Optimization of Bromocriptine-Mesylate-Loaded Polycaprolactone Nanoparticles Coated with Chitosan for Nose-to-Brain Delivery: In Vitro and In Vivo Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Design
2.3. Preparation of Bromocriptine Mesylate-Loaded Nanoparticles
2.4. Characterization of Bromocriptine Mesylate–Polycaprolactone Nanoparticles (BM-PCL NPs)
2.4.1. Particle Size and Zeta Potential
2.4.2. Entrapment Efficiency (EE) and Drug Load (DL)
2.4.3. In Vitro Release of Bromocriptine Mesylate–Polycaprolactone Nanoparticles (BM-PCL NPs)
2.4.4. Analysis of Drug Release Kinetics
2.5. Chitosan Coating of the Optimized BM-PCL NPs
2.6. Physicochemical Characterization of the Optimized BM-PCL NPs and BM-CS-PCL NPs
2.6.1. Differential Scanning Calorimetry (DSC)
2.6.2. Powder X-ray Diffraction (PXRD)
2.6.3. Fourier-Transform Infrared Spectroscopy (FTIR)
2.6.4. In Vitro Mucoadhesion
2.6.5. Ex Vivo Permeation Study of BM-PCL NPs and BM-CS-PCL NPs
2.6.6. Analysis of Surface Morphology
2.6.7. HPLC Analysis of BM
2.7. Statistical Data Analysis
3. Results and Discussion
3.1. Effect of Formulation and Process Variables on PCL-Loaded BM Nanoparticle Size
3.2. Effect of Formulation and Process Variables on PCL-Loaded BM Zeta Potential
3.3. Effect of Formulation and Process Variables on PCL-Loaded BM Nanoparticle Entrapment Efficiency
3.4. Effect of Formulation and Process Variables on In Vitro BM Release after 48 h from BM-Loaded PCL Nanoparticles
3.5. Optimization of Independent Parameters for Preparation of BM-Loaded PCL Nanoparticles
Optimized Formula Composition | Response | |||
---|---|---|---|---|
Type | Desirability | Predicted | Observed | |
A: PCL (A) = 50 mg B: TPGS = 0.0865% C: Sonication time = 8 min | Y1: Particle size (nm) | Minimum | 196.56 | 299.0 ± 2.9 |
Y2: Zeta potential (mV) | Maximum | −14.64 | −16.0 ± 1.07 | |
Y3: EE (%) | Maximum | 92.97 | 90.7 ± 1.9 | |
Y4: Zero order release rate | Maximum | 2.51 | 2.63 ± 1.3 |
3.6. Characterization of the Optimized BM-PCL NPs and BM-CS-PCL NPs
3.6.1. Particle size, Polydispersity Index, and Zeta Potential of Nanoparticles
Formula | Particle Size (nm) | Zeta Potential (mV) | PDI | EE% | DL% |
---|---|---|---|---|---|
BM-PCL NPs | 299 ± 2.9 | −16 ± 1.07 | 0.30 ± 0.35 | 90.7 ± 1.9 | 5.7 ± 0.8 |
BM-CS—0.25% | 331 ± 3.35 | 21 ± 3.84 | 0.17 ± 0.26 | 87.9 ± 0.9 | 5.5 ± 0.5 |
BM-CS—0.5% | 425 ± 2.29 | 25 ± 4.67 | 0.13 ± 0.01 | 85.2 ± 2.91 | 5.3 ± 0.4 |
BM-CS—1% | 555 ± 5.19 | 30 ± 2.74 | 0.08 ± 0.018 | 82.7 ± 3.76 | 5.0 ± 0.7 |
3.6.2. Entrapment Efficiency (EE) and Drug Loading (DL)
3.6.3. Differential Scanning Calorimetry (DSC)
3.6.4. Powder X-ray Diffraction (PXRD)
3.6.5. Fourier-Transform Infrared Spectroscopy (FTIR)
3.6.6. In Vitro Release of BM from CS-Coated NPs
3.6.7. Drug Release Kinetics
3.6.8. Particle Surface Morphology
3.6.9. Analysis of Mucoadhesion
3.6.10. BM Permeation across Excised Goat Nasal Mucosa
