Synthesis and Application of ZSM-5 Catalyst Supported with Zinc and/or Nickel in the Conversion of Pyrolytic Gases from Recycled Polypropylene and Polystyrene Mixtures under Hydrogen Atmosphere
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Preparation of Zeolite ZSM-5
2.3. Synthesis of Ni/ZSM-5 and Zn-Ni/ZSM-5 Catalysts
2.4. Catalyst Characterization
2.5. Pyrolysis Conditions
3. Results
3.1. Characterization of Polypropylene and Polystyrene Waste
3.2. Physicochemical Characterization of Ni/ZSM-5 and Ni-Zn/ZSM-5
3.3. Studies of Catalytic Activity in Pyrolysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wong, S.L.; Ngadi, N.; Abdullah, T.A.T.; Inuwa, I.M. Current state and future prospects of plastic waste as source of fuel: A reviekw. Renew. Sustain. Energy Rev. 2015, 50, 1167–1180. [Google Scholar] [CrossRef]
- Miandad, R.; Rehan, M.; Barakat, M.A.; Aburiazaiza, A.S.; Khan, H.; Ismail, I.M.I.; Dhavamani, J.; Gardy, J.; Hassanpour, A.; Nizami, A.S. Catalytic pyrolysis of plastic waste: Moving toward pyrolysis based biorefineries. Front. Energy Res. 2019, 7, 27. [Google Scholar] [CrossRef] [Green Version]
- Saebea, D.; Ruengrit, P.; Arpornwichanop, A.; Patcharavorachot, Y. Gasification of plastic waste for synthesis gas production. Energy Rep. 2020, 6, 202–207. [Google Scholar] [CrossRef]
- Palmay, P.; Puente, C.; Haro, C.; Bruno, J.C.; Coronas, A. Bio Oil as Cutter Stock in Fuel Oil Blends for Industrial Applications. Energies 2023, 16, 1485. [Google Scholar] [CrossRef]
- Hahladakis, J.N.; Iacovidou, E.; Gerassimidou, S. Plastic waste in a circular economy. In Plastic Waste and Recycling; Elsevier: Amsterdam, The Netherlands, 2020; pp. 481–512. [Google Scholar] [CrossRef]
- Palmay, P.; Puente, C.; Barzallo, D.; Bruno, J.C. Determination of the Thermodynamic Parameters of the Pyrolysis Process of Post-Consumption Thermoplastics by Non-Isothermal Thermogravimetric Analysis. Polymers 2021, 13, 4379. [Google Scholar] [CrossRef]
- Palmay, P.; Haro, C.; Huacho, I.; Barzallo, D.; Bruno, J.C. Production and Analysis of the Physicochemical Properties of the Pyrolytic Oil Obtained from Pyrolysis of Different Thermoplastics and Plastic Mixtures. Molecules 2022, 27, 3287. [Google Scholar] [CrossRef]
- Qureshi, M.S.; Oasmaa, A.; Pihkola, H.; Deviatkin, I.; Tenhunen, A.; Mannila, J.; Minkkinen, H.; Pohjakallio, M.; Laine-Ylijoki, J. Pyrolysis of plastic waste: Opportunities and challenges. J. Anal. Appl. Pyrolysis 2020, 152, 104804. [Google Scholar] [CrossRef]
- Palmay, P.; Medina, C.; Donoso, C.; Barzallo, D.; Bruno, J.C. Catalytic pyrolysis of recycled polypropylene using a regenerated FCC catalyst. Clean. Technol. Environ. Policy 2023, 25, 1539–1549. [Google Scholar] [CrossRef]
