Surface Modification of PP and PBT Nonwoven Membranes for Enhanced Efficiency in Photocatalytic MB Dye Removal and Antibacterial Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Surface Modification of Nonwoven Membrane
2.2.1. Synergist Immobilization by Aminolysis
2.2.2. Determination of Tertiary Amino Groups
2.2.3. Photo-Grafting Polymerization In Situ Nanoparticles
2.3. Membrane Surface Characterization
2.4. Photocatalytic Activity
2.5. Antibacterial Test
3. Results and Discussion
3.1. Surface Characterization of the Grafting Nonwoven Membrane
3.1.1. Modification of PP and PBT Membranes Surface by Photoinitiated Process
3.1.2. Tertiary Amino Group Determination on the Surface of PBT and PP
3.1.3. FTIR Analysis
3.1.4. EDX and SEM Characterization
3.2. Photocatalytic Activity Evaluation
3.2.1. Photocatalytic Activity under LED Light
3.2.2. Photocatalytic Activity under Sunlight
3.2.2.1. Surface Modified In-Situ Monometallic Nanoparticles
3.2.2.2. Surface Modified In-Situ Bimetallic Nanoparticles
3.3. Kinetics Study
3.4. Mechanism for the Degradation of MB
3.5. Reuse of the Grafted Nonwoven Membrane in the Photodegradation Process
3.6. Antibacterial Activity of Treated Nonwoven Membrane
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berber, M.R. Current Advances of Polymer Composites for Water Treatment and Desalination. J. Chem. 2020, 2020, 7608423. [Google Scholar] [CrossRef]
- Rao, C.; Zhou, L.; Pan, Y.; Lu, C.; Qin, X.; Sakiyama, H.; Muddassir, M.; Liu, J. The Extra-Large Calixarene-Based MOFs-Derived Hierarchical Composites for Photocatalysis of Dye: Facile Syntheses and Contribution of Carbon Species. J. Alloys Compd. 2022, 897, 163178. [Google Scholar]
- Dong, X.; Li, Y.; Li, D.; Liao, D.; Qin, T.; Prakash, O.; Kumar, A.; Liu, J. A New 3D 8-Connected Cd (Ii) MOF as a Potent Photocatalyst for Oxytetracycline Antibiotic Degradation. CrystEngComm 2022, 24, 6933–6943. [Google Scholar]
- Zamel, D.; Hassanin, A.H.; Ellethy, R.; Singer, G.; Abdelmoneim, A. Novel Bacteria-Immobilized Cellulose Acetate/Poly (Ethylene Oxide) Nanofibrous Membrane for Wastewater Treatment. Sci. Rep. 2019, 9, 18994. [Google Scholar] [CrossRef] [PubMed]
- Thabede, P.M.; Shooto, N.D.; Naidoo, E.B. Removal of Methylene Blue Dye and Lead Ions from Aqueous Solution Using Activated Carbon from Black Cumin Seeds. S. Afr. J. Chem. Eng. 2020, 33, 39–50. [Google Scholar]
- Khan, I.; Saeed, K.; Ali, N.; Khan, I.; Zhang, B.; Sadiq, M. Heterogeneous Photodegradation of Industrial Dyes: An Insight to Different Mechanisms and Rate Affecting Parameters. J. Environ. Chem. Eng. 2020, 8, 104364. [Google Scholar]
- Dzinun, H.; Ichikawa, Y.; Mitsuhiro, H.; Zhang, Q. Efficient Immobilised TiO2 in Polyvinylidene Fluoride (PVDF) Membrane for Photocatalytic Degradation of Methylene Blue. J. Membr. Sci. Res. 2020, 6, 188–195. [Google Scholar]
- Zhang, S.; Wang, D.; Zhang, S.; Zhang, X.; Fan, P. Ozonation and Carbon-Assisted Ozonation of Methylene Blue as Model Compound: Effect of Solution PH. Procedia Environ. Sci. 2013, 18, 493–502. [Google Scholar]
