 2015, 114, 674–679. [Google Scholar] [CrossRef] [PubMed]
- Almeida, J.R.; Schmitt, G.U.; Kaizer, M.R.; Boscato, N.; Moraes, R.R. Resin-Based Luting Agents and Color Stability of Bonded Ceramic Veneers. J Prosthet. Dent. 2015, 114, 272–277. [Google Scholar] [CrossRef]
- Mancuso, E.; Mazzitelli, C.; Maravic, T.; Pitta, J.; Mengozzi, A.; Comba, A.; Baldi, A.; Scotti, N.; Mazzoni, A.; Fehmer, V.; et al. The influence of finishing lines and margin location on enamel and dentin removal for indirect partial restorations: A micro-CT quantitative evaluation. J. Dent. 2022, 127, 104334. [Google Scholar] [CrossRef]
- Marghalani, H.Y. Sorption and Solubility Characteristics of Self-Adhesive Resin Cements. Dent. Mater. 2012, 28, e187–e198. [Google Scholar] [CrossRef] [PubMed]
- Jafarpour, D.; Ferooz, R.; Ferooz, M.; Bagheri, R. Physical and Mechanical Properties of Bulk-Fill, Conventional, and Flowable Resin Composites Stored Dry and Wet. Int. J. Dent. 2022, 2022, 7946239. [Google Scholar] [CrossRef] [PubMed]
- Mazzitelli, C.; Monticelli, F.; Osorio, R.; Casucci, A.; Toledano, M.; Ferrari, M. Water Sorption and Solubility of Different Self-Adhesive Cements. Dent. Mater. 2009, 25, e37. [Google Scholar] [CrossRef]
- Pan, Y.; Xu, X.; Sun, F.; Meng, X. Surface Morphology and Mechanical Properties of Conventional and Self-Adhesive Resin Cements after Aqueous Aging. J. Appl. Oral Sci. 2018, 27, e20170449. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, T.R.; André, C.B.; Ambrosano, G.M.B.; Giannini, M. The Effect of Light Exposure on Water Sorption and Solubility of Self-Adhesive Resin Cements. Int. Sch. Res. Not. 2014, 2014, 610452. [Google Scholar] [CrossRef]
- Ramos, N.C.; Luz, J.N.; Valera, M.C.; Melo, R.M.; Saavedra, G.; Bresciani, E. Color Stability of Resin Cements Exposed to Aging. Oper. Dent. 2019, 44, 609–614. [Google Scholar] [CrossRef]
- ISO 4049:2019; Dentistry—Polymer-Based Restorative Materials. International Organization for Standardization: Geneva, Switzerland, 2019. Available online: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/06/75/67596.html (accessed on 1 December 2022).
- Asmussen, E. An Accelerated Test for Color Stability of Restorative Resins. Acta Odontol. Scand. 1981, 39, 329–332. [Google Scholar] [CrossRef]
- Vichi, A.; Ferrari, M.; Davidson, C.L. Color and Opacity Variations in Three Different Resin-Based Composite Products after Water Aging. Dent. Mater. 2004, 20, 530–534. [Google Scholar] [CrossRef] [PubMed]
- Salgado, V.E.; Cavalcante, L.M.; Moraes, R.R.; Davis, H.B.; Ferracane, J.L.; Schneider, L.F. Degradation of Optical and Surface Properties of Resin-Based Composites with Distinct Nanoparticle Sizes but Equivalent Surface Area. J. Dent. 2017, 59, 48–53. [Google Scholar] [CrossRef]
- Hatai, Y. Extreme Masking: Achieving Predictable Outcomes in Challenging Situations with Lithium Disilicate Bonded Restorations. Int. J Esthet. Dent. 2014, 9, 206–222. [Google Scholar] [PubMed]
- Chang, J.; Da Silva, J.D.; Sakai, M.; Kristiansen, J.; Ishikawa-Nagai, S. The Optical Effect of Composite Luting Cement on All Ceramic Crowns. J. Dent. 2009, 37, 937–943. [Google Scholar] [CrossRef]