- Palmay, P.; Mora, M.; Barzallo, D.; Bruno, J.C. Determination of Thermodynamic Parameters of Polylactic Acid by Thermogravimetry under Pyrolysis Conditions. Appl. Sci. 2021, 11, 10192. [Google Scholar] [CrossRef]
- Fadillah, G.; Fatimah, I.; Sahroni, I.; Musawwa, M.M.; Mahlia, T.M.I.; Muraza, O. Recent Progress in Low-Cost Catalysts for Pyrolysis of Plastic Waste to Fuels. Catalysts 2021, 11, 837. [Google Scholar] [CrossRef]
- Dai, L.; Zhou, N.; Lv, Y.; Cobb, K.; Cheng, Y.; Wang, Y.; Liu, Y.; Chen, P.; Zou, R.; Lei, H.; et al. Pyrolysis-catalysis for waste polyolefin conversion into low aromatic naphtha. Energy Convers. Manag. 2021, 245, 114578. [Google Scholar] [CrossRef]
- López, A.; de Marco, I.; Caballero, B.M.; Laresgoiti, M.F.; Adrados, A.; Aranzabal, A. Catalytic pyrolysis of plastic wastes with two different types of catalysts: ZSM-5 zeolite and Red Mud. Appl. Catal. B 2011, 104, 211–219. [Google Scholar] [CrossRef]
- Mahfud, F.H.; Ghijsen, F.; Heeres, H.J. Hydrogenation of fast pyrolyis oil and model compounds in a two-phase aqueous organic system using homogeneous ruthenium catalysts. J. Mol. Catal. A Chem. 2007, 264, 227–236. [Google Scholar] [CrossRef] [Green Version]
- Sekar, M.; Praveenkumar, T.R.; Dhinakaran, V.; Gunasekar, P.; Pugazhendhi, A. Combustion and emission characteristics of diesel engine fueled with nanocatalyst and pyrolysis oil produced from the solid plastic waste using screw reactor. J. Clean. Prod. 2021, 318, 128551. [Google Scholar] [CrossRef]
- Hernández, M.d.R.; Gómez, A.; García, Á.N.; Agulló, J.; Marcilla, A. Effect of the temperature in the nature and extension of the primary and secondary reactions in the thermal and HZSM-5 catalytic pyrolysis of HDPE. Appl. Catal. A Gen. 2007, 317, 183–194. [Google Scholar] [CrossRef]
- Syamsiro, M.; Saptoadi, H.; Norsujianto, T.; Noviasri, P.; Cheng, S.; Alimuddin, Z.; Yoshikawa, K. Fuel Oil Production from Municipal Plastic Wastes in Sequential Pyrolysis and Catalytic Reforming Reactors. Energy Procedia 2014, 47, 180–188. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.; Li, C.; Shan, R.; Zhang, J.; Wu, Y.; Chen, Y. Recent developments on the zeolites catalyzed polyolefin plastics pyrolysis. Fuel Process. Technol. 2022, 238, 107531. [Google Scholar] [CrossRef]
- Marino, A.; Aloise, A.; Hernando, H.; Fermoso, J.; Cozza, D.; Giglio, E.; Migliori, M.; Pizarro, P.; Giordano, G.; Serrano, D.P. ZSM-5 zeolites performance assessment in catalytic pyrolysis of PVC-containing real WEEE plastic wastes. Catal. Today 2022, 390–391, 210–220. [Google Scholar] [CrossRef]
- Miandad, R.; Barakat, M.A.; Aburiazaiza, A.S.; Rehan, M.; Nizami, A.S. Catalytic pyrolysis of plastic waste: A review. Process Saf. Environ. Prot. 2016, 102, 822–838. [Google Scholar] [CrossRef]