- Mohammed, H.A.; Khaleefa, S.A.; Basheer, M.I. Photolysis of Methylene Blue Dye Using an Advanced Oxidation Process (Ultraviolet Light and Hydrogen Peroxide). J. Eng. Sustain. Dev. 2021, 25, 59–67. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, L.; Xiao, P.; Huang, Y.; Chen, P.; Wang, X.; Gu, J.; Zhang, J.; Chen, T. Biodegradable PLA Nonwoven Fabric with Controllable Wettability for Efficient Water Purification and Photocatalysis Degradation. ACS Sustain. Chem. Eng. 2018, 6, 2445–2452. [Google Scholar]
- Dao, M.U.; Nguyen, T.T.T.; Le, V.T.; Hoang, H.Y.; Le, T.T.N.; Pham, T.N.; Nguyen, T.T.; Akhmadullin, R.M.; Le, H.S.; Tran, H.V. Non-Woven Polyester Fabric-Supported Cuprous Oxide/Reduced Graphene Oxide Nanocomposite for Photocatalytic Degradation of Methylene Blue. J. Mater. Sci. 2021, 56, 10353–10366. [Google Scholar] [CrossRef]
- Kazancioglu, E.O.; Aydin, M.; Arsu, N. Photochemical Synthesis of Nanocomposite Thin Films Containing Silver and Gold Nanoparticles with 2-Thioxanthone Thioacetic Acid-Dioxide and Their Role in Photocatalytic Degradation of Methylene Blue. Surf. Interfaces 2021, 22, 100793. [Google Scholar] [CrossRef]
- Kazancioglu, E.O.; Aydin, M.; Arsu, N. Photochemical Synthesis of Bimetallic Gold/Silver Nanoparticles in Polymer Matrix with Tunable Absorption Properties: Superior Photocatalytic Activity for Degradation of Methylene Blue. Mater. Chem. Phys. 2021, 269, 124734. [Google Scholar]
- Tuin, S.A.; Pourdeyhimi, B.; Loboa, E.G. Creating Tissues from Textiles: Scalable Nonwoven Manufacturing Techniques for Fabrication of Tissue Engineering Scaffolds. Biomed. Mater. 2016, 11, 15017. [Google Scholar]
- Ma, Z.; Kotaki, M.; Inai, R.; Ramakrishna, S. Potential of Nanofiber Matrix as Tissue-Engineering Scaffolds. Tissue Eng. 2005, 11, 101–109. [Google Scholar]
- Burger, C.; Hsiao, B.S.; Chu, B. Nanofibrous Materials and Their Applications. Annu. Rev. Mater. Res. 2006, 36, 333–368. [Google Scholar] [CrossRef]
- Heller, M.; Wimbish, R.; Gurgel, P.V.; Pourdeyhimi, B.; Carbonell, R.G. Reducing Diffusion Limitations in Ion Exchange Grafted Membranes Using High Surface Area Nonwovens. J. Memb. Sci. 2016, 514, 53–64. [Google Scholar] [CrossRef]
- Li, R.; Wu, G.; Ye, Y. In Vitro Hemocompatibility of Sulfonated Polypropylene Non-Woven Fabric Prepared via a Facile γ-Ray Pre-Irradiation Grafting Method. Appl. Surf. Sci. 2015, 356, 1221–1228. [Google Scholar] [CrossRef]
- Shim, J.K.; Lee, Y.B.; Lee, Y.M. PH-dependent Permeation through Polysulfone Ultrafiltration Membranes Prepared by Ultraviolet Polymerization Technique. J. Appl. Polym. Sci. 1999, 74, 75–82. [Google Scholar] [CrossRef]
- Kato, K.; Uchida, E.; Kang, E.-T.; Uyama, Y.; Ikada, Y. Polymer Surface with Graft Chains. Prog. Polym. Sci. 2003, 28, 209–259. [Google Scholar]
- Mueller, M.; Bandl, C.; Kern, W. Surface-Immobilized Photoinitiators for Light Induced Polymerization and Coupling Reactions. Polymers 2022, 14, 608. [Google Scholar] [CrossRef]
- Yu, H.-Y.; Li, W.; Zhou, J.; Gu, J.-S.; Huang, L.; Tang, Z.-Q.; Wei, X.-W. Thermo-and PH-Responsive Polypropylene Microporous Membrane Prepared by the Photoinduced RAFT-Mediated Graft Copolymerization. J. Memb. Sci. 2009, 343, 82–89. [Google Scholar] [CrossRef]