- Baldi, A.; Comba, A.; Tempesta, R.M.; Carossa, M.; Pereira, G.K.R.; Valandro, L.F.; Paolone, G.; Vichi, A.; Goracci, C.; Scotti, N. External Marginal Gap Variation and Residual Fracture Resistance of Composite and Lithium-Silicate CAD/CAM Overlays after Cyclic Fatigue over Endodontically-Treated Molars. Polymers 2021, 13, 3002. [Google Scholar] [CrossRef]
- Turgut, S.; Bagis, B. Colour Stability of Laminate Veneers: An in Vitro Study. J. Dent. 2011, 39 (Suppl. 3), e57–e64. [Google Scholar] [CrossRef] [PubMed]
- Baldi, A.; Comba, A.; Ferrero, G.; Italia, E.; Michelotto Tempesta, R.; Paolone, G.; Mazzoni, A.; Breschi, L.; Scotti, N. External Gap Progression after Cyclic Fatigue of Adhesive Overlays and Crowns Made with High Translucency Zirconia or Lithium Silicate. J. Esthet. Rest. Dent. 2022, 34, 557–564. [Google Scholar] [CrossRef]
- Alghazzawi, T.F.; Lemons, J.; Liu, P.-R.; Essig, M.E.; Janowski, G.M. Evaluation of the Optical Properties of CAD-CAM Generated Yttria-Stabilized Zirconia and Glass-Ceramic Laminate Veneers. J. Prosthet. Dent. 2012, 107, 300–308. [Google Scholar] [CrossRef]
- Carrabba, M.; Vichi, A.; Tozzi, G.; Louca, C.; Ferrari, M. Cement Opacity and Color as Influencing Factors on the Final Shade of Metal-Free Ceramic Restorations. J. Esthet. Restor. Dent. 2020, 34, 423–429. [Google Scholar] [CrossRef]
- Peumans, M.; De Munck, J.; Fieuws, S.; Lambrechts, P.; Vanherle, G.; Van Meerbeek, B. A prospective ten-year clinical trial of porcelain veneers. J. Adhes. Dent. 2004, 6, 65–76. [Google Scholar]
- Olley, R.C.; Andiappan, M.; Frost, P.M. An up to 50-year follow-up of crown and veneer survival in a dental practice. J. Prosthet. Dent. 2018, 119, 935–941. [Google Scholar] [CrossRef] [PubMed]
- Josic, U.; Mazzitelli, C.; Maravic, T.; Comba, A.; Mayer-Santos, E.; Florenzano, F.; Breschi, L.; Mazzoni, A. Evaluation of Fiber Post Adhesion to Root Dentin Achieved with Different Composite Cements: 1-year In Vitro Results. J. Adhes. Dent. 2022, 24, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Falkensammer, F.; Arnetzl, G.V.; Wildburger, A.; Freudenthaler, J. Color Stability of Different Composite Resin Materials. J. Prosthet. Dent. 2013, 109, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Leal, C.L.; Queiroz, A.P.V.; Foxton, R.M.; Argolo, S.; Mathias, P.; Cavalcanti, A.N. Water Sorption and Solubility of Luting Agents Used under Ceramic Laminates with Different Degrees of Translucency. Oper. Dent. 2016, 41, E141–E148. [Google Scholar] [CrossRef] [PubMed]
- Schneider, L.F.J.; Ribeiro, R.B.; Liberato, W.F.; Salgado, V.E.; Moraes, R.R.; Cavalcante, L.M. Curing potential and color stability of different resin-based luting materials. Dent. Mater. 2020, 36, e309–e315. [Google Scholar] [CrossRef] [PubMed]