- Sánchez-López, P.; Kotolevich, Y.; Yocupicio-Gaxiola, R.I.; Antúnez-García, J.; Chowdari, R.K.; Petranovskii, V.; Fuentes-Moyado, S. Recent Advances in Catalysis Based on Transition Metals Supported on Zeolites. Front. Chem. 2021, 9, 716745. [Google Scholar] [CrossRef]
- Sriningsih, W.; Saerodji, M.G.; Trisunaryanti, W.; Triyono; Armunanto, R.; Falah, I.I. Fuel Production from LDPE Plastic Waste over Natural Zeolite Supported Ni, Ni-Mo, Co and Co-Mo Metals. Procedia Environ. Sci. 2014, 20, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Maia, A.J.; Louis, B.; Lam, Y.L.; Pereira, M.M. Ni-ZSM-5 catalysts: Detailed characterization of metal sites for proper catalyst design. J. Catal. 2010, 269, 103–109. [Google Scholar] [CrossRef]
- Pan, T.; Ge, S.; Yu, M.; Ju, Y.; Zhang, R.; Wu, P.; Zhou, K.; Wu, Z. Synthesis and consequence of Zn modified ZSM-5 zeolite supported Ni catalyst for catalytic aromatization of olefin/paraffin. Fuel 2022, 311, 122629. [Google Scholar] [CrossRef]
- Iliopoulou, E.F.; Stefanidis, S.D.; Kalogiannis, K.G.; Delimitis, A.; Lappas, A.A.; Triantafyllidis, K.S. Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite. Appl. Catal. B 2012, 127, 281–290. [Google Scholar] [CrossRef]
- Oseke, G.G.; Atta, A.Y.; Mukhtar, B.; El-Yakubu, B.J.; Aderemi, B.O. Synergistic effect of Zn with Ni on ZSM-5 as propane aromatization catalyst: Effect of temperature and feed flowrate. J. Porous Mater. 2022, 29, 1839–1852. [Google Scholar] [CrossRef]
- Miskolczi, N.; Juzsakova, T.; Sója, J. Preparation and application of metal loaded ZSM-5 and y-zeolite catalysts for thermo-catalytic pyrolysis of real end of life vehicle plastics waste. J. Energy Inst. 2019, 92, 118–127. [Google Scholar] [CrossRef]
- Wang, L.; Lei, H.; Bu, Q.; Ren, S.; Wei, Y.; Zhu, L.; Zhang, X.; Liu, Y.; Yadavalli, G.; Lee, J.; et al. Aromatic hydrocarbons production from ex situ catalysis of pyrolysis vapor over Zinc modified ZSM-5 in a packed-bed catalysis coupled with microwave pyrolysis reactor. Fuel 2014, 129, 78–85. [Google Scholar] [CrossRef]
- Stanton, A.R.; Iisa, K.; Yung, M.M.; Magrini, K.A. Catalytic fast pyrolysis with metal-modified ZSM-5 catalysts in inert and hydrogen atmospheres. J. Anal. Appl. Pyrolysis 2018, 135, 199–208. [Google Scholar] [CrossRef]
- Yung, M.M.; Stanton, A.R.; Iisa, K.; French, R.J.; Orton, K.A.; Magrini, K.A. Multiscale Evaluation of Catalytic Upgrading of Biomass Pyrolysis Vapors on Ni- and Ga-Modified ZSM-5. Energy Fuels 2016, 30, 9471–9479. [Google Scholar] [CrossRef]
- Wei, Q.; Zhang, P.; Liu, X.; Huang, W.; Fan, X.; Yan, Y.; Zhang, R.; Wang, L.; Zhou, Y. Synthesis of Ni-Modified ZSM-5 Zeolites and Their Catalytic Performance in n-Octane Hydroconversion. Front. Chem. 2020, 8, 1167. [Google Scholar] [CrossRef]
