Poly(arylene ether)s-Based Polymeric Membranes Applied for Water Purification in Harsh Environment Conditions: A Mini-Review
Abstract
:1. Introduction
2. PAE-Based Membranes Applied for Water Purification in Harsh Environment Conditions
2.1. Poly(Ether Ether Ketone)
2.1.1. Toughness PEEK Membranes Applied in Corrosive Environments
2.1.2. PEEK Membranes with Anti-Fouling Performance Applied in Complex Environments
2.1.3. PEEK Hollow Fiber Membranes with Salt-Resistant Performance Applied in Harsh Environments
2.2. Polyethersulfone (PES)
2.2.1. Antimicrobial and Anti-fouling Self-Cleaning of PES Fiber Membranes
2.2.2. Other Water Treatment Applications of PES Membranes
2.3. Poly(Arylene Ether Nitrile) (PEN)
3. Conclusions and Future Research
- (1)
- These single polymer composition fibrous membranes are susceptible to membrane fouling and require frequent replacement. While surface functionalization of membranes enhances filtration performance, complex processes hinder industrial product development. Exploring single-step approaches is imperative to enable mass production and simplify the manufacturing process. Consequently, further research is warranted on the production, cleaning, and recycling of membranes;
- (2)
- The fabrication process of certain fibrous membranes often involves hazardous organic solvents. Therefore, conducting research aiming to develop methods for the safe post-processing of fibrous membranes is crucial. The focus lies on converting hazardous substances into useful or dischargeable materials, representing the current research emphasis;
- (3)
- In addition, to maximize the utilization of clean energy and minimize expenses, it is crucial to develop novel fiber membranes that can harness solar energy for efficient and cost-effective water treatment in challenging environments. This endeavor is of paramount importance, striving to achieve high water flux while keeping costs low;
- (4)
- These heat-resistant and stable polymers, combined with nanofibers prepared via electrostatic spinning, serve as excellent materials for water treatment membranes. Their small diameter, porous structure, and large specific surface area make them highly desirable, as they effectively prevent water resource contamination by powders. Consequently, the preparation of nanofibers via electrostatic spinning is currently a crucial research topic in the field of water treatment.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Jackson, R.B.; Carpenter, S.R.; Dahm, C.N.; McKnight, D.M.; Naiman, R.J.; Postel, S.L.; Running, S.W. Water in a changing world. Ecol. Appl. 2001, 11, 1027–1045. [Google Scholar] [CrossRef]
- Dhakal, N.; Salinas-Rodriguez, S.G.; Hamdani, J.; Abushaban, A.; Sawalha, H.; Schippers, J.C.; Kennedy, M.D. Is Desalination a Solution to Freshwater Scarcity in Developing Countries? Membranes 2022, 12, 381. [Google Scholar] [CrossRef] [PubMed]
- Jawad, J.; Hawari, A.H.; Javaid Zaidi, S. Artificial neural network modeling of wastewater treatment and desalination using membrane processes: A review. Chem. Eng. J. 2021, 419, 129540. [Google Scholar] [CrossRef]
- Giwa, A.; Ahmed, M.; Hasan, S.W. Polymers for Membrane Filtration in Water Purification. In Polymeric Materials for Clean Water; Springer: Cham, Switzerland, 2019; pp. 167–190. [Google Scholar] [CrossRef]