3.6.11. Permeation Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shivaprasad, C.; Kalra, S. Bromocriptine in type 2 diabetes mellitus. Indian J. Endocrinol. Metab. 2011, 15, S17. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, R. Bromocriptine mesylate: FDA-approved novel treatment for type-2 diabetes. Indian J. Pharmacol. 2009, 41, 197. [Google Scholar] [CrossRef] [PubMed]
- Gänger, S.; Schindowski, K. Tailoring formulations for intranasal nose-to-brain delivery: A review on architecture, physico-chemical characteristics and mucociliary clearance of the nasal olfactory mucosa. Pharmaceutics 2018, 10, 116. [Google Scholar] [CrossRef] [PubMed]
- Ugwoke, M.I.; Verbeke, N.; Kinget, R. The biopharmaceutical aspects of nasal mucoadhesive drug delivery. J. Pharm. Pharmacol. 2001, 53, 3–22. [Google Scholar] [CrossRef]
- Zhao, Y.; Xiong, S.; Liu, P.; Liu, W.; Wang, Q.; Liu, Y.; Tan, H.; Chen, X.; Shi, X.; Wang, Q.; et al. Polymeric nanoparticles-based brain delivery with improved therapeutic efficacy of ginkgolide B in Parkinson’s disease. Int. J. Nanomed. 2020, 15, 10453–10468. [Google Scholar] [CrossRef]
- Gabathuler, R. Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases. Neurobiol. Dis. 2010, 37, 48–57. [Google Scholar] [CrossRef]
- Alam, M.I.; Beg, S.; Samad, A.; Baboota, S.; Kohli, K.; Ali, J.; Ahuja, A.; Akbar, M. Strategy for effective brain drug delivery. Eur. J. Pharm. Sci. 2010, 40, 385–403. [Google Scholar] [CrossRef]
- Song, R.; Murphy, M.; Li, C.; Ting, K.; Soo, C.; Zheng, Z. Current development of biodegradable polymeric materials for biomedical applications. Drug Des. Devel. Ther. 2018, 12, 3117–3145. [Google Scholar] [CrossRef]
- Díaz, E.; Sandonis, I.; Valle, M.B. In vitro degradation of poly (caprolactone)/nHA composites. J. Nanomater. 2014, 30, 2014. [Google Scholar] [CrossRef]
- Abrisham, M.; Noroozi, M.; Panahi-Sarmad, M.; Arjmand, M.; Goodarzi, V.; Shakeri, Y.; Golbaten-Mofrad, H.; Dehghan, P.; Sahzabi, A.S.; Sadri, M.; et al. The role of polycaprolactone-triol (PCL-T) in biomedical applications: A state-of-the-art review. Eur. Polym. J. 2020, 131, 109701. [Google Scholar] [CrossRef]
- Daraba, O.M.; Cadinoiu, A.N.; Rata, D.M.; Atanase, L.I.; Vochita, G. Antitumoral drug-loaded biocompatible polymeric nanoparticles obtained by non-aqueous emulsion polymerization. Polymers 2020, 12, 1018–1035. [Google Scholar] [CrossRef] [PubMed]
- Natu, M.V.; Gaspar, M.N.; Ribeiro, C.A.; Correia, I.J.; Silva, D.; de Sousa, H.C.; Gil, M.H. A poly(ε-caprolactone) device for sustained release of an anti-glaucoma drug. Biomed. Mater. 2011, 6, 25003. [Google Scholar] [CrossRef] [PubMed]
- Khanum, R.; Qureshi, M.J.; Mohandas, K. Antibiofilm Potential of Meropenem-Loaded Poly(Ɛ-Caprolactone) Nano particles Against Klebsiella pneumoniae. Int. J. Pharm. Clin. Res. 2016, 8, 1343–1350. [Google Scholar]
- Alex, A.T.; Joseph, A.; Shavi, G.; Rao, J.V.; Udupa, N. Development and evaluation of carboplat in-loaded PCL nano particles for intranasal delivery. Drug Deliv. 2016, 23, 2144–2153. [Google Scholar] [CrossRef] [PubMed]
- Shahab, M.S.; Rizwanullah, M.; Alshehri, S.; Imam, S.S. Optimization to development of chitosan decorated polycaprolactone nanoparticles for improved ocular delivery of dorzolamide: In vitro, ex vivo and toxicity assessments. Int. J. Biol. Macromol. 2020, 163, 2392–2404. [Google Scholar] [CrossRef]