- Kuşçuoğlu, C.K.; Güner, H.; Söylemez, M.A.; Güven, O.; Barsbay, M. A Smartphone-Based Colorimetric PET Sensor Platform with Molecular Recognition via Thermally Initiated RAFT-Mediated Graft Copolymerization. Sens. Actuators B Chem. 2019, 296, 126653. [Google Scholar]
- Rånby, B.; Yang, W.T.; Tretinnikov, O. Surface Photografting of Polymer Fibers, Films and Sheets. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1999, 151, 301–305. [Google Scholar]
- Castell, P.; Wouters, M.; De With, G.; Fischer, H.; Huijs, F. Surface Modification of Poly (Propylene) by Photoinitiators: Improvement of Adhesion and Wettability. J. Appl. Polym. Sci. 2004, 92, 2341–2350. [Google Scholar] [CrossRef]
- Castell, P.; Wouters, M.; Fischer, H.; de With, G. Study of Wettability and Improvement of Adhesion of UV Curable Powder Coatings on Polypropylene Substrates. J. Appl. Polym. Sci. 2007, 106, 3348–3358. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, H.; Gurgel, P.V.; Carbonell, R.G. Polypropylene Nonwoven Fabrics with Conformal Grafting of Poly (Glycidyl Methacrylate) for Bioseparations. J. Memb. Sci. 2010, 364, 362–371. [Google Scholar] [CrossRef]
- Liu, H.; Zheng, Y.; Gurgel, P.V.; Carbonell, R.G. Affinity Membrane Development from PBT Nonwoven by Photo-Induced Graft Polymerization, Hydrophilization and Ligand Attachment. J. Memb. Sci. 2013, 428, 562–575. [Google Scholar] [CrossRef]
- Ang, M.B.M.Y.; Huang, S.-H.; Chang, M.-W.; Lai, C.-L.; Tsai, H.-A.; Hung, W.-S.; Hu, C.-C.; Lee, K.-R. Ultraviolet-Initiated Graft Polymerization of Acrylic Acid onto Thin-Film Polyamide Surface for Improved Ethanol Dehydration Performance of Pervaporation Membranes. Sep. Purif. Technol. 2020, 235, 116155. [Google Scholar]
- Ulbricht, M.; Yang, H. Porous Polypropylene Membranes with Different Carboxyl Polymer Brush Layers for Reversible Protein Binding via Surface-Initiated Graft Copolymerization. Chem. Mater. 2005, 17, 2622–2631. [Google Scholar]
- Ma, H.; Bowman, C.N.; Davis, R.H. Membrane Fouling Reduction by Backpulsing and Surface Modification. J. Memb. Sci. 2000, 173, 191–200. [Google Scholar] [CrossRef]
- Chan, M.A.; Obendorf, S.K. Surface Modification of Microporous Polypropylene Membrane by UV-Initiated Grafting with Poly (Ethylene Glycol) Diacrylate. Fibers Polym. 2014, 15, 2032–2039. [Google Scholar] [CrossRef]
- Nastyshyn, S.; Raczkowska, J.; Stetsyshyn, Y.; Orzechowska, B.; Bernasik, A.; Shymborska, Y.; Brzychczy-Włoch, M.; Gosiewski, T.; Lishchynskyi, O.; Ohar, H. Non-Cytotoxic, Temperature-Responsive and Antibacterial POEGMA Based Nanocomposite Coatings with Silver Nanoparticles. RSC Adv. 2020, 10, 10155–10166. [Google Scholar] [CrossRef]
- Sarina, S.; Waclawik, E.R.; Zhu, H. Photocatalysis on Supported Gold and Silver Nanoparticles under Ultraviolet and Visible Light Irradiation. Green Chem. 2013, 15, 1814–1833. [Google Scholar]