- Alkhadra, M.A.; Su, X.; Suss, M.E.; Tian, H.; Guyes, E.N.; Shocron, A.N.; Conforti, K.M.; de Souza, J.P.; Kim, N.; Tedesco, M.; et al. Electrochemical Methods for Water Purification, Ion Separations, and Energy Conversion. Chem. Rev. 2022, 122, 13547–13635. [Google Scholar] [CrossRef]
- Zhou, W.; Zhang, W.; Cai, Y. Laccase immobilization for water purification: A comprehensive review. Chem. Eng. J. 2021, 403, 126272. [Google Scholar] [CrossRef]
- Obotey Ezugbe, E.; Rathilal, S. Membrane Technologies in Wastewater Treatment: A Review. Membranes 2020, 10, 89. [Google Scholar] [CrossRef]
- Majidi, S.; Erfan-Niya, H.; Azamat, J.; Ziaei, S.; Cruz-Chú, E.R.; Walther, J.H. Membrane Based Water Treatment: Insight from Molecular Dynamics Simulations. Sep. Purif. Rev. 2022, 52, 336–352. [Google Scholar] [CrossRef]
- Li, Y.; Fan, T.; Cui, W.; Wang, X.; Ramakrishna, S.; Long, Y. Harsh environment-tolerant and robust PTFE@ZIF-8 fibrous membrane for efficient photocatalytic organic pollutants degradation and oil/water separation. Sep. Purif. Technol. 2023, 306, 122586. [Google Scholar] [CrossRef]
- Cui, W.; Fan, T.; Li, Y.; Wang, X.; Liu, X.; Lu, C.; Ramakrishna, S.; Long, Y.-Z. Robust functional Janus nanofibrous membranes for efficient harsh environmental air filtration and oil/water separation. J. Membr. Sci. 2022, 663, 121018. [Google Scholar] [CrossRef]
- Yin, J.; Deng, B. Polymer-matrix nanocomposite membranes for water treatment. J. Membr. Sci. 2015, 479, 256–275. [Google Scholar] [CrossRef]
- Ulbricht, M. Advanced functional polymer membranes. Polymer 2006, 47, 2217–2262. [Google Scholar] [CrossRef]
- Wang, P.; Liu, X.; Wang, D.; Wang, M.; Zhang, D.; Chen, J.; Li, K.; Li, Y.; Jia, K.; Wang, Z.; et al. Recent progress on the poly(arylene ether)s-based electrospun nanofibers for high-performance applications. Mater. Res. Express 2021, 8, 122003. [Google Scholar] [CrossRef]
- Dhara, M.G.; Banerjee, S. Fluorinated high-performance polymers: Poly(arylene ether)s and aromatic polyimides containing trifluoromethyl groups. Prog. Polym. Sci. 2010, 35, 1022–1077. [Google Scholar] [CrossRef]
- Hergenrother, P.M. The Use, Design, Synthesis, and Properties of High Performance/High Temperature Polymers: An Overview. High Perform. Polym. 2003, 15, 3–45. [Google Scholar] [CrossRef]
- Johnson, R.N.; Farnham, A.G.; Clendinning, R.A.; Hale, W.F.; Merriam, C.N. Poly(aryl ethers) by nucleophilic aromatic substitution. I. Synthesis and properties. J. Polym. Sci. Part A-1 Polym. Chem. 1967, 5, 2375–2398. [Google Scholar] [CrossRef]
- Rao, V.; Saxena, A.; Ninan, K. Poly(arylene ether nitriles). J. Macromol. Sci. Part C Polym. Rev. 2002, 4, 513–540. [Google Scholar] [CrossRef]
- Shao, S.-Y.; Ding, J.-Q.; Wang, L.-X. New applications of poly(arylene ether)s in organic light-emitting diodes. Chin. Chem. Lett. 2016, 27, 1201–1208. [Google Scholar] [CrossRef]
- Wang, J.; Sun, Y.; Bi, W.; Jiang, Z.; Zhang, M.; Pang, J. High-strength corrosion resistant membranes for the separation of oil/water mixtures and immiscible oil mixtures based on PEEK. J. Membr. Sci. 2020, 616, 118418. [Google Scholar] [CrossRef]
- Velu, R.; Vaheed, N.; Ramachandran, M.K.; Raspall, F. Experimental investigation of robotic 3D printing of high-performance thermoplastics (PEEK): A critical perspective to support automated fibre placement process. Int. J. Adv. Manuf. Technol. 2020, 108, 1007–1025. [Google Scholar] [CrossRef]