- Rahat, I.; Imam, S.S.; Rizwanullah, M.; Alshehri, S.; Asif, M.; Kala, C.; Taleuzzaman, M. Thymoquinone-entrapped chitosan-modified nanoparticles: Formulation optimization to preclinical bioavailability assessments. Drug Deliv. 2021, 28, 973–984. [Google Scholar] [CrossRef]
- Raval, M.; Patel, P.; Airao, V.; Bhatt, V.; Sheth, N. Novel silibinin loaded chitosan-coated PLGA/PCL nanoparticles based inhalation formulations with improved cytotoxicity and bioavailability for lung cancer. Bionanoscience 2021, 11, 67–83. [Google Scholar] [CrossRef]
- De Lima, J.M.; Castellano, L.R.C.; Bonan, P.R.F.; de Medeiros, E.S.; Hier, M.; Bijian, K.; Alaoui-Jamali, M.A.; da Cruz Perez, D.E.; da Silva, S.D. Chitosan/PCL nanoparticles can improve anti-neoplastic activity of 5-fluorouracil in head and neck cancer through autophagy activation. Int. J. Biochem. Cell Biol. 2021, 134, 105964. [Google Scholar] [CrossRef]
- Patel, T.; Zhou, J.; Piepmeier, J.M. Polymeric nanoparticles for drug delivery to the central nervous system. Adv. Drug Deliv. Rev. 2012, 64, 701–705. [Google Scholar] [CrossRef]
- Lee, S.H.; Jun, B.H. Silver nanoparticles: Synthesis and application for nanomedicine. Int. J. Mol. Sci. 2019, 20, 865. [Google Scholar] [CrossRef]
- Muxika, A.; Etxabide, A.; Uranga, J.; Guerrero, P.; de la Caba, K. Chitosan as a bioactive polymer: Processing, properties and applications. Int. J. Biol. Macromol. 2017, 105, 1358–1368. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, M.; Kumar, M.; Pathak, K. A review on mucoadhesive polymer used in nasal drug delivery system. J. Adv. Pharm. Technol. Res. 2011, 2, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Fazil, M.; Md, S.; Haque, S.; Kumar, M.; Baboota, S.; Sahni, J.K.; Ali, J. Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. Eur. J. Pharm. Sci. 2012, 47, 6–15. [Google Scholar] [CrossRef]
- Badran, M.M.; Alomrani, A.H.; Harisa, G.; Ashour, A.E.; Kumar, A.; Yassin, A.E. Novel docetaxel chitosan-coated PLGA/PCL nanoparticles with magnified cytotoxicity and bioavailability. Biomed. Pharmacother. 2018, 106, 1461–1468. [Google Scholar] [CrossRef] [PubMed]
- Md, S.; Khan, R.A.; Mustafa, G.; Chuttani, K.; Baboota, S.; Sahni, J.K.; Ali, J. Bromocriptine loaded chitosan nanoparticles intended for direct nose to brain delivery: Pharmacodynamic, pharmacokinetic and scintigraphy study in mice model. Eur. J. Pharm. Sci. 2013, 48, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Tzeyung, A.S.; Md, S.; Bhattamisra, S.K.; Madheswaran, T.; Alhakamy, N.A.; Aldawsari, H.M.; Radhakrishnan, A.K. Fabrication, optimization, and evaluation of rotigotine-loaded chitosan nanoparticles for nose-to-brain delivery. Pharmaceutics 2019, 11, 26. [Google Scholar] [CrossRef]
- Cheng, H.; Cui, Z.; Guo, S.; Zhang, X.; Huo, Y.; Mao, S. Mucoadhesive versus mucopenetrating nanoparticles for oral delivery of insulin. Acta Biomater. 2021, 135, 506–519. [Google Scholar] [CrossRef]