- Espíndola-Castro, L.F.; de Brito, O.F.F.; Araújo, L.G.A.; Santos, I.L.A.; Monteiro, G.Q.D.M. In Vitro Evaluation of Physical and Mechanical Properties of Light-Curing Resin Cement: A Comparative Study. Eur. J. Dent. 2020, 14, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Kilinc, E.; Antonson, S.A.; Hardigan, P.C.; Kesercioglu, A. Resin Cement Color Stability and Its Influence on the Final Shade of All-Ceramics. J. Dent. 2011, 39, e30–e36. [Google Scholar] [CrossRef] [PubMed]
- Braga, R.R.; Cesar, P.F.; Gonzaga, C.C. Mechanical Properties of Resin Cements with Different Activation Modes. J. Oral. Rehabil. 2002, 29, 257–262. [Google Scholar] [CrossRef]
- Santos, G.C.; El-Mowafy, O.; Rubo, J.H.; Santos, M.J.M.C. Hardening of Dual-Cure Resin Cements and a Resin Composite Restorative Cured with QTH and LED Curing Units. J. Can. Dent. Assoc. 2004, 70, 323–328. [Google Scholar] [PubMed]
- Mazzitelli, C.; Maravic, T.; Mancuso, E.; Josic, U.; Generali, L.; Comba, A.; Mazzoni, A.; Breschi, L. Influence of the Activation Mode on Long-Term Bond Strength and Endogenous Enzymatic Activity of Dual-Cure Resin Cements. Clin. Oral Investig. 2021, 26, 1683–1694. [Google Scholar] [CrossRef] [PubMed]
- Mazzitelli, C.; Maravic, T.; Sebold, M.; Checchi, V.; Josic, U.; Breschi, L.; Mazzoni, A. Effect of Shelf-Life of a Universal Adhesive to Dentin. Int. J. Adhes. Adhes. 2020, 102, 102673. [Google Scholar] [CrossRef]
- Paolone, G.; Formiga, S.; De Palma, F.; Abbruzzese, L.; Chirico, L.; Scolavino, S.; Goracci, C.; Cantatore, G.; Vichi, A. Color stability of resin-based composites: Staining procedures with liquids—A narrative review. J. Esthet. Restor. Dent. 2022, 34, 865–887. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, R.B.; De Lima, E.; Roscoe, M.G.; Soares, C.J.; Cesar, P.; Novais, V.R. Influence of Resin Cements on Color Stability of Different Ceramic Systems. Braz. Dent. J. 2017, 28, 191–195. [Google Scholar] [CrossRef]
- Mazzitelli, C.; Maravic, T.; Josic, U.; Mancuso, E.; Generali, L.; Checchi, V.; Breschi, L.; Mazzoni, A. Effect of adhesive strategy on resin cement bonding to dentin. J. Esthet. Dent. 2022, 25. [Google Scholar] [CrossRef] [PubMed]
- Mina, N.R.; Baba, N.Z.; Al-Harbi, F.A.; Elgezawi, M.F.; Daou, M. The influence of simulated aging on the color stability of composite resin cements. J. Prosthet. Dent. 2019, 121, 306–310. [Google Scholar] [CrossRef]
- Baldissara, P.; Silvestri, D.; Pieri, G.M.; Mazzitelli, C.; Arena, A.; Maravic, T.; Monaco, C. Effect of Fluorographene Addition on Mechanical and Adhesive Properties of a New Core Build-Up Composite. Polymers 2022, 14, 5301. [Google Scholar] [CrossRef]
- Gajewski, V.E.S.; Pfeifer, C.; Fróes-Salgado, N.R.G.; Boaro, L.; Braga, R.R. Monomers Used in Resin Composites: Degree of Conversion, Mechanical Properties and Water Sorption/Solubility. Braz. Dent. J. 2012, 23, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Cotugno, S.; Larobina, D.; Mensitieri, G.; Musto, P.; Ragosta, G. A Novel Spectroscopic Approach to Investigate Transport Processes in Polymers: The Case of Water–Epoxy System. Polymers 2001, 42, 6431–6438. [Google Scholar] [CrossRef]