- Wang, P.; Wang, M.; Song, T.; Chen, J.; Liu, X.; Liu, X.; You, Y.; Song, H.; Li, K.; Li, Y.; et al. Anti-bacterial robust Ag@PDA/PEN electrospinning nanofibrous membrane for oil-water separation. J. Water Process Eng. 2023, 51, 103358. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, D.; Geng, Q.; Yang, X.; Wu, H.; Xie, Y.; Wang, L.; Ning, X.; Ming, J. MOF-Embedded Bifunctional Composite Nanofiber Membranes with a Tunable Hierarchical Structure for High-Efficiency PM0.3 Purification and Oil/Water Separation. ACS Appl. Mater. Interfaces 2021, 13, 39831–39843. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Li, M.; Wang, J.; Yang, J.; Wei, K.; Zhang, Y.; Chai, W.; You, J. Crystallization-template-induced PEEK membranes for particulate matter capture at high temperature and separation of emulsion containing corrosive component. J. Environ. Chem. Eng. 2022, 10, 107469. [Google Scholar] [CrossRef]
- Yang, F.; Sun, R.; Qi, H.; Sun, W.; Li, J.; Dong, W.; Zhang, M.; Pang, J.; Jiang, Z. Preparation and Properties of PEEK-g-PAA Separation Membranes with Extraordinary Solvent Resistance for Emulsion and Organic Liquid Separation. ACS Appl. Polym. Mater. 2023, 5, 8305–8314. [Google Scholar] [CrossRef]
- Cao, N.; Sun, Y.; Wang, J.; Zhang, H.; Pang, J.; Jiang, Z. Strong acid- and solvent-resistant polyether ether ketone separation membranes with adjustable pores. Chem. Eng. J. 2020, 386, 124086. [Google Scholar] [CrossRef]
- Tsehaye, M.T.; Velizarov, S.; Van der Bruggen, B. Stability of polyethersulfone membranes to oxidative agents: A review. Polym. Degrad. Stab. 2018, 157, 15–33. [Google Scholar] [CrossRef]
- Mansor, E.S.; Ali, E.A.; Shaban, A.M. Tight ultrafiltration polyethersulfone membrane for cheese whey wastewater treatment. Chem. Eng. J. 2021, 407, 127175. [Google Scholar] [CrossRef]
- Zhan, Y.; Zhang, G.; Feng, Q.; Yang, W.; Hu, J.; Wen, X.; Liu, Y.; Zhang, S.; Sun, A. Fabrication of durable super-hydrophilic/underwater super-oleophobic poly(arylene ether nitrile) composite membrane via biomimetic co-deposition for multi-component oily wastewater separation in harsh environments. Colloids Surf. A Physicochem. Eng. Asp. 2021, 624, 126754. [Google Scholar] [CrossRef]
- Zhan, Y.; He, S.; Wan, X.; Zhao, S.; Bai, Y. Thermally and chemically stable poly(arylene ether nitrile)/halloysite nanotubes intercalated graphene oxide nanofibrous composite membranes for highly efficient oil/water emulsion separation in harsh environment. J. Membr. Sci. 2018, 567, 76–88. [Google Scholar] [CrossRef]
- Cao, N.; Yue, C.; Lin, Z.; Li, W.; Zhang, H.; Pang, J.; Jiang, Z. Durable and chemical resistant ultra-permeable nanofiltration membrane for the separation of textile wastewater. J. Hazard. Mater. 2021, 414, 125489. [Google Scholar] [CrossRef]
- Zhang, G.; Yuan, S.; Cao, S.; Yan, G.; Wang, X.; Yang, J.; Van der Bruggen, B. Functionalized poly(arylene ether sulfone) containing hydroxyl units for the fabrication of durable, superhydrophobic oil/water separation membranes. Nanoscale 2019, 11, 7166–7175. [Google Scholar] [CrossRef]
- Arquier, R.; Iliopoulos, I.; Régnier, G.; Miquelard-Garnier, G. Consolidation of continuous-carbon-fiber-reinforced PAEK composites: A review. Mater. Today Commun. 2022, 32, 104036. [Google Scholar] [CrossRef]
