Effect of Carbon Nanoparticles Morphology on the Properties of Poly(styrene-b-isoprene-b-styrene) Elastomer Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Carbon Nanoparticles/SIS Nanocomposites
2.3. Characterization
3. Results
3.1. Morphology of Carbon Nanoparticles and Nanocomposites
3.2. Melt Flow Index
3.3. Mechanical Property
3.3.1. Shore a Hardness
3.3.2. Tensile Testing
3.4. Surface Resistivity
3.5. Thermal Stability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mohite, A.S.; Rajpurkar, Y.D.; More, A.P. Bridging the gap between rubbers and plastics: A review on thermoplastic polyolefin elastomers. Polym. Bull. 2022, 79, 1309–1343. [Google Scholar] [CrossRef]
- Zanchin, G.; Leone, G. Polyolefin thermoplastic elastomers from polymerization catalysis: Advantages, pitfalls and future challenges. Prog. Polym. Sci. 2021, 113, 101342. [Google Scholar] [CrossRef]
- Wang, W.Y.; Lu, W.; Goodwin, A.; Wang, H.Q.; Yin, P.C.; Kang, N.G.; Hong, K.L.; Mays, J.W. Recent advances in thermoplastic elastomers from living polymerizations: Macromolecular architectures and supramolecular chemistry. Prog. Polym. Sci. 2019, 95, 1–31. [Google Scholar] [CrossRef]
- Basak, S.; Bandyopadhyay, A. Styrene-butadiene-styrene-based shape memory polymers: Evolution and the current state of art. Polym. Adv. Technol. 2022, 33, 2091–2112. [Google Scholar] [CrossRef]
- Maji, P.; Naskar, K. Styrenic block copolymer-based thermoplastic elastomers in smart applications: Advances in synthesis, microstructure, and structure—Property relationships-A review. J. Appl. Polym. Sci. 2022, 139, e52942. [Google Scholar] [CrossRef]
- Lobo, C.A.C.; Fascio, M.L.; Accorso, N.B.D. Ring opening in epoxidized SIS block copolymer with thiolated nucleophiles and their antioxidant activity. React. Funct. Polym. 2022, 181, 105445. [Google Scholar] [CrossRef]
- Galanos, E.; Wahlen, C.; Butt, H.J.; Frey, H.; Floudas, G. Phase diagram of tapered copolymers based on isoprene and styrene. Macromol. Chem. Phys. 2022, 223, 2200033. [Google Scholar] [CrossRef]
- Jariwala, D.; Sangwan, V.K.; Lauhon, L.J.; Marks, T.J.; Hersam, M.C. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem. Soc. Rev. 2013, 42, 2824–2860. [Google Scholar] [CrossRef]
- Li, Y.C.; Huang, X.R.; Zeng, L.J.; Li, R.F.; Tian, H.F.; Fu, X.W.; Wang, Y.; Zhong, W.H. A review of the electrical and mechanical properties of carbon nanofiller-reinforced polymer composites. J. Mater. Sci. 2019, 54, 1036–1076. [Google Scholar] [CrossRef]
- Han, X.B.; Gao, J.; Chen, T.; Qian, L.; Xiong, H.H.; Chen, Z.Y. Application progress of PALS in the correlation of structure and properties for graphene/polymer nanocomposites. Nanomaterials 2022, 12, 4161. [Google Scholar] [CrossRef]
- Sang, Y.N.; Miao, P.P.; Chen, T.; Zhao, Y.; Chen, L.F.; Tian, Y.Y.; Han, X.B.; Gao, J. Fabrication and evaluation of graphene oxide/hydroxypropyl cellulose/chitosan hybrid aerogel for 5-fluorouracil release. Gels 2022, 8, 649. [Google Scholar] [CrossRef] [PubMed]
- Han, X.B.; Gao, J.; Chen, Z.Y.; Tang, X.Q.; Zhao, Y.; Chen, T. Correlation between microstructure and properties of graphene oxide/waterborne polyurethane composites investigated by positron annihilation spectroscopy. RSC Adv. 2020, 10, 32436–32442. [Google Scholar] [CrossRef]
- Papageorgiou, D.G.; Kinloch, I.A.; Young, R.J. Graphene/elastomer nanocomposites. Carbon 2015, 95, 460–484. [Google Scholar] [CrossRef]
- Afzal, A.; Kausar, A.; Siddiq, M. A Review highlighting physical prospects of styrenic polymer and styrenic block copolymer reinforced with carbon nanotube. Polym-Plast. Technol. 2016, 56, 573–593. [Google Scholar] [CrossRef]