- Fonseca, A.S.Q.S.; Labruna Moreira, A.D.; de Albuquerque, P.P.A.C.; de Menezes, L.R.; Pfeifer, C.S.; Schneider, L.F.J. Effect of Monomer Type on the CC Degree of Conversion, Water Sorption and Solubility, and Color Stability of Model Dental Composites. Dent. Mater. 2017, 33, 394–401. [Google Scholar] [CrossRef]
- Ashy, L.M.; Al-Mutairi, A.; Al-Otaibi, T.; Al-Turki, L. The Effect of Thermocyclic Aging on Color Stability of High Translucency Monolithic Lithium Disilicate and Zirconia Ceramics Luted with Different Resin Cements: An in Vitro Study. BMC Oral Health 2021, 21, 587. [Google Scholar] [CrossRef] [PubMed]
- Schneider, L.F.J.; Pfeifer, C.S.C.; Consani, S.; Prahl, S.A.; Ferracane, J.L. Influence of Photoinitiator Type on the Rate of Polymerization, Degree of Conversion, Hardness and Yellowing of Dental Resin Composites. Dent. Mater. 2008, 24, 1169–1177. [Google Scholar] [CrossRef] [PubMed]
- Alkurt, M.; Duymus, Z.Y. Comparison to Color Stability Between Amine with Benzoyl Peroxide Includes Resin Cement and Amine-Reduced, Amine-Free, Lacking of Benzoyl Peroxide Resin Cements After Thermocycle. J. Adv. Oral Res. 2018, 9, 24–30. [Google Scholar] [CrossRef]
- Paolone, G.; Mazzitelli, C.; Zechini, G.; Scolavino, S.; Goracci, C.; Scotti, N.; Cantatore, G.; Gherlone, E.; Vichi, A. Influence of Modeling Liquids and Universal Adhesives Used as Lubricants on Color Stability and Translucency of Resin-Based Composites. Coatings 2023, 13, 143. [Google Scholar] [CrossRef]
- Oei, J.D.; Mishriky, M.; Barghi, N.; Rawls, H.R.; Cardenas, H.L.; Aguirre, R.; Whang, K. Development of a Low-Color, Color Stable, Dual Cure Dental Resin. Dent. Mater. 2013, 29, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Schneider, L.F.J.; Cavalcante, L.M.; Consani, S.; Ferracane, J.L. Effect of Co-Initiator Ratio on the Polymer Properties of Experimental Resin Composites Formulated with Camphorquinone and Phenyl-Propanedione. Dent. Mater. 2009, 25, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Uchida, H.; Vaidyanathan, J.; Viswanadhan, T.; Vaidyanathan, T.K. Color Stability of Dental Composites as a Function of Shade. J. Prosthet. Dent. 1998, 79, 372–377. [Google Scholar] [CrossRef]
- Khokhar, Z.A.; Razzoog, M.E.; Yaman, P. Color Stability of Restorative Resins. Quintessence Int. 1991, 22, 733–737. [Google Scholar]
- Paravina, R.D.; Ontiveros, J.C.; Powers, J.M. Accelerated Aging Effects on Color and Translucency of Bleaching-Shade Composites. J. Esthet. Restor. Dent. 2004, 16, 117–126; discussion 126–127. [Google Scholar] [CrossRef] [PubMed]
- Ural, Ç.; Duran, İ.; Tatar, N.; Öztürk, Ö.; Kaya, İ.; Kavut, İ. The Effect of Amine-Free Initiator System and the Polymerization Type on Color Stability of Resin Cements. J. Oral Sci. 2016, 58, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Noie, F.; O’Keefe, K.L.; Powers, J.M. Color Stability of Resin Cements after Accelerated Aging. Int. J. Prosthet. 1995, 8, 51–55. [Google Scholar]
- Paravina, R.D.; Pérez, M.M.; Ghinea, R. Acceptability and perceptibility thresholds in dentistry: A comprehensive review of clinical and research applications. J. Esthet. Restor. Dent. 2019, 31, 103–112. [Google Scholar] [CrossRef]