- Liu, J.; Mo, Y.; Wang, S.; Ren, S.; Han, D.; Xiao, M.; Sun, L.; Meng, Y. Ultrastrong and Heat-Resistant Poly(ether ether ketone) Separator for Dendrite-Proof and Heat-Resistant Lithium-Ion Batteries. ACS Appl. Energy Mater. 2019, 2, 3886–3895. [Google Scholar] [CrossRef]
- Oroujzadeh, M.; Etesami, M.; Mehdipour-Ataei, S. Poly(ether ketone) composite membranes by electrospinning for fuel cell applications. J. Power Sources 2019, 434, 226733. [Google Scholar] [CrossRef]
- Pan, L.; Liu, Z.; Kızıltaş, O.; Zhong, L.; Pang, X.; Wang, F.; Zhu, Y.; Ma, W.; Lv, Y. Carbon fiber/poly ether ether ketone composites modified with graphene for electro-thermal deicing applications. Compos. Sci. Technol. 2020, 192, 108117. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, L.; Liu, J.; Xu, G.; Jiang, H.; Jie, X.; Cao, Y. Preparation of nano-porous poly(ether ether ketone) hollow fiber membrane and its performance for desalination in vacuum membrane distillation. Desalination 2023, 551, 116417. [Google Scholar] [CrossRef]
- Wang, J.; Zhong, J.; Cui, N.; Zhang, M.; Zhu, X.; Pang, J. Mediator effect-assisted dual superlyophobic surface: PPY@Ni–Co LDH@PEEK textile for high performance separation of oil/water mixtures and immiscible organic liquids. Polymer 2021, 229, 124017. [Google Scholar] [CrossRef]
- Wang, J.; Du, Q.; Luan, J.; Zhu, X.; Pang, J. ZnO Nanoneedle-Modified PEEK Fiber Felt for Improving Anti-fouling Performance of Oil/Water Separation. Langmuir 2021, 37, 7449–7456. [Google Scholar] [CrossRef]
- Zhu, Y.; Dou, P.; He, H.; Lan, H.; Xu, S.; Zhang, Y.; He, T.; Niu, J. Improvement of permeability and rejection of an acid resistant polysulfonamide thin-film composite nanofiltration membrane by a sulfonated poly(ether ether ketone) interlayer. Sep. Purif. Technol. 2020, 239, 116528. [Google Scholar] [CrossRef]
- Bey, S.; Criscuoli, A.; Simone, S.; Figoli, A.; Benamor, M.; Drioli, E. Hydrophilic PEEK-WC hollow fibre membrane contactors for chromium (Vi) removal. Desalination 2011, 283, 16–24. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, C.; Su, Z.; Qin, X.; Jiang, M.; Liu, P. High efficiency and flexible construction of hydrophilic polymer brushes on polyether ether ketone hollow-fiber membrane surface for improving permeability separation, and anti-fouling performances. Chem. Eng. J. 2023, 454, 140176. [Google Scholar] [CrossRef]
- Song, L.; Li, B.; Zarkadas, D.; Christian, S.; Sirkar, K.K. Polymeric Hollow-Fiber Heat Exchangers for Thermal Desalination Processes. Ind. Eng. Chem. Res. 2010, 49, 11961–11977. [Google Scholar] [CrossRef]
- Huang, T.; Chen, G.; He, Z.; Xu, J.; Liu, P. Pore structure and properties of poly(ether ether ketone) hollow fiber membranes: Influence of solvent-induced crystallization during extraction. Polym. Int. 2019, 68, 1874–1880. [Google Scholar] [CrossRef]
- Lin, Z.; Zhong, J.; Sun, R.; Wei, Y.; Sun, Z.; Li, W.; Chen, L.; Sun, Y.; Zhang, H.; Pang, J.; et al. InSitu Integrated Fabrication for Multi-Interface Stabilized and Highly Durable Polyaniline@Graphene Oxide/Polyether Ether Ketone Special Separation Membranes. Adv. Sci. 2023, 10, 2302654. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Zhou, W.; Zhang, S.; Xu, Q.; Wang, K.; Li, B.; Lian, T.; Jiang, M.; Liu, P. Improving the Blood Compatibility and the Gas Permeability of Polyether Ether Ketone Hollow Fiber Membrane Used for Membrane Oxygenator via Grafting Hydrophilic Components. ACS Appl. Polym. Mater. 2023, 5, 4045–4055. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, S.; Nie, B.e.; Qu, X.; Yue, B. Approaches to Biofunctionalize Polyetheretherketone for Antibacterial: A Review. Front. Bioeng. Biotechnol. 2022, 10, 895288. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Han, X.; Li, Y.; Zhou, Z.; Wang, J.; Shi, R.; Jiao, J.; Qi, Y.; Zhou, Y.; Zhao, J. Modification strategies for improving antibacterial properties of polyetheretherketone. J. Appl. Polym. Sci. 2022, 139. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, T.; Jiang, C.; Zhong, T.; Su, Z.; Xu, Q.; Jiang, M.; Liu, P. Preparation of antifouling poly(ether ether ketone) hollow fiber membrane by ultraviolet grafting of polyethylene glycol. Mater. Today Commun. 2021, 27, 102326. [Google Scholar] [CrossRef]
- Song, J.; Li, X.-M.; Figoli, A.; Huang, H.; Pan, C.; He, T.; Jiang, B. Composite hollow fiber nanofiltration membranes for recovery of glyphosate from saline wastewater. Water Res. 2013, 47, 2065–2074. [Google Scholar] [CrossRef]
- Jin, T.; Song, J.; Zhu, J.; Nghiem, L.D.; Zhao, B.; Li, X.-M.; He, T. The role of the surfactant sodium dodecyl sulfate to dynamically reduce mass transfer resistance of SPEEK coated membrane for oil-in-water emulsion treatment. J. Membr. Sci. 2017, 541, 9–18. [Google Scholar] [CrossRef]
- Li, S.; Cui, Z.; Zhang, L.; He, B.; Li, J. The effect of sulfonated polysulfone on the compatibility and structure of polyethersulfone-based blend membranes. J. Membr. Sci. 2016, 513, 1–11. [Google Scholar] [CrossRef]
- Samitsu, S. Thermally Stable Mesoporous Poly(ether sulfone) Monoliths with Nanofiber Network Structures. Macromolecules 2017, 51, 151–160. [Google Scholar] [CrossRef]
- Shen, L.; Bian, X.; Lu, X.; Shi, L.; Liu, Z.; Chen, L.; Hou, Z.; Fan, K. Preparation and characterization of ZnO/polyethersulfone (PES) hybrid membranes. Desalination 2012, 293, 21–29. [Google Scholar] [CrossRef]
- Haider, M.S.; Shao, G.N.; Imran, S.M.; Park, S.S.; Abbas, N.; Tahir, M.S.; Hussain, M.; Bae, W.; Kim, H.T. Aminated polyethersulfone-silver nanoparticles (AgNPs-APES) composite membranes with controlled silver ion release for antibacterial and water treatment applications. Mater. Sci. Eng. C 2016, 62, 732–745. [Google Scholar] [CrossRef] [PubMed]
- Dube, S.T.; Moutloali, R.M.; Malinga, S.P. Hyperbranched polyethyleneimine/multi-walled carbon nanotubes polyethersulfone membrane incorporated with Fe-Cu bimetallic nanoparticles for water treatment. J. Environ. Chem. Eng. 2020, 8, 103962. [Google Scholar] [CrossRef]
- Pervez, M.N.; Talukder, M.E.; Mishu, M.R.; Buonerba, A.; Del Gaudio, P.; Stylios, G.K.; Hasan, S.W.; Zhao, Y.; Cai, Y.; Figoli, A.; et al. One-Step Fabrication of Novel Polyethersulfone-Based Composite Electrospun Nanofiber Membranes for Food Industry Wastewater Treatment. Membranes 2022, 12, 413. [Google Scholar] [CrossRef]
- Kusworo, T.D.; Soetrisnanto, D.; Aryanti, N.; Utomo, D.P.; Qudratun; Tambunan, V.D.; Simanjuntak, N.R. Evaluation of Integrated modified nanohybrid polyethersulfone-ZnO membrane with single stage and double stage system for produced water treatment into clean water. J. Water Process Eng. 2018, 23, 239–249. [Google Scholar] [CrossRef]
- Abid, Z.; Abbas, A.; Mahmood, A.; Rana, N.F.; Khan, S.J.; Duclaux, L.; Deen, K.M.; Ahmad, N.M. Water Treatment Using High Performance Antifouling Ultrafiltration Polyether Sulfone Membranes Incorporated with Activated Carbon. Polymers 2022, 14, 2264. [Google Scholar] [CrossRef]