- Rehan, M.; Miandad, R.; Barakat, M.A.; Ismail, I.M.I.; Almeelbi, T.; Gardy, J.; Hassanpour, A.; Khan, M.Z.; Demirbas, A.; Nizami, A.S. Effect of zeolite catalysts on pyrolysis liquid oil. Int. Biodeterior. Biodegrad. 2017, 119, 162–175. [Google Scholar] [CrossRef]
- Fang, S.; Shi, C.; Jiang, L.; Li, P.; Bai, J.; Chang, C. Influence of metal (Fe/Zn) modified ZSM-5 catalysts on product characteristics based on the bench-scale pyrolysis and Py-GC/MS of biomass. Int. J. Energy Res. 2020, 44, 5455–5467. [Google Scholar] [CrossRef]
- Cai, R.; Pei, X.; Pan, H.; Wan, K.; Chen, H.; Zhang, Z.; Zhang, Y. Biomass Catalytic Pyrolysis over Zeolite Catalysts with an Emphasis on Porosity and Acidity: A State-of-the-Art Review. Energy Fuels 2020, 34, 11771–11790. [Google Scholar] [CrossRef]
- Aranzabal, A.; González-Marcos, J.A.; Romero-Sáez, M.; González-Velasco, J.R.; Guillemot, M.; Magnoux, P. Stability of protonic zeolites in the catalytic oxidation of chlorinated VOCs (1,2-dichloroethane). Appl. Catal. B 2009, 88, 533–541. [Google Scholar] [CrossRef]
- Xu, D.; Feng, J.; Che, S. An insight into the role of the surfactant CTAB in the formation of microporous molecular sieves. Dalton Trans. 2014, 43, 3612–3617. [Google Scholar] [CrossRef] [PubMed]
- Yao, D.; Yang, H.; Chen, H.; Williams, P.T. Investigation of nickel-impregnated zeolite catalysts for hydrogen/syngas production from the catalytic reforming of waste polyethylene. Appl. Catal. B 2018, 227, 477–487. [Google Scholar] [CrossRef]
Catalyst | Specific Surface Area m2 g−1 | Pore Volume cm3 g−1 | Number of Acid Sites mmol·g−1 |
---|---|---|---|
ZSM-5 | 354 | 0.10 | 0.103 |
Ni/ZSM-5 | 180 | 0.41 | 0.187 |
Ni-Zn/ZSM-5 | 138 | 0.32 | 0.626 |
Peak Number in Chromatogram | tr (min) | Compound | % Abundance |
---|---|---|---|
1 | 1.55 | Toluene | 4.77 |
2 | 1.63 | Heptane, 2,4-dimethyl- | 0.20 |
3 | 1.68 | 2,4-Dimethyl-1-heptene | 5.33 |
4 | 1.75 | Ethylbenzene | 7.02 |
5 | 1.89 | Bicyclo [4.2.0] octa-1,3,5-triene | 16.61 |
6 | 1.97 | Benzene, (1-methylethyl)- | 2.56 |
7 | 2.09 | Benzene, propyl- | 0.13 |
8 | 2.24 | alpha-Methylstyrene | 11.11 |
9 | 2.36 | Tridecane, 4-methyl- | 0.13 |
10 | 2.38 | Heptane, 4-methyl- | 0.16 |
11 | 2.50 | Benzene, 2-propenyl- | 0.34 |
12 | 2.72 | Benzene, (2-methylpropyl)- | 0.40 |
13 | 2.88 | 2-Decenal | 0.51 |
14 | 2.92 | Cyclopropane, 1,1-dimethyl- | 0.39 |
15 | 3.34 | 4-Pentenal, 2-ethyl- | 0.19 |
16 | 3.49 | Benzene, 3-pentenyl- | 0.37 |
17 | 5.91 | 2-Decene, 7-methyl- | 0.91 |
18 | 6.05 | Hexane, 2,3,4-trimethyl- | 0.32 |
19 | 6.15 | Benzene, (3-methylbutyl)- | 0.53 |
20 | 6.22 | Hexane, 2,3,4-trimethyl- | 0.65 |