- Shiozawa, M.; Takahashi, H.; Asakawa, Y.; Iwasaki, N. Color Stability of Adhesive Resin Cements after Immersion in Coffee. Clin. Oral Investig. 2015, 19, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Salgado, V.E.; Cavalcante, L.M.; Silikas, N.; Schneider, L.F.J. The Influence of Nanoscale Inorganic Content over Optical and Surface Properties of Model Composites. J. Dent. 2013, 41, e45–e53. [Google Scholar] [CrossRef] [PubMed]
- Salgado, V.E.; Albuquerque, P.P.A.C.; Cavalcante, L.M.; Pfeifer, C.S.; Moraes, R.R.; Schneider, L.F.J. Influence of Photoinitiator System and Nanofiller Size on the Optical Properties and Cure Efficiency of Model Composites. Dent. Mater. 2014, 30, e264–e271. [Google Scholar] [CrossRef]
- Karabela, M.M.; Sideridou, I.D. Effect of the Structure of Silane Coupling Agent on Sorption Characteristics of Solvents by Dental Resin-Nanocomposites. Dent. Mater. 2008, 24, 1631–1639. [Google Scholar] [CrossRef]
- Lemon, M.T.; Jones, M.S.; Stansbury, J.W. Hydrogen Bonding Interactions in Methacrylate Monomers and Polymers. J. Biomed. Mater. Res. A 2007, 83, 734–746. [Google Scholar] [CrossRef] [PubMed]
- Aldhafyan, M.; Silikas, N.; Watts, D.C. Influence of Curing Modes on Monomer Elution, Sorption and Solubility of Dual-Cure Resin-Cements. Dent. Mater. 2022, 38, 978–988. [Google Scholar] [CrossRef]
Material | Shade | Adhesion Mode | Resin |
---|---|---|---|
Maxcem Elite Universal Resin cement MCU (Kerr Corp., Orange, CA, USA) | Clear | Universal | Base: UDMA—Catalyst: Bis-GMA, glycerol dimethacrylate, GPDM. Base: Fluoroalminosilicate glass—Catalyst: Barium aluminoborosilicate glass. Average particle size: 3.5 µm. |
RelyX Universal RXU (3M, Seefeld, Germany) | Translucent | Universal | Base: phosphorus oxide, silane, terimethoxyctyl-,hydrolysis product with silica, t-Amyl hydroxiperoxide, n2,6-di-tert-butyl-p-cresol, 2-HEMA, methyl methacylate, acetic acid, copper salt, monohydrate. Catalyst: diurethanedimethacrylate, ytterbium fluoride, glass powder, surface modified with 2-propenoic acid, 2 methyl-3-(trimethoxysilyl)propyl ester and phenyltrimethoxy silane, TEGDMA, L-ascorbic acid, 6-hexadecanoate, hydrate, silane, trimethoxyoctyl, hydrolisis product with silica, 2-HEMA, titanium dioxide, triphenyl phosphite. |
Calibra Ceram CAL (Dentsply Sirona, Bernsheim Germany) | Translucent | Self-adhesive | UDMA, di- and tri-methacrylate resins, acrylic resin modified with phosphoric acid, bariumboron- fluoroaluminosilicate glass, organic peroxide as initiator, camphorquinone –(CQ)-photo initiator, phosphine oxide photo initiator, accelerator, butylhydroxytoluene, UV stabilizer, titanium dioxide, iron oxide, hydrophobic amorphous silica. Particle size of the inorganic filler: 16 nm–7 µm; average particle size: 3.8 µm; filler content: 48.7 vol%. |
Multilink N MUL (Ivoclar, Schaan, Liechtenstein) | Transparent | Self-adhesive | Multilink Primer A: aqueous solution of initiators Multilink Primer B: HEMA, phosphonic acid monomer, methacrylate monomers cement: dimethacrylate, HEMA, barium glass, ytterbium trifluoride, spheroid mixed oxide (particle size: 0.25–3.0 m; mean filler size: 0.9 m; 40 vol%). |