- Liu, J.; Shen, L.; Lin, H.; Huang, Z.; Hong, H.; Chen, C. Preparation of Ni@UiO-66 incorporated polyethersulfone (PES) membrane by magnetic field assisted strategy to improve permeability and photocatalytic self-cleaning ability. J. Colloid Interface Sci. 2022, 618, 483–495. [Google Scholar] [CrossRef]
- Mudau, F.; Motsa, M.; Hassard, F.; de Kock, L.-A. Resin-Loaded Heterogeneous Polyether Sulfone Ion Exchange Membranes for Saline Groundwater Treatment. Membranes 2022, 12, 736. [Google Scholar] [CrossRef]
- Kusworo, T.D.; Utomo, D.P.; Aryanti, N.; Qudratun. Synergistic effect of UV irradiation and thermal annealing to develop high performance polyethersulfone-nano silica membrane for produced water treatment. J. Environ. Chem. Eng. 2017, 5, 3290–3301. [Google Scholar] [CrossRef]
- Giwa, A.; Hasan, S.W. Novel polyethersulfone-functionalized graphene oxide (PES-fGO) mixed matrix membranes for wastewater treatment. Sep. Purif. Technol. 2020, 241, 116735. [Google Scholar] [CrossRef]
- Giwa, A.; Daer, S.; Ahmed, I.; Marpu, P.R.; Hasan, S.W. Experimental investigation and artificial neural networks ANNs modeling of electrically-enhanced membrane bioreactor for wastewater treatment. J. Water Process Eng. 2016, 11, 88–97. [Google Scholar] [CrossRef]
- Hasan, S.W.; Elektorowicz, M.; Oleszkiewicz, J.A. Start-up period investigation of pilot-scale submerged membrane electro-bioreactor (SMEBR) treating raw municipal wastewater. Chemosphere 2014, 97, 71–77. [Google Scholar] [CrossRef]
- Marjani, A.; Nakhjiri, A.T.; Adimi, M.; Jirandehi, H.F.; Shirazian, S. Effect of graphene oxide on modifying polyethersulfone membrane performance and its application in wastewater treatment. Sci. Rep. 2020, 10, 2049. [Google Scholar] [CrossRef]
- Zwane, S.; Masheane, M.L.; Kuvarega, A.T.; Vilakati, G.D.; Mamba, B.B.; Nyoni, H.; Mhlanga, S.D.; Dlamini, D.S. Polyethersulfone/Chromolaena odorata (PES/CO) adsorptive membranes for removal of Congo red from water. J. Water Process Eng. 2019, 30, 100498. [Google Scholar] [CrossRef]
- Zhou, F.; Li, K.; Hang, F.; Zhang, Z.; Chen, P.; Wei, L.; Xie, C. Efficient removal of methylene blue by activated hydrochar prepared by hydrothermal carbonization and NaOH activation of sugarcane bagasse and phosphoric acid. RSC Adv. 2022, 12, 1885–1896. [Google Scholar] [CrossRef] [PubMed]
- Baig, N.; Shetty, S.; Moustafa, M.S.; Al-Mousawi, S.; Alameddine, B. Selective removal of toxic organic dyes using Tröger base-containing sulfone copolymers made from a metal-free thiol-yne click reaction followed by oxidation. RSC Adv. 2021, 11, 21170–21178. [Google Scholar] [CrossRef]
- Qi, Q.; Qin, J.; Zhang, R.; Luo, S.; Liu, X.; Park, C.B.; Lei, Y. Mechanically robust and thermally insulating polyarylene ether nitrile with a bone-like structure. Mater. Des. 2020, 196, 109099. [Google Scholar] [CrossRef]
- Cheng, T.; Feng, M.; Zhang, X.; Huang, Y.; Liu, X. Influence of the carboxylic acid groups on the structure and properties of sulfonated poly(arylene ether nitrile) copolymer. Ionics 2018, 24, 2611–2619. [Google Scholar] [CrossRef]
- Li, T.; Lin, G.; He, L.; Xia, Y.; Xu, X.; Liu, Y.; Tong, L.; Liu, X. Structural design and properties of crystalline polyarylene ether nitrile copolymer. Colloids Surf. A Physicochem. Eng. Asp. 2023, 659, 130788. [Google Scholar] [CrossRef]