21 | 7.08 | Benzene, (1-methylenebutyl)- | 0.34 |
22 | 7.45 | Benzene, 3-pentenyl- | 0.31 |
23 | 10.01 | Bibenzyl | 0.39 |
24 | 10.70 | Benzene, 1,1′-(1-methyl-1,2-ethanediyl) bis- | 0.43 |
25 | 13.01 | Benzene, 1,1′-(1,3-propanediyl) bis | 15.53 |
26 | 13.19 | 1,2-Diphenylcyclopropane | 0.30 |
27 | 13.53 | p-Xylene | 3.02 |
28 | 14.37 | 3-Butynylbenzene | 9.09 |
29 | 14.52 | Ethanone, 2-(2-ethenylphenyl)-1-phenyl- | 1.56 |
30 | 14.61 | 1,2-Diphenylcyclopropane | 2.64 |
31 | 14.81 | Cyclohexane, 1,2,4-trimethyl- | 0.35 |
32 | 14.95 | Benzene, 1,1′-(1,4-butanediyl) bis- | 0.41 |
33 | 15.39 | Benzene, 1,1′-(3-methyl-1-propene-1,3-diyl) bis- | 0.67 |
34 | 15.84 | Benzene, 1,1′-(3-methyl-1-propene-1,3-diyl) bis- | 0.32 |
35 | 16.24 | Benzene, 1,1′-(1-butene-1,4-diyl) bis- | 0.53 |
36 | 16.88 | Naphthalene, 1-phenyl- | 0.55 |
37 | 19.02 | Naphthalene, 2-phenyl- | 1.02 |
38 | 19.34 | Spiro (tricyclo [6.2.1.0(2,7)] undeca-2,4,6-triene)-7,1′-cyclopropane | 0.44 |
39 | 22.25 | m-Terphenyl | 0.35 |
40 | 22.89 | p-Terphenyl | 0.29 |
41 | 27.17 | trans-2-Phenyl-1-cyclohexanol | 2.1 |
42 | 27.31 | 1-benzyloxy-3-methyl-4H-1,2,4-triazol-3-ol, 5-[(phenylmethyl) | 3.28 |
43 | 30.89 | 1,1′:2′,1″-Terphenyl, 4′-phenyl- | 1.18 |
44 | 34.23 | 1,1′:3′,1″-Terphenyl, 5′-phenyl- | 2.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barzallo, D.; Lazo, R.; Medina, C.; Guashpa, C.; Tacuri, C.; Palmay, P. Synthesis and Application of ZSM-5 Catalyst Supported with Zinc and/or Nickel in the Conversion of Pyrolytic Gases from Recycled Polypropylene and Polystyrene Mixtures under Hydrogen Atmosphere. Polymers 2023, 15, 3329. https://doi.org/10.3390/polym15163329
Barzallo D, Lazo R, Medina C, Guashpa C, Tacuri C, Palmay P. Synthesis and Application of ZSM-5 Catalyst Supported with Zinc and/or Nickel in the Conversion of Pyrolytic Gases from Recycled Polypropylene and Polystyrene Mixtures under Hydrogen Atmosphere. Polymers. 2023; 15(16):3329. https://doi.org/10.3390/polym15163329
Chicago/Turabian StyleBarzallo, Diego, Rafael Lazo, Carlos Medina, Carlos Guashpa, Carla Tacuri, and Paúl Palmay. 2023. "Synthesis and Application of ZSM-5 Catalyst Supported with Zinc and/or Nickel in the Conversion of Pyrolytic Gases from Recycled Polypropylene and Polystyrene Mixtures under Hydrogen Atmosphere" Polymers 15, no. 16: 3329. https://doi.org/10.3390/polym15163329
APA StyleBarzallo, D., Lazo, R., Medina, C., Guashpa, C., Tacuri, C., & Palmay, P. (2023). Synthesis and Application of ZSM-5 Catalyst Supported with Zinc and/or Nickel in the Conversion of Pyrolytic Gases from Recycled Polypropylene and Polystyrene Mixtures under Hydrogen Atmosphere. Polymers, 15(16), 3329. https://doi.org/10.3390/polym15163329