Panavia V5 PAN (Kuraray Noritake, Tokyo, Japan) | Clear | Self-adhesive | Bis-GMA, TEGDMA, new chemical polymerization accelerator, dl-camphorquinone, silanated barium glass filler, silanated aluminum oxide filler, silanated fluoroalminosilicate glass filler (0.01–12 μm average particle size). |
Calibra Universal CUN (Dentsply Sirona, Bernsheim Germany) | Translucent | Self-adhesive | Bonding agent: PENTA, 10-MDP, multifunctional acrylate, bifunctional acrylate, camphorquinone /tertiary amine, isopropanol (10–24.5 %), water (5− 24.5 %).—Paste: HEMA, GDM, UDMA, 1,1,3,3-tetramethylbutyl hydroperoxide, TEGDMA, fluoroaluminosilicate glass, GPDM, barium glass filler, fumed silica (69 wt %). |
Speed Cem Plus SCP (Ivoclar, Schaan, Liechtenstein) | Transparent | Self-adhesive | UDMA, TEGDMA, PEGDMA, phosphoric acid ester, dibenzoyl peroxide, ytterbium trifluoride, barium glass, silicon dioxide (0.1–7 μm average particle size). |
Panavia SA PSA (Kuraray Noritake, Tokyo, Japan) | Translucent | Self-adhesive | Bis-GMA, TEGDMA, MDP, HEMA, dl-camphorquinone, silanated barium glass filler, surface treated sodium fluoride (0.02–20 μm average particle size). |
Color Difference | ||
---|---|---|
Material | ΔEab | Significance p < 0.05 |
MCU | 4.3 ± 0.7 | a |
RXU | 16.9 ± 1.6 | e |
CAL | 7.9 ± 1 | c |
MUL | 14.1 ± 0.7 | d |
PAN | 6 ± 0.7 | b |
CUN | 7.8 ± 1.3 | c |
SCP | 7.5 ± 0.8 | c |
PSA | 16.8 ± 1.2 | e |
Materials | Before Aging | After Aging | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
MAX | L* | a* | b* | L* | a* | b* | ΔL* | Δa* | Δb* | ΔEab | |
75.40 | −1.10 | 4.20 | 80.80 | −1.50 | 3.00 | −5.40 | 0.40 | 1.20 | 5.5 | ||
76.30 | −0.80 | 4.40 | 80.40 | −1.30 | 4.10 | −4.10 | 0.50 | 0.30 | 4.1 | ||
76.90 | −0.80 | 4.40 | 79.70 | −1.00 | 2.80 | −2.80 | 0.20 | 1.60 | 3.2 | ||
76.10 | −0.80 | 4.30 | 80.10 | −1.10 | 2.80 | −4.00 | 0.30 | 1.50 | 4.3 | ||
76.40 | −0.80 | 4.70 | 80.30 | −1.30 | 3.80 | −3.90 | 0.50 | 0.90 | 4.0 | ||
75.80 | −0.80 | 4.90 | 79.20 | −1.30 | 3.30 | −3.40 | 0.50 | 1.60 | 3.8 | ||
74.40 | −0.90 | 5.00 | 79.30 | −1.40 | 4.20 | −4.90 | 0.50 | 0.80 | 5.0 | ||
74.80 | −0.60 | 4.30 | 79.90 | −1.20 | 4.00 | −5.10 | 0.60 | 0.30 | 5.1 | ||
76.80 | −0.70 | 4.10 | 80.20 | −1.30 | 3.60 | −3.40 | 0.60 | 0.50 | 3.5 | ||
76.50 | −0.70 | 4.10 | 80.70 | −1.20 | 3.40 | −4.20 | 0.50 | 0.70 | 4.3 | ||
Mean | −4.12 | 0.46 | 0.94 | 4.3 | |||||||
RXU | 89.10 | −2.20 | 9.20 | 89.10 | −4.40 | 23.90 | 0.00 | 2.20 | −14.70 | 14.9 | |
90.30 | −2.50 | 10.60 | 88.00 | −4.70 | 31.00 | 2.30 | 2.20 | −20.40 | 20.6 | ||
89.60 | −2.30 | 12.10 | 88.50 | −4.00 | 27.00 | 1.10 | 1.70 | −14.90 | 15.0 | ||
88.40 | −1.90 | 10.30 | 87.60 | −3.30 | 27.30 | 0.80 | 1.40 | −17.00 | 17.1 | ||
89.30 | −2.20 | 10.50 | 89.10 | −4.20 | 27.70 | 0.20 | 2.00 | −17.20 | 17.3 | ||
89.50 | −1.60 | 10.00 | 88.70 | −2.70 | 27.60 | 0.80 | 1.10 | −17.60 | 17.7 | ||
88.40 | −3.30 | 11.50 | 86.50 | −4.80 | 28.10 | 1.90 | 1.50 | −16.60 | 16.8 | ||