- Yu, G.; Liu, C.; Wang, J.; Li, G.; Han, Y.; Jian, X. Synthesis, characterization, and crosslinking of soluble cyano-containing poly(arylene ether)s bearing phthalazinone moiety. Polymer 2010, 51, 100–109. [Google Scholar] [CrossRef]
- Zhu, S.; Nie, L. Progress in fabrication of one-dimensional catalytic materials by electrospinning technology. J. Ind. Eng. Chem. 2021, 93, 28–56. [Google Scholar] [CrossRef]
- He, S.; Zhan, Y.; Bai, Y.; Hu, J.; Li, Y.; Zhang, G.; Zhao, S. Gravity-driven and high flux super-hydrophobic/super-oleophilic poly(arylene ether nitrile) nanofibrous composite membranes for efficient water-in-oil emulsions separation in harsh environments. Compos. Part B Eng. 2019, 177, 107439. [Google Scholar] [CrossRef]
- Jia, K.; Bai, Y.; Wang, L.; Luo, Y.; Hu, W.; He, X.; Wang, P.; Marks, R.; Liu, X. Emulsion confinement self-assembly regulated lanthanide coordinating polymeric microparticles for multicolor fluorescent nanofibers. Polymer 2021, 230, 124043. [Google Scholar] [CrossRef]
- Jia, K.; Ji, Y.; He, X.; Xie, J.; Wang, P.; Liu, X. One-step fabrication of dual functional Tb3+ coordinated polymeric micro/nano-structures for Cr(VI) adsorption and detection. J. Hazard. Mater. 2022, 423, 127166. [Google Scholar] [CrossRef]
- Zhou, X.; Zheng, P.; Wang, L.; Liu, X. Preparation of Sulfonated Poly(arylene ether nitrile)-Based Adsorbent as a Highly Selective and Efficient Adsorbent for Cationic Dyes. Polymers 2018, 11, 32. [Google Scholar] [CrossRef]
- Li, X.; Yi, K.; Ran, Q.; Fan, Z.; Liu, C.; Liu, X.; Jia, K. Selective removal of cationic organic dyes via electrospun nanofibrous membranes derived from polyarylene ethers containing pendent nitriles and sulfonates. Sep. Purif. Technol. 2022, 301, 121942. [Google Scholar] [CrossRef]
- Feng, Q.; Zhan, Y.; Yang, W.; Dong, H.; Sun, A.; Li, L.; Chen, X.; Chen, Y. Ultra-high flux and synergistically enhanced anti-fouling Ag@MXene lamellar membrane for the fast purification of oily wastewater through nano-intercalation, photocatalytic self-cleaning and antibacterial effect. Sep. Purif. Technol. 2022, 298, 121635. [Google Scholar] [CrossRef]
- Sun, A.; Zhan, Y.; Feng, Q.; Yang, W.; Dong, H.; Liu, Y.; Chen, X.; Chen, Y. Assembly of MXene/ZnO heterojunction onto electrospun poly(arylene ether nitrile) fibrous membrane for favorable oil/water separation with high permeability and synergetic antifouling performance. J. Membr. Sci. 2022, 663, 120933. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Li, L.; Yan, H.; Liu, X.; Li, K.; Li, Y.; You, Y.; Yang, X.; Song, H.; Wang, P. Poly(arylene ether)s-Based Polymeric Membranes Applied for Water Purification in Harsh Environment Conditions: A Mini-Review. Polymers 2023, 15, 4527. https://doi.org/10.3390/polym15234527
Wang M, Li L, Yan H, Liu X, Li K, Li Y, You Y, Yang X, Song H, Wang P. Poly(arylene ether)s-Based Polymeric Membranes Applied for Water Purification in Harsh Environment Conditions: A Mini-Review. Polymers. 2023; 15(23):4527. https://doi.org/10.3390/polym15234527
Chicago/Turabian StyleWang, Mengxue, Lingsha Li, Haipeng Yan, Xidi Liu, Kui Li, Ying Li, Yong You, Xulin Yang, Huijin Song, and Pan Wang. 2023. "Poly(arylene ether)s-Based Polymeric Membranes Applied for Water Purification in Harsh Environment Conditions: A Mini-Review" Polymers 15, no. 23: 4527. https://doi.org/10.3390/polym15234527