- Xiao, Q.; Jaatinen, E.; Zhu, H. Direct Photocatalysis for Organic Synthesis by Using Plasmonic-Metal Nanoparticles Irradiated with Visible Light. Chem. Asian J. 2014, 9, 3046–3064. [Google Scholar] [CrossRef]
- Yamada, K.; Miyajima, K.; Mafuné, F. Thermionic Emission of Electrons from Gold Nanoparticles by Nanosecond Pulse-Laser Excitation of Interband. J. Phys. Chem. C 2007, 111, 11246–11251. [Google Scholar] [CrossRef]
- Alnafisah, A.S.; Alqrairy, E.; Tar, H.; M Alminderej, F.; Aroua, L.M.; Graff, B.; Lalevee, J. Light-Assisted Synthesis of Silver and Gold Nanoparticles by New Benzophenone Derivatives. ACS Omega 2023, 8, 3207–3220. [Google Scholar] [CrossRef]
- Tar, H.; Kashar, T.I.; Kouki, N.; Aldawas, R.; Graff, B.; Lalevée, J. Novel Copper Photoredox Catalysts for Polymerization: An in Situ Synthesis of Metal Nanoparticles. Polymers 2020, 12, 2293. [Google Scholar]
- Alhomaidan, L.M.; Tar, H.; Alnafisah, A.S.; Aroua, L.M.; KouKi, N.; Alminderej, F.M.; Lalevee, J. Copper II Complexes Based on Benzimidazole Ligands as a Novel Photoredox Catalysis for Free Radical Polymerization Embedded Gold and Silver Nanoparticles. Polymers 2023, 15, 1289. [Google Scholar] [CrossRef] [PubMed]
- Chibac, A.L.; Buruiana, T.; Melinte, V.; Mangalagiu, I.; Buruiana, E.C. Tuning the Size and the Photocatalytic Performance of Gold Nanoparticles in Situ Generated in Photopolymerizable Glycomonomers. RSC Adv. 2015, 5, 90922–90931. [Google Scholar] [CrossRef]
- Chen, X.; Zheng, Z.; Ke, X.; Jaatinen, E.; Xie, T.; Wang, D.; Guo, C.; Zhao, J.; Zhu, H. Supported Silver Nanoparticles as Photocatalysts under Ultraviolet and Visible Light Irradiation. Green Chem. 2010, 12, 414–419. [Google Scholar] [CrossRef]
- Huang, J.; Vongehr, S.; Tang, S.; Lu, H.; Shen, J.; Meng, X. Ag Dendrite-Based Au/Ag Bimetallic Nanostructures with Strongly Enhanced Catalytic Activity. Langmuir 2009, 25, 11890–11896. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-H.; Shao, X.-S.; Zhou, Q.; Li, M.-Z.; Zhang, Q.-Q. The Double Effects of Silver Nanoparticles on the PVDF Membrane: Surface Hydrophilicity and Antifouling Performance. Appl. Surf. Sci. 2013, 265, 663–670. [Google Scholar]
- Sawada, I.; Fachrul, R.; Ito, T.; Ohmukai, Y.; Maruyama, T.; Matsuyama, H. Development of a Hydrophilic Polymer Membrane Containing Silver Nanoparticles with Both Organic Antifouling and Antibacterial Properties. J. Memb. Sci. 2012, 387, 1–6. [Google Scholar] [CrossRef]
- Chen, J.; Fan, L.; Yang, C.; Wang, S.; Zhang, M.; Xu, J.; Luo, S. Facile Synthesis of Ag Nanoparticles-Loaded Chitosan Antibacterial Nanocomposite and Its Application in Polypropylene. Int. J. Biol. Macromol. 2020, 161, 1286–1295. [Google Scholar] [CrossRef]
- Allen, N.S.; Marin, M.C.; Edge, M.; Davies, D.W.; Garrett, J.; Jones, F.; Navaratnam, S.; Parsons, B.J. Photochemistry and Photoinduced Chemical Crosslinking Activity of Type I & II Co-Reactive Photoinitiators in Acrylated Prepolymers. J. Photochem. Photobiol. A Chem. 1999, 126, 135–149. [Google Scholar]
- He, D.; Ulbricht, M. Surface-Selective Photo-Grafting on Porous Polymer Membranes via a Synergist Immobilization Method. J. Mater. Chem. 2006, 16, 1860–1868. [Google Scholar] [CrossRef]