- Bahadur, S.; Pardhi, D.M.; Rautio, J.; Rosenholm, J.M.; Pathak, K. Intranasal Nanoemulsions for Direct Nose-to-Brain Delivery of Actives for CNS Disorders. Pharmaceutics 2020, 12, 1230. [Google Scholar] [CrossRef]
- Qureshi, M.; Aqil, M.; Imam, S.S.; Ahad, A.; Sultana, Y. Formulation and Evaluation of Neuroactive Drug Loaded Chitosan Nanoparticle for Nose to Brain Delivery: In-vitro Characterization and In-vivo Behavior Study. Curr. Drug Deliv. 2019, 16, 123–135. [Google Scholar] [CrossRef]
- Pukngam, P.; Burana-Osot, J. Development and validation of a stability-indicating HPLC method for determination of bromocriptine mesylate in bulk drug and tablets. Curr. Pharm. Anal. 2013, 9, 92–101. [Google Scholar]
- Rahayu, W.; Muthomimah, S.; Sumari, S.; Nazriati, N. Effect of sonication time on characteristics of synthesized silica aerogel activated carbon nanocomposite based on bagasse ash. J. Mol. Liquids IOP Conf. Ser. Mater. Sci. Eng. 2020, 833, 012088. [Google Scholar] [CrossRef]
- Keum, C.G.; Noh, Y.W.; Baek, J.S.; Lim, J.H.; Hwang, C.J.; Na, Y.G.; Shin, S.C.; Cho, C.W. Practical preparation procedures for docetaxel-loaded nanoparticles using polylactic acid-co-glycolic acid. Int. J. Nanomed. 2011, 6, 2225–2234. [Google Scholar]
- Al-Kordy, H.M.H.; Sabry, S.A.; Mabrouk, M.E.M. Statistical optimization of experimental parameters for extracellular synthesis of zinc oxide nanoparticles by a novel haloalaliphilic Alkalibacillus sp. W7. Sci. Rep. 2021, 11, 10924. [Google Scholar] [CrossRef]
- Pradhan, S.; Hedberg, J.; Blomberg, E.; Wold, S.; Wallinder, I.O. Effect of sonication on particle dispersion, administered dose and metal release of non-functionalized, non-inert metal nanoparticles. J. Nanopart. Res. 2016, 18, 285. [Google Scholar] [CrossRef] [PubMed]
- Tavares, M.R.; de Menezes, L.R.; Dutra Filho, J.C.; Cabral, L.M.; Tavares, M.I.B. Surface-coated polycaprolactone nanoparticles with pharmaceutical application: Structural and molecular mobility evaluation by TD-NMR. Polym. Test. 2017, 60, 39–48. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, G.; Zeng, X.; Wu, Y.; Yang, C.; Mei, L.; Wang, Z.; Huang, L. Fabrication of genistein-loaded biodegradable TPGS-b-PCL nanoparticles for improved therapeutic effects in cervical cancer cells. Int. J. Nanomed. 2015, 10, 2461–2473. [Google Scholar]
- Betala, S.; Varma, M.M.; Abbulu, K. Formulation and evaluation of polymeric nanoparticles of an antihypetensive drug for gastroretention. J. Drug Deliv. Ther. 2018, 8, 82–86. [Google Scholar] [CrossRef]
- Ajiboye, A.L.; Trivedi, V.; Mitchell, J.C. Preparation of polycaprolactone nanoparticles via supercritical carbon dioxide extraction of emulsions. Drug Deliv. Transl. Res. 2018, 8, 1790–1796. [Google Scholar] [CrossRef]
- Mokarram, A.; Keshavarz, A.K.; Keshavarz, M. Preparation and in-vitro evaluation of indomethacin nanoparticles. DARU 2010, 18, 185–192. [Google Scholar]
- Liu, Y.; Sun, C.; Hao, Y.; Jiang, T.; Zheng, L.; Wang, S. Mechanism of dissolution enhancement and bioavailability of poorly water-soluble celecoxib by preparing stable amorphous nanoparticles. J. Pharm. Pharm. Sci. 2010, 13, 589–606. [Google Scholar] [CrossRef]