- Han, X.B.; Kong, H.; Chen, T.; Gao, J.; Zhao, Y.; Sang, Y.N.; Hu, G.W. Effect of π–π stacking interfacial interaction on the properties of graphene/poly(styrene-b-isoprene-b-styrene) composites. Nanomaterials 2021, 11, 2158. [Google Scholar] [CrossRef]
- Zaharescu, T.; Banciu, C. Packaging materials based on styrene-isoprene-styrene triblock copolymer modified with graphene. Polymers 2023, 15, 353. [Google Scholar] [CrossRef]
- Ansari, S.; Neelanchery, M.M.; Ushus, D. Graphene/poly(styrene-b-isoprene-b-styrene) nanocomposite optical actuators. J. Appl. Polym. Sci. 2013, 130, 3902–3908. [Google Scholar] [CrossRef]
- Ilčíková, M.; Mrlík, M.; Sedláček, T.; Chorvát, D.; Krupa, I.; Šlouf, M.; Koynov, K.; Mosnáček, J. Viscoelastic and photo-actuation studies of composites based on polystyrene-grafted carbon nanotubes and styrene-b-isoprene-b-bstyrene block copolymer. Polymer 2014, 55, 211–218. [Google Scholar] [CrossRef]
- Wang, X.Y.; Tang, F.J.; Cao, Q.; Qi, X.N.; Pearson, M.; Li, M.L.; Pan, H.; Zhang, Z.; Lin, Z.B. Comparative study of three carbon additives: Carbon nanotubes, graphene, and fullerene-C60, for synthesizing enhanced polymer nanocomposites. Nanomaterials 2020, 10, 838. [Google Scholar] [CrossRef]
- Bleija, M.; Platnieks, O.; Macutkevič, J.; Starkova, O.; Gaidukovs, S. Comparison of carbon-nanoparticle-filled poly(butylene succinate-co-adipate) nanocomposites for electromagnetic applications. Nanomaterials 2022, 12, 3671. [Google Scholar] [CrossRef]
- Brant, J.A.; Labiile, J.; Bottero, J.Y.; Wiesner, M.R. Characterizing the impact of preparation method on fullerene cluster structure and chemistry. Langmuir 2006, 22, 3878–3885. [Google Scholar] [CrossRef] [PubMed]
- Lyon, D.Y.; Adams, L.K.; Falkner, J.C.; Alvarez, P.J. Antibacterial activity of fullerene water suspensions: Effects of preparation method and particle size. Environ. Sci. Technol. 2006, 40, 4360–4366. [Google Scholar] [CrossRef] [PubMed]
- Lehman, J.H.; Terrones, M.; Mansfield, E.; Hurst, K.E.; Meunier, V. Evaluating the characteristics of multiwall carbon nanotubes. Carbon 2011, 49, 2581–2602. [Google Scholar] [CrossRef]
- Bie, C.B.; Yu, H.G.; Cheng, B.; Ho, W.; Fan, J.J.; Yu, J.G. Design, Fabrication, and mechanism of nitrogen-doped graphene-based photocatalyst. Adv. Mater. 2021, 33, 2003521. [Google Scholar] [CrossRef] [PubMed]
- Robertson, C.G.; Hardman, N.J. Nature of carbon black reinforcement of rubber: Perspective on the original polymer nanocomposite. Polymers 2021, 13, 538. [Google Scholar] [CrossRef]
- Teng, C.; Ma, C.C.; Huang, Y.W.; Yuen, S.M.; Weng, C.C.; Chen, C.H.; Su, S.F. Effect of MWCNT content on rheological and dynamic mechanical propertieS of multiwalled carbon nanotube/polypropylene composites. Compos. Part A 2008, 39, 1869–1875. [Google Scholar] [CrossRef]
- Gomez, J.; Villaro, E.; Karagiannidis, P.G.; Elmarakbi, A. Effects of chemical structure and morphology of graphene-related materials (GRMs) on melt processing and properties of GRM/polyamide-6 nanocomposites. Results Mater. 2020, 7, 100105. [Google Scholar] [CrossRef]
- Jurkowska, B.; Jurkowski, B.; Kamrowski, P.; Pesetskii, S.S.; Koval, V.N.; Pinchuk, L.S.; Olkhov, Y.A. Properties of fullerene-containing natural rubber. J. Appl. Polym. Sci. 2006, 100, 390–398. [Google Scholar] [CrossRef]
- Berki, P.; Kocsis, K. Comparative properties of styrene-butadiene rubbers (SBR) containing pyrolytic carbon black, conventional carbon black and organoclay. J. Macromol. Sci. B 2016, 55, 749–963. [Google Scholar] [CrossRef]
- Xiao, W.; Ji, X. Effect of nano fillers on the properties of polytetrafluoroethylene composites: Experimental and theoretical simulations. J. Appl. Polym. Sci. 2021, 138, e51340. [Google Scholar] [CrossRef]
- Bakošová, D.; Bakošová, A. Testing of rubber composites reinforced with carbon nanotubes. Polymers 2022, 14, 3039. [Google Scholar] [CrossRef]