- Chen, W.X.; Yu, J.S.; Hu, W.; Chen, G.L. Partial Hydrophilic Modification of Biaxially Oriented Polypropylene Film by an Atmospheric Pressure Plasma Jet with the Allylamine Monomer. Appl. Surf. Sci. 2016, 387, 957–964. [Google Scholar] [CrossRef]
- Demirci, N.; Demirel, M.; Dilsiz, N. Surface Modification of PVC Film with Allylamine Plasma Polymers. Adv. Polym. Technol. 2014, 33, 21435. [Google Scholar] [CrossRef]
- Aroua, L.M.; Almuhaylan, H.R.; Alminderej, F.M.; Messaoudi, S.; Chigurupati, S.; Al-Mahmoud, S.; Mohammed, H.A. A Facile Approach Synthesis of Benzoylaryl Benzimidazole as Potential α-Amylase and α-Glucosidase Inhibitor with Antioxidant Activity. Bioorg. Chem. 2021, 114, 105073. [Google Scholar] [CrossRef]
- Salmi-Mani, H.; Terreros, G.; Barroca-Aubry, N.; Aymes-Chodur, C.; Regeard, C.; Roger, P. Poly (Ethylene Terephthalate) Films Modified by UV-Induced Surface Graft Polymerization of Vanillin Derived Monomer for Antibacterial Activity. Eur. Polym. J. 2018, 103, 51–58. [Google Scholar] [CrossRef]
- Mandal, D.K.; Bhunia, H.; Bajpai, P.K.; Chaudhari, C.V.; Dubey, K.A.; Varshney, L. Radiation-Induced Grafting of Acrylic Acid onto Polypropylene Film and Its Biodegradability. Radiat. Phys. Chem. 2016, 123, 37–45. [Google Scholar] [CrossRef]
- Varghese, A.M.; Rangaraj, V.M.; Luckachan, G.; Mittal, V. UV Aging Behavior of Functionalized Mullite Nanofiber-Reinforced Polypropylene. ACS Omega 2020, 5, 27083–27093. [Google Scholar] [CrossRef] [PubMed]
- Van Wagner, E.M.; Sagle, A.C.; Sharma, M.M.; La, Y.-H.; Freeman, B.D. Surface Modification of Commercial Polyamide Desalination Membranes Using Poly (Ethylene Glycol) Diglycidyl Ether to Enhance Membrane Fouling Resistance. J. Memb. Sci. 2011, 367, 273–287. [Google Scholar] [CrossRef]
- Kang, G.; Yu, H.; Liu, Z.; Cao, Y. Surface Modification of a Commercial Thin Film Composite Polyamide Reverse Osmosis Membrane by Carbodiimide-Induced Grafting with Poly (Ethylene Glycol) Derivatives. Desalination 2011, 275, 252–259. [Google Scholar] [CrossRef]
- Schwierz, N.; Horinek, D.; Liese, S.; Pirzer, T.; Balzer, B.N.; Hugel, T.; Netz, R.R. On the Relationship between Peptide Adsorption Resistance and Surface Contact Angle: A Combined Experimental and Simulation Single-Molecule Study. J. Am. Chem. Soc. 2012, 134, 19628–19638. [Google Scholar]
- Ashjari, H.R.; Ahmadi, A.; Dorraji, M.S.S. Synthesis and Employment of PEGDA for Fabrication of Superhydrophilic PVDF/PEGDA Electrospun Nanofibrous Membranes by in-Situ Visible Photopolymerization. Korean J. Chem. Eng. 2018, 35, 289–297. [Google Scholar] [CrossRef]
- Tan, G.; Wang, Y.; Li, J.; Zhang, S. Synthesis and Characterization of Injectable Photocrosslinking Poly (Ethylene Glycol) Diacrylate Based Hydrogels. Polym. Bull. 2008, 61, 91–98. [Google Scholar] [CrossRef]
- Melinte, V.; Stroea, L.; Buruiana, T.; Chibac, A.L. Photocrosslinked Hybrid Composites with Ag, Au or Au-Ag NPs as Visible-Light Triggered Photocatalysts for Degradation/Reduction of Aromatic Nitroderivatives. Eur. Polym. J. 2019, 121, 109289. [Google Scholar] [CrossRef]