- Kakran, M.; Sahoo, N.S.; Li, L. Dissolution enhancement of quercetin through nanofabrication, complexation, and solid dispersion. Colloids Surf. B Biointerfaces 2011, 88, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Korsmeyer, R.W.; Peppas, N.A. Macromolecular and Modeling Aspects of Swelling-controlled Systems. In Controlled Release Delivery Systems; Roseman, T.J., Mansdorf, S.Z., Eds.; Dekker: New York, NY, USA, 1983; pp. 77–101. [Google Scholar]
- Ahmad, E.; Feng, Y.; Qi, J.; Fan, W.; Ma, Y.; He, H.; Xia, F.; Dong, X.; Zhao, W.; Lu, Y.; et al. Evidence of nose-to-brain delivery of nanoemulsions: Cargoes but not vehicles. Nanoscale 2017, 9, 1174–1183. [Google Scholar] [CrossRef] [PubMed]
- Arisoy, S.; Sayiner, O.; Comoglu, T.; Onal, D.; Aalay, O.; Pehlivanoglu, B. In vitro and in vivo evaluation of levodopa-loaded nanoparticles for nose to brain delivery. Pharm. Dev. Technol. 2020, 25, 735–747. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.Y.; Ooi, I.H. Preparation of temozolomide-loaded nanoparticles for glioblastoma multiforme targeting-ideal versus reality. Pharmaceuticals 2016, 9, 54. [Google Scholar] [CrossRef]
- Shah, R.M.; Eldridge, D.S.; Palombo, E.A.; Ian, H. Optimisation and stability assessment of solid lipid nanoparticles using particle size and zeta potential. APCBEE Procedia 2014, 9, 13–17. [Google Scholar]
- Rasmussen, M.K.; Pedersen, J.N.; Marie, R. Size and surface charge characterization of nanoparticles with a salt gradient. Nat. Commun. 2020, 1, 2337. [Google Scholar] [CrossRef]
- Das, S.; Ng, W.K.; Tan, R.B.H. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): Development, characterizations, and comparative evaluations of clotrimazole-loaded SLNs and NLCs. Eur. J. Pharm. Sci. 2012, 47, 139–151. [Google Scholar] [CrossRef]
- Song, Z.; Feng, R.; Sun, M.; Guo, C.; Gao, Y.; Li, L.; Zhai, G. Curcumin-loaded PLGA-PEG-PLGA triblock copolymeric micelles: Preparation, pharmacokinetics and distribution in vivo. J. Colloid Interface Sci. 2011, 354, 116–123. [Google Scholar] [CrossRef]
- Park, S.N.; Jo, N.R.; Jeon, S.H. Chitosan-coated liposomes for enhanced skin permeation of resveratrol. J. Ind. Eng. Chem. 2014, 20, 1481–1485. [Google Scholar] [CrossRef]
- Fong, S.S.; Foo, Y.Y.; Saw, W.S.; Leo, B.F.; Teo, Y.Y.; Chung, I.; Goh, B.; Misran, M.; Imae, T.; Chang, C.C.; et al. Chitosan-Coated-PLGA Nanoparticles Enhance the Antitumor and Antimigration Activity of Stattic-A STAT3 Dimerization Blocker. Int. J. Nanomed. 2022, 17, 137–150. [Google Scholar] [CrossRef]
- Yasir, M.; Chauhan, I.; Zafar, A.; Verma, M.; Noorulla, K.M.; Tura, A.J.; Alruwaili, N.K.; Haji, M.J.; Puri, D.; Gobena, W.G.; et al. Buspirone loaded solid lipid nanoparticles for amplification of nose to brain efficacy: Formulation development, optimization by Box-Behnken design, in-vitro characterization and in-vivo biological evaluation. J. Drug Deliv. Sci. Technol. 2021, 61, 102164. [Google Scholar] [CrossRef]