- Saotome, T.; Kokubo, K.; Shirakawa, S.; Oshima, T.; Hahn, H.T. Polymer nanocomposites reinforced with C60 fullerene: Effect of hydroxylation. J. Compos. Mater. 2011, 45, 2595–2601. [Google Scholar] [CrossRef]
- Zuev, V.V. Polymer nanocomposites containing fullerene C60 nanofillers. Macromol. Symp. 2011, 301, 157–161. [Google Scholar] [CrossRef]
- Wang, L.W.; Hong, J.B.; Chen, G.H. Comparison study of graphite nanosheets and carbon black as fillers for high density polyethylene. Polym. Eng. Sci. 2010, 50, 2176–2181. [Google Scholar] [CrossRef]
- Li, J.Y.; Lu, Y.C.; Jiang, S.B.; Zhong, Y.L.; Yeh, J.M. Phase diagram of hopping conduction mechanisms in polymer nanofiber network. J. Appl. Phys. 2015, 118, 215104. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, S.F.; Zhang, Y.; Zhang, Y.X. Effect of different carbon fillers on the properties of PP composites: Comparison of carbon black with multiwalled carbon nanotubes. J. Appl. Polym. Sci. 2006, 102, 4823–4830. [Google Scholar] [CrossRef]
- Du, J.H.; Zhao, L.; Zeng, Y.; Zhang, L.L.; Li, F.; Liu, P.F.; Liu, C. Comparison of electrical properties between multi-walled carbon nanotube and graphene nanosheet/high density polyethylene composites with a segregated network structure. Carbon 2011, 49, 1094–1100. [Google Scholar] [CrossRef]
- Miao, P.P.; Sang, Y.N.; Gao, J.; Han, X.B.; Zhao, Y.; Chen, T. Adsorption and recognition property of tyrosine molecularly imprinted polymer prepared via electron beam irradiation. Polymers 2023, 15, 4048. [Google Scholar] [CrossRef]
- Bobrowska, D.M.; Gdula, K.; Breczko, J.; Basa, A.; Markiewicz, K.H.; Winkler, K. Poly(p-phenylene vinylene) incorporated into carbon nanostructures. J. Nanopart. Res. 2022, 24, 222. [Google Scholar] [CrossRef]
- Song, K.W.; Wang, J.K. The effect of tannic acid functional multi-walled carbon nanotubes on the properties of nitrile rubber/ethylene propylene diene monomer composites. Polym. Compos. 2022, 43, 4007–4015. [Google Scholar] [CrossRef]
- Han, X.B.; Chen, T.; Zhao, Y.; Gao, J.; Sang, Y.N.; Xiong, H.H.; Chen, Z.Y. Graphene/polyethylene composites investigated by positron annihilation lifetime spectroscopy. Nanomaterials 2021, 11, 2990. [Google Scholar] [CrossRef] [PubMed]
- Chrissafis, K.; Paraskevopoulos, K.M.; Stavrev, S.Y.; Docoslis, A.; Vassiliou, A.; Bikiaris, D.N. Characterization and thermal degradation mechanism of isotactic polypropylene/carbon black nanocomposites. Thermochim. Acta 2007, 465, 6–17. [Google Scholar] [CrossRef]
Sample | T5% (°C) | Tmax (°C) | R500 (%) |
---|---|---|---|
SIS | 251.42 | 381.25 | 0.55 |
FU/SIS | 350.19 | 381.89 | 2.82 |
CN/SIS | 351.44 | 382.98 | 3.53 |
GR/SIS | 351.82 | 383.57 | 3.80 |
CB/SIS | 352.35 | 384.27 | 3.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, X.; Zhou, Z.; Gao, J.; Zhao, Y.; Chen, T. Effect of Carbon Nanoparticles Morphology on the Properties of Poly(styrene-b-isoprene-b-styrene) Elastomer Composites. Polymers 2023, 15, 4415. https://doi.org/10.3390/polym15224415
Han X, Zhou Z, Gao J, Zhao Y, Chen T. Effect of Carbon Nanoparticles Morphology on the Properties of Poly(styrene-b-isoprene-b-styrene) Elastomer Composites. Polymers. 2023; 15(22):4415. https://doi.org/10.3390/polym15224415
Chicago/Turabian StyleHan, Xiaobing, Zhenhao Zhou, Jie Gao, Yuan Zhao, and Tao Chen. 2023. "Effect of Carbon Nanoparticles Morphology on the Properties of Poly(styrene-b-isoprene-b-styrene) Elastomer Composites" Polymers 15, no. 22: 4415. https://doi.org/10.3390/polym15224415
APA StyleHan, X., Zhou, Z., Gao, J., Zhao, Y., & Chen, T. (2023). Effect of Carbon Nanoparticles Morphology on the Properties of Poly(styrene-b-isoprene-b-styrene) Elastomer Composites. Polymers, 15(22), 4415. https://doi.org/10.3390/polym15224415