- Gu, Q.; Zhao, W.; Yuan, J.; Yao, Y.; Wang, Y.; Wu, W. Adsorption and Photodegradation Behaviors of In-Situ Growth TiO2 Films with Various Nano-Structures. Chem. Phys. Lett. 2019, 736, 136804. [Google Scholar] [CrossRef]
- Cano-Franco, J.C.; Alvarez-Lainez, M. Effect of CeO2 Content in Morphology and Optoelectronic Properties of TiO2-CeO2 Nanoparticles in Visible Light Organic Degradation. Mater. Sci. Semicond. Process. 2019, 90, 190–197. [Google Scholar] [CrossRef]
- Lee, S.J.; Jung, H.J.; Koutavarapu, R.; Lee, S.H.; Arumugam, M.; Kim, J.H.; Choi, M.Y. ZnO Supported Au/Pd Bimetallic Nanocomposites for Plasmon Improved Photocatalytic Activity for Methylene Blue Degradation under Visible Light Irradiation. Appl. Surf. Sci. 2019, 496, 143665. [Google Scholar]
- Zhang, T.; Oyama, T.; Aoshima, A.; Hidaka, H.; Zhao, J.; Serpone, N. Photooxidative N-Demethylation of Methylene Blue in Aqueous TiO2 Dispersions under UV Irradiation. J. Photochem. Photobiol. A Chem. 2001, 140, 163–172. [Google Scholar]
- Elkady, M.F.; El-Aassar, M.R.; Hassan, H.S. Adsorption Profile of Basic Dye onto Novel Fabricated Carboxylated Functionalized Co-Polymer Nanofibers. Polymers 2016, 8, 177. [Google Scholar] [PubMed]
- Kubacka, A.; Fuerte, A.; Martinez-Arias, A.; Fernandez-Garcia, M. Nanosized Ti–V Mixed Oxides: Effect of Doping Level in the Photo-Catalytic Degradation of Toluene Using Sunlight-Type Excitation. Appl. Catal. B Environ. 2007, 74, 26–33. [Google Scholar]
- Dai, Q.X.; Xiao, H.Y.; Li, W.S.; Na, Y.Q.; Zhou, X.P. Photodegradation Catalyst Screening by Combinatorial Methodology. Appl. Catal. A Gen. 2005, 290, 25–35. [Google Scholar]
- Ohshiro, S.; Chiyoda, O.; Maekawa, K.; Masui, Y.; Anpo, M.; Yamashita, H. Design of Cr-Oxide Photocatalyst Loaded on Zeolites and Mesoporous Silica as a Visible-Light-Sensitive Photocatalyst. Comptes Rendus Chim. 2006, 9, 846–850. [Google Scholar]
- Sharma, G.; Gupta, V.K.; Agarwal, S.; Kumar, A.; Thakur, S.; Pathania, D. Fabrication and Characterization of Fe@ MoPO Nanoparticles: Ion Exchange Behavior and Photocatalytic Activity against Malachite Green. J. Mol. Liq. 2016, 219, 1137–1143. [Google Scholar]
- Boote, B.W.; Byun, H.; Kim, J.-H. Silver–Gold Bimetallic Nanoparticles and Their Applications as Optical Materials. J. Nanosci. Nanotechnol. 2014, 14, 1563–1577. [Google Scholar] [CrossRef]
- Melinte, V.; Stroea, L.; Chibac-Scutaru, A.L. Polymer Nanocomposites for Photocatalytic Applications. Catalysts 2019, 9, 986. [Google Scholar]
- Devi, T.A.; Ananthi, N.; Amaladhas, T.P. Photobiological Synthesis of Noble Metal Nanoparticles Using Hydrocotyle Asiatica and Application as Catalyst for the Photodegradation of Cationic Dyes. J. Nanostructure Chem. 2016, 6, 75–92. [Google Scholar] [CrossRef]
- Mavaei, M.; Chahardoli, A.; Shokoohinia, Y.; Khoshroo, A.; Fattahi, A. One-Step Synthesized Silver Nanoparticles Using Isoimperatorin: Evaluation of Photocatalytic, and Electrochemical Activities. Sci. Rep. 2020, 10, 1762. [Google Scholar] [PubMed]