- Bunjes, H.; Unruh, T. Characterization of lipid nanoparticles by differential scanning calorimetry, X-ray, and neutron scattering. Adv. Drug Deliv. Rev. 2007, 59, 379–402. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Koh, J. Physiochemical, optical and biological activity of chitosan-chromone derivative for biomedical applications. Int. J. Mol. Sci. 2012, 13, 6102–6116. [Google Scholar] [CrossRef] [PubMed]
- Gomathi, T.; Sudha, P.N.; Florence, J.A.K.; Venkatesan, J.; Anil, S. Fabrication of letrozole formulation using chitosan nanoparticles through ionic gelation method. Int. J. Biol. Macromol. 2017, 104, 1820–1832. [Google Scholar] [CrossRef]
- Liu, S.; Yang, S.; Ho, P.C. Intranasal administration of carbamazepine loaded carboxymethyl chitosan nanoparticles for drug delivery to the brain. Asian J. Pharm. Sci. 2018, 13, 72–78. [Google Scholar] [CrossRef]
- Bruinsmann, F.A.; Pigana, S.; Aguirre, T.; Dadalt Souto, G.; Garrastazu Pereira, G.; Bianchera, A.; Tiozzo Fasiolo, L.; Colombo, G.; Marques, M.; Raffin Pohlmann, A.; et al. Chitosan-Coated Nanoparticles: Effect of Chitosan Molecular Weight on Nasal Transmucosal Delivery. Pharmaceutics 2019, 11, 86. [Google Scholar] [CrossRef]
- Shi, Y.; Xue, J.; Jia, L.; Du, Q.; Niu, J.; Zhang, D. Surface-modified PLGA nanoparticles with chitosan for oral delivery of tolbutamide. Colloid Surface B. 2018, 161, 67–72. [Google Scholar] [CrossRef]
- Takeuchi, H.; Thongborisute, J.; Matsui, Y.; Sugihara, H.; Yamamoto, H.; Kawashima, Y. Novel mucoadhesion tests for polymers and polymer-coated particles to design optimal mucoadhesive drug delivery systems. Adv. Drug Deliv. 2005, 57, 1583–1594. [Google Scholar] [CrossRef]
- Manna, S.; Lakshmi, U.S.; Manasa, R.; Pratyusha, S.; Lakshmi, K.K. Bioadhesive HPMC gel containing gelatin nanoparticles for intravaginal delivery of tenofovir. J. Appl. Pharm. Sci. 2016, 6, 22–29. [Google Scholar] [CrossRef]
- Lima, I.A.; Khalil, N.M.; Tominaga, T.T.; Lechanteur, A.; Sarmento, B.; Mainardes, R.M. Mucoadhesive chitosan-coated PLGA nanoparticles for oral delivery of ferulic acid. Artif. Cells Nanomed. Biotechnol. 2018, 46, 993–1002. [Google Scholar] [CrossRef]
- Pardeshi, C.V.; Belgamwar, V.S. Controlled synthesis of N, N, N-trimethyl chitosan for modulated bioadhesion and nasal membrane permeability. Int. J. Biol. Macromol. 2016, 82, 933–944. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, J.; Quispe, C.; Butnariu, M.; Rotariu, L.S.; Sytar, O.; Sestito, S.; Calina, D. Chitosan nanoparticles as a promising tool in nanomedicine with particular emphasis on oncological treatment. Cancer Cell Inter. 2021, 21, 318. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Xu, X.; Feng, J.; Liu, M.; Hu, K. Chitosan and chitosan coating nanoparticles for the treatment of brain disease. Int. J. Pharm. 2019, 560, 282–293. [Google Scholar] [CrossRef]
- Surendranath, M.; Rekha, M.R.; Parameswaran, R. Recent advances in functionally modified polymers for mucoadhesive drug delivery. J. Mater. Chem. B 2022, 10, 5913–5924. [Google Scholar] [CrossRef] [PubMed]
Independent Factors | Low | High | Unit |
---|---|---|---|
A: PCL | 20 | 50 | mg |
B: TPGS | 0.03 | 0.165 | % |
C: Sonication time | 2 | 8 | min |