88.90 | −2.70 | 11.90 | 87.30 | −4.60 | 28.10 | 1.60 | 1.90 | −16.20 | 16.4 | ||
89.10 | −2.50 | 11.10 | 88.50 | −4.40 | 27.10 | 0.60 | 1.90 | −16.00 | 16.1 | ||
89.00 | −2.00 | 12.10 | 88.70 | −4.00 | 28.70 | 0.30 | 2.00 | −16.60 | 16.7 | ||
Mean | 0.96 | 1.79 | −16.72 | 16.9 | |||||||
CAL | 55.70 | 4.60 | 23.80 | 60.50 | 2.20 | 18.50 | −4.80 | 2.40 | 5.30 | 7.5 | |
55.90 | 4.30 | 23.10 | 60.20 | 2.00 | 17.70 | −4.30 | 2.30 | 5.40 | 7.3 | ||
55.00 | 4.40 | 23.40 | 62.30 | 1.70 | 18.30 | −7.30 | 2.70 | 5.10 | 9.3 | ||
57.30 | 4.20 | 23.40 | 63.50 | 1.80 | 17.30 | −6.20 | 2.40 | 6.10 | 9.0 | ||
55.60 | 4.30 | 23.30 | 61.10 | 1.40 | 17.80 | −5.50 | 2.90 | 5.50 | 8.3 | ||
55.70 | 4.60 | 23.90 | 61.30 | 2.00 | 20.40 | −5.60 | 2.60 | 3.50 | 7.1 | ||
55.00 | 4.60 | 24.00 | 60.60 | 1.30 | 18.60 | −5.60 | 3.30 | 5.40 | 8.5 | ||
55.70 | 4.80 | 23.30 | 60.60 | 2.30 | 20.50 | −4.90 | 2.50 | 2.80 | 6.2 | ||
55.50 | 4.30 | 22.10 | 60.40 | 2.00 | 17.90 | −4.90 | 2.30 | 4.20 | 6.9 | ||
55.40 | 4.70 | 23.70 | 60.40 | 2.20 | 17.10 | −5.00 | 2.50 | 6.60 | 8.6 | ||
Mean | −5.41 | 2.59 | 4.99 | 7.9 | |||||||
MUL | 77.00 | −2.60 | 21.80 | 67.70 | 5.10 | 29.20 | 9.30 | −7.70 | −7.40 | 14.2 | |
78.30 | −3.20 | 20.70 | 67.00 | 3.50 | 25.70 | 11.30 | −6.70 | −5.00 | 14.1 | ||
77.80 | −2.80 | 22.00 | 69.00 | 4.60 | 29.20 | 8.80 | −7.40 | −7.20 | 13.6 | ||
76.00 | −2.10 | 20.40 | 66.90 | 4.40 | 26.60 | 9.10 | −6.50 | −6.20 | 12.8 | ||
76.20 | −2.50 | 20.90 | 66.10 | 4.70 | 27.40 | 10.10 | −7.20 | −6.50 | 14.0 | ||
76.80 | −3.10 | 20.40 | 66.90 | 4.80 | 26.90 | 9.90 | −7.90 | −6.50 | 14.2 | ||
76.10 | −3.20 | 20.70 | 66.00 | 4.60 | 26.40 | 10.10 | −7.80 | −5.70 | 14.0 | ||
75.60 | −3.00 | 20.60 | 65.20 | 5.20 | 29.00 | 10.40 | −8.20 | −8.40 | 15.7 | ||
76.30 | −3.30 | 21.40 | 66.90 | 4.90 | 29.30 | 9.40 | −8.20 | −7.90 | 14.8 | ||
74.60 | −3.30 | 20.10 | 65.60 | 4.70 | 27.30 | 9.00 | −8.00 | −7.20 | 14.0 | ||
Mean | 9.74 | −7.56 | −6.80 | 14.1 | |||||||
PAN | 72.50 | −1.40 | 1.00 | 75.40 | −3.10 | 5.70 | −2.90 | 1.70 | −4.70 | 5.8 | |
−1.50 | 1.50 | 76.90 | −3.20 | 6.50 | −4.90 | 1.70 | −5.00 | 7.2 | |||
72.30 | −1.40 | 1.00 | 75.00 | −2.80 | 5.10 | −2.70 | 1.40 | −4.10 | 5.1 | ||
71.90 | −1.50 | 1.10 | 75.20 | −3.20 | 6.30 | −3.30 | 1.70 | −5.20 | 6.4 | ||
73.20 | −1.50 | 1.50 | 76.90 | −3.60 | 7.00 | −3.70 | 2.10 | −5.50 | 7.0 | ||
71.70 | −1.40 | 1.50 | 74.50 | −3.20 | 5.40 | −2.80 | 1.80 | −3.90 | 5.1 | ||
73.30 | −0.70 | 0.80 | 76.10 | −3.60 | 4.70 | −2.80 | 2.90 | −3.90 | 5.6 | ||
71.60 | −1.00 | 1.60 | 74.90 | −3.80 | 6.00 | −3.30 | 2.80 | −4.40 | 6.2 | ||
71.60 | −1.70 | 1.80 | 74.80 | −3.60 | 6.30 | −3.20 | 1.90 | −4.50 | 5.8 | ||
71.40 | −1.40 | 1.60 | 74.70 | −3.50 | 6.20 | −3.30 | 2.10 | −4.60 | 6.0 | ||
Mean | −3.29 | 2.01 | −4.58 | 6.0 | |||||||
CUN | 42.50 | 5.80 | 21.70 | 47.20 | 3.50 | 18.40 | −4.70 | 2.30 | 3.30 | 6.2 | |
47.00 | 6.60 | 27.60 | 53.20 | 4.30 | 21.60 | −6.20 | 2.30 | 6.00 | 8.9 | ||
47.70 | 6.30 | 25.10 | 54.40 | 4.90 | 20.40 | −6.70 | 1.40 | 4.70 | 8.3 | ||
46.70 | 5.70 | 21.60 | 54.50 | 3.80 | 18.60 | −7.80 | 1.90 | 3.00 | 8.6 | ||