- Suvith, V.S.; Philip, D. Catalytic Degradation of Methylene Blue Using Biosynthesized Gold and Silver Nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 118, 526–532. [Google Scholar] [CrossRef] [PubMed]
- León, E.R.; Rodríguez, E.L.; Beas, C.R.; Plascencia-Villa, G.; Palomares, R.A.I. Study of Methylene Blue Degradation by Gold Nanoparticles Synthesized within Natural Zeolites. J. Nanomater. 2016, 2016, 9541683. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Zekker, I.; Zhang, B.; Hendi, A.H.; Ahmad, A.; Ahmad, S.; Zada, N.; Ahmad, H.; Shah, L.A.; et al. Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water 2022, 14, 242. [Google Scholar]
Sample | Membrane | PEGDA | ||
---|---|---|---|---|
PP/Au | PP | 95 | - | 4 |
PP/Ag | PP | 96 | 3 | - |
PBT/Au | PBT | 95 | - | 4 |
PBT/Ag | PBT | 96 | 3 | - |
PP/Au/Ag | PP | 95 | 2 | 2 |
PBT/Au/Ag | PBT | 95 | 2 | 2 |
Sample | Percentage of Degradation of MB Dye (1 min) | Percentage of Degradation of MB Dye (90 min) |
---|---|---|
PP/Au | 12.5 | 53.8 |
PP/Ag | 23.4 | 55.1 |
PBT/Au | 12.5 | 56.6 |
PBT/Ag | 22.1 | 62 |
Sample | Percentage of Degradation of MB Dye (1 min) | Percentage of Degradation of MB Dye (90 min) |
---|---|---|
PP/Au | 25 | 88 |
PP/Ag | 23 | 85 |
PBT/Au | 25 | 89 |
PBT/Ag | 27 | 91 |
Sample | Percentage of Degradation of MB Dye (1 min) | Percentage of Degradation of MB Dye (90 min) |
---|---|---|
PP/Au/Ag | 50 | 92 |
PBT/Au/Ag | 61 | 97 |
Sample No. | Rate Constants k (min−1) LED | Rate Constants k (min−1) SL |
---|---|---|
PP/Au | 0.00587 | 0.01186 |
PP/Ag | 0.00551 | 0.01615 |
PBT/Au | 0.00741 | 0.02018 |
PBT/Ag | 0.0081 | 0.02184 |
Sample | Zone of Inhibition (mm) |
---|---|
PP/Au/Ag (3) | 17.02 ± 0.33 |
PP/Au (39) | - |
PP/Ag (4) | 16.08 ± 0.21 |
PBT/Au/Ag (43) | 15.94 ± 0.51 |
PBT/Au (40) | - |
PBT/Ag (44) | - |
Control-PP (C1) | - |
Control-PBT (C2) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldebasi, S.M.; Tar, H.; Alnafisah, A.S.; Salmi-Mani, H.; Kouki, N.; Alminderej, F.M.; Lalevée, J. Surface Modification of PP and PBT Nonwoven Membranes for Enhanced Efficiency in Photocatalytic MB Dye Removal and Antibacterial Activity. Polymers 2023, 15, 3378. https://doi.org/10.3390/polym15163378
Aldebasi SM, Tar H, Alnafisah AS, Salmi-Mani H, Kouki N, Alminderej FM, Lalevée J. Surface Modification of PP and PBT Nonwoven Membranes for Enhanced Efficiency in Photocatalytic MB Dye Removal and Antibacterial Activity. Polymers. 2023; 15(16):3378. https://doi.org/10.3390/polym15163378
Chicago/Turabian StyleAldebasi, Shahad M., Haja Tar, Abrar S. Alnafisah, Hanène Salmi-Mani, Noura Kouki, Fahad M. Alminderej, and Jacques Lalevée. 2023. "Surface Modification of PP and PBT Nonwoven Membranes for Enhanced Efficiency in Photocatalytic MB Dye Removal and Antibacterial Activity" Polymers 15, no. 16: 3378. https://doi.org/10.3390/polym15163378
APA StyleAldebasi, S. M., Tar, H., Alnafisah, A. S., Salmi-Mani, H., Kouki, N., Alminderej, F. M., & Lalevée, J. (2023). Surface Modification of PP and PBT Nonwoven Membranes for Enhanced Efficiency in Photocatalytic MB Dye Removal and Antibacterial Activity. Polymers, 15(16), 3378. https://doi.org/10.3390/polym15163378