Dependent factors (responses) | |||
Particle size (Y1) | nm | ||
Zeta Potential (Y2) | mV | ||
Entrapment Efficiency (Y3) | % | ||
In vitro release (Y4) | % |
Response | Source | Sum of Squares | p-Value |
---|---|---|---|
Nanoparticle size (nm) | A: PCL | 12,800.0 | 0.0057 |
B: TPGs | 325.125 | 0.4932 | |
C: Sonication time | 7503.13 | 0.0164 | |
AA | 780.776 | 0.3041 | |
AB | 289.0 | 0.5171 | |
AC | 196.0 | 0.5910 | |
BB | 1507.85 | 0.1725 | |
BC | 56.25 | 0.7710 | |
CC | 1596.16 | 0.1625 | |
Zeta potential (mV) | A: PCL | 0.690313 | 0.8305 |
B: TPGs | 28.6525 | 0.2060 | |
C: Sonication time | 20.3203 | 0.2757 | |
AA | 1.95194 | 0.7201 | |
AB | 3.2041 | 0.6477 | |
AC | 49.2102 | 0.1153 | |
BB | 7.86603 | 0.4809 | |
BC | 12.6736 | 0.3784 | |
CC | 7.26711 | 0.4973 | |
EE (%) | A: PCL | 105.786 | 0.0440 |
B: TPGs | 269.921 | 0.0079 | |
C: Sonication time | 2.57645 | 0.6935 | |
AA | 7.96379 | 0.4957 | |
AB | 20.7435 | 0.2892 | |
AC | 61.7796 | 0.0962 | |
BB | 19.5557 | 0.3018 | |
BC | 0.0225 | 0.9704 | |
CC | 20.8905 | 0.2876 | |
Zero order release constant (%/h) | A: PCL | 3.76751 | 0.0001 |
B: TPGs | 0.0120125 | 0.4480 | |
C: Sonication time | 0.03645 | 0.2112 | |
AA | 0.0732333 | 0.0979 | |
AB | 0.0289 | 0.2579 | |
AC | 0.055225 | 0.1379 | |
BB | 0.12751 | 0.0438 | |
BC | 0.005625 | 0.5977 | |
CC | 0.0546564 | 0.1396 |
# | PCL (mg) | TPGS (%) | Sonication Time (min) | Particle Size (nm) | Zeta Potential (mV) | BM Content (%) | EE (%) |
---|---|---|---|---|---|---|---|
F1 | 35 | 0.3 | 2 | 261 ± 7.07 | −10.7 ± 1.03 | 97.01 | 77.03 ± 3.06 |
F2 | 35 | 0.03 | 8 | 215 ± 3.02 | −9.78 ± 2.3 | 95.71 | 95.79 ± 5.9 |
F3 | 35 | 0.03 | 2 | 245 ± 2.89 | 0.5 ± 4.65 | 93.60 | 93.79 ± 1.3 |
F4 | 20 | 0.3 | 5 | 241 ± 3.54 | −3.62 ± 5.4 | 84.21 | 91.0 ± 2.9 |
F5 | 20 | 0.165 | 2 | 360 ± 5.4 | −14 ± 1.17 | 82.0 | 82.72 ± 1.9 |
F6 | 50 | 0.3 | 5 | 256 ± 3.64 | −7.3 ± 3.0 | 93.51 | 93.04 ± 6.8 |
F7 | 20 | 0.03 | 5 | 292 ± 3.12 | −1.97 ± 1.76 | 92.61 | 92.14 ± 4.8 |
F8 | 50 | 0.165 | 8 | 232 ± 3.35 | −11.3 ± 3.89 | 92.61 | 84.9 ± 3.1 |
F9 | 35 | 0.165 | 5 | 217 ± 2.9 | −11.5 ± 2.47 | 93.74 | 93.1 ± 7.6 |
F10 | 20 | 0.165 | 8 | 261 ±3.89 | −9.6 ± 3.69 | 95.07 | 90.74 ± 1.09 |
F11 | 50 | 0.03 | 5 | 230 ± 2.26 | −7.9 ± 1.43 | 90.08 | 95.08 ± 2.69 |
F12 | 35 | 0.3 | 8 | 216 ± 5.23 | −12 ± 1.08 | 87.21 | 82.3 ± 0.9 |
F13 | 35 | 0.165 | 5 | 258 ± 2.88 | −5.16 ± 2.74 | 77.10 | 87.39 ± 1.11 |
F14 | 50 | 0.165 | 2 | 263 ± 2.12 | −1.77 ± 3.19 | 79.80 | 97.64 ± 3.79 |
F15 | 35 | 0.165 | 5 | 226 ± 1.54 | −8.89 ± 2.89 | 81.02 | 92.96 ± 2.69 |
Formulation | Zero Order | First Order | Higuchi | Korsmeyer-Peppas | ||||
---|---|---|---|---|---|---|---|---|
r | Slope | r | Slope | r | Slope | n | r | |
F1 | 0.996 | 1.714 | −0.997 | −0.010 | 0.960 | 8.416 | 0.757 | 0.984 |
F2 | 0.996 | 1.662 | −0.997 | −0.009 | 0.961 | 8.177 | 0.812 | 0.989 |
F3 | 0.997 | 1.530 | −0.992 | −0.008 | 0.941 | 7.358 | 0.809 | 0.986 |
F4 | 0.998 | 1.070 | −0.997 | −0.005 | 0.946 | 5.173 | 0.842 | 0.989 |
F5 | 0.994 | 1.021 | −0.990 | −0.005 | 0.926 | 4.850 | 0.768 | 0.973 |