45.50 | 5.80 | 23.50 | 51.40 | 4.20 | 20.10 | −5.90 | 1.60 | 3.40 | 7.0 | ||
45.00 | 5.40 | 22.70 | 51.60 | 3.80 | 19.10 | −6.60 | 1.60 | 3.60 | 7.7 | ||
41.00 | 5.80 | 21.00 | 46.40 | 4.30 | 17.50 | −5.40 | 1.50 | 3.50 | 6.6 | ||
43.50 | 5.80 | 23.70 | 52.00 | 3.90 | 21.00 | −8.50 | 1.90 | 2.70 | 9.1 | ||
43.40 | 5.20 | 22.50 | 48.80 | 3.80 | 19.70 | −5.40 | 1.40 | 2.80 | 6.2 | ||
44.70 | 5.50 | 24.50 | 52.40 | 3.00 | 19.20 | −7.70 | 2.50 | 5.30 | 9.7 | ||
Mean | −6.49 | 1.84 | 3.83 | 7.8 | |||||||
SCP | 88.50 | 0.00 | 12.90 | 90.90 | −1.70 | 19.20 | −2.40 | 1.70 | −6.30 | 7.0 | |
88.00 | −0.30 | 12.90 | 90.20 | −2.20 | 21.00 | −2.20 | 1.90 | −8.10 | 8.6 | ||
88.80 | −0.20 | 11.90 | 89.90 | −1.40 | 18.30 | −1.10 | 1.20 | −6.40 | 6.6 | ||
88.60 | −0.60 | 12.80 | 90.10 | −1.90 | 20.10 | −1.50 | 1.30 | −7.30 | 7.6 | ||
88.20 | −0.60 | 12.00 | 89.80 | −1.90 | 19.10 | −1.60 | 1.30 | −7.10 | 7.4 | ||
88.60 | −0.80 | 11.90 | 89.60 | −2.30 | 19.40 | −1.00 | 1.50 | −7.50 | 7.7 | ||
85.80 | −0.60 | 12.60 | 88.10 | −2.10 | 20.90 | −2.30 | 1.50 | −8.30 | 8.7 | ||
85.80 | −0.30 | 12.90 | 87.00 | −1.90 | 19.00 | −1.20 | 1.60 | −6.10 | 6.4 | ||
86.10 | −0.60 | 12.10 | 87.90 | −2.00 | 19.90 | −1.80 | 1.40 | −7.80 | 8.1 | ||
86.90 | −0.50 | 12.30 | 88.40 | −1.90 | 18.90 | −1.50 | 1.40 | −6.60 | 6.9 | ||
Mean | −1.66 | 1.48 | −7.15 | 7.5 | |||||||
PSA | 84.40 | −5.00 | 9.70 | 82.90 | −4.90 | 27.80 | 1.50 | −0.10 | −18.10 | 18.2 | |
85.60 | −4.90 | 10.20 | 81.70 | −3.00 | 27.80 | 3.90 | −1.90 | −17.60 | 18.1 | ||
85.20 | −5.10 | 10.60 | 85.10 | −4.90 | 25.10 | 0.10 | −0.20 | −14.50 | 14.5 | ||
85.20 | −4.90 | 10.50 | 83.10 | −3.10 | 26.10 | 2.10 | −1.80 | −15.60 | 15.8 | ||
85.20 | −4.80 | 9.80 | 82.40 | −3.80 | 27.60 | 2.80 | −1.00 | −17.80 | 18.0 | ||
85.20 | −4.90 | 10.40 | 82.90 | −4.00 | 26.80 | 2.30 | −0.90 | −16.40 | 16.6 | ||
85.30 | −5.10 | 9.80 | 83.70 | −4.00 | 25.80 | 1.60 | −1.10 | −16.00 | 16.1 | ||
84.80 | −4.80 | 10.30 | 82.90 | −3.70 | 26.50 | 1.90 | −1.10 | −16.20 | 16.3 | ||
85.00 | −4.80 | 9.50 | 83.10 | −4.30 | 26.00 | 1.90 | −0.50 | −16.50 | 16.6 | ||
84.90 | −5.00 | 10.10 | 81.40 | −4.40 | 26.90 | 3.50 | −0.60 | −16.80 | 17.2 | ||
Mean | 2.16 | −0.92 | −16.55 | 16.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazzitelli, C.; Paolone, G.; Sabbagh, J.; Scotti, N.; Vichi, A. Color Stability of Resin Cements after Water Aging. Polymers 2023, 15, 655. https://doi.org/10.3390/polym15030655
Mazzitelli C, Paolone G, Sabbagh J, Scotti N, Vichi A. Color Stability of Resin Cements after Water Aging. Polymers. 2023; 15(3):655. https://doi.org/10.3390/polym15030655
Chicago/Turabian StyleMazzitelli, Claudia, Gaetano Paolone, Joseph Sabbagh, Nicola Scotti, and Alessandro Vichi. 2023. "Color Stability of Resin Cements after Water Aging" Polymers 15, no. 3: 655. https://doi.org/10.3390/polym15030655
APA StyleMazzitelli, C., Paolone, G., Sabbagh, J., Scotti, N., & Vichi, A. (2023). Color Stability of Resin Cements after Water Aging. Polymers, 15(3), 655. https://doi.org/10.3390/polym15030655