F6 | 0.991 | 2.803 | −0.989 | −0.020 | 0.949 | 13.683 | 0.813 | 0.986 |
F7 | 0.993 | 1.187 | −0.992 | −0.006 | 0.939 | 5.725 | 0.824 | 0.982 |
F8 | 0.971 | 2.425 | −0.987 | −0.015 | 0.973 | 12.392 | 0.860 | 0.990 |
F9 | 0.998 | 1.584 | −0.998 | −0.009 | 0.961 | 7.783 | 0.731 | 0.989 |
F10 | 0.994 | 0.997 | −0.990 | −0.005 | 0.925 | 4.734 | 0.751 | 0.973 |
F11 | 0.970 | 2.577 | −0.987 | −0.017 | 0.969 | 13.120 | 0.901 | 0.990 |
F12 | 0.988 | 1.694 | −0.999 | −0.009 | 0.979 | 9.505 | 0.746 | 0.985 |
F13 | 0.998 | 1.541 | −0.998 | −0.008 | 0.960 | 7.562 | 0.735 | 0.991 |
F14 | 0.927 | 1.969 | −0.945 | −0.011 | 0.969 | 10.504 | 0.845 | 0.987 |
F15 | 0.998 | 1.627 | −0.994 | −0.009 | 0.952 | 7.911 | 0.721 | 0.989 |
Formulation | Zero-Order | First Order | Higuchi | Korsmeyer-Peppas | ||||
---|---|---|---|---|---|---|---|---|
R2 | Slope | R2 | Slope | R2 | Slope | n | R2 | |
BM-PCL NPs | 0.975 | 2.631 | 0.993 | 0.017 | 0.968 | 13.346 | 0.852 | 0.991 |
BM-CS-PCLNPs0.25% | 0.970 | 2.331 | 0.987 | 0.014 | 0.971 | 11.918 | 0.826 | 0.990 |
BM-CS-PCL NPs0.5% | 0.968 | 2.097 | 0.983 | 0.012 | 0.969 | 10.732 | 0.835 | 0.991 |
BM-CS-PCL NPs1% | 0.975 | 2.028 | 0.987 | 0.011 | 0.968 | 10.288 | 0.871 | 0.994 |
Formulae | Mucoadhesion with Mucin Interaction |
---|---|
BM-PCL NPs | −29 ± 1.09 |
BM-CS-PCLNPs 0.25% | 7 ± 2.49 |
BM-CS-PCL NPs 0.5% | 8 ± 3.41 |
BM-CS-PCL NPs 1% | 17 ± 1.67 |
Formulations | BM Permeated | J (µg/cm2/h) | Kp × 10−4 (cm h−1) | ER |
---|---|---|---|---|
BM-PCL NPs | 22.29 ± 1.45 | 3.56 ± 0.18 | 35.54 ± 2.44 | - |
BM-CS-PCL NPs 0.25% | 48.65 ± 3.04 | 14.61 ± 2.23 | 147.59 ± 22.52 | 2.18 |
BM-CS-PCL NPs 0.5% | 41.05 ± 2.01 | 7.34 ± 0.63 | 74.66 ± 8.07 | 1.84 |
BM-CS-PCL NPs 1% | 38.99 ± 1.47 | 6.52 ± 0.53 | 65.98 ± 6.98 | 1.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badran, M.M.; Alanazi, A.E.; Ibrahim, M.A.; Alshora, D.H.; Taha, E.; H. Alomrani, A. Optimization of Bromocriptine-Mesylate-Loaded Polycaprolactone Nanoparticles Coated with Chitosan for Nose-to-Brain Delivery: In Vitro and In Vivo Studies. Polymers 2023, 15, 3890. https://doi.org/10.3390/polym15193890
Badran MM, Alanazi AE, Ibrahim MA, Alshora DH, Taha E, H. Alomrani A. Optimization of Bromocriptine-Mesylate-Loaded Polycaprolactone Nanoparticles Coated with Chitosan for Nose-to-Brain Delivery: In Vitro and In Vivo Studies. Polymers. 2023; 15(19):3890. https://doi.org/10.3390/polym15193890
Chicago/Turabian StyleBadran, Mohamed M., Abdulrahman E. Alanazi, Mohamed Abbas Ibrahim, Doaa Hasan Alshora, Ehab Taha, and Abdullah H. Alomrani. 2023. "Optimization of Bromocriptine-Mesylate-Loaded Polycaprolactone Nanoparticles Coated with Chitosan for Nose-to-Brain Delivery: In Vitro and In Vivo Studies" Polymers 15, no. 19: 3890. https://doi.org/10.3390/polym15193890
APA StyleBadran, M. M., Alanazi, A. E., Ibrahim, M. A., Alshora, D. H., Taha, E., & H. Alomrani, A. (2023). Optimization of Bromocriptine-Mesylate-Loaded Polycaprolactone Nanoparticles Coated with Chitosan for Nose-to-Brain Delivery: In Vitro and In Vivo Studies. Polymers, 15(19), 3890. https://doi.org/10.3390/polym15193890