Electrochemical Crosslinking of Alginate—Towards Doped Carbons for Oxygen Reduction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nanocomposite Preparation
2.2. Characterization
2.3. Electrochemical Measurements
3. Results
3.1. Microscopy
3.2. Raman and FTIR Spectroscopy
3.3. Electrochemistry
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ramli, Z.A.C.; Kamarudin, S.K. Platinum-Based Catalysts on Various Carbon Supports and Conducting Polymers for Direct Methanol Fuel Cell Applications: A Review. Nanoscale Res. Lett. 2018, 13, 410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popadić, D.; Gavrilov, N.; Krstić, J.; Nedić Vasiljević, B.; Janošević Ležaić, A.; Uskoković-Marković, S.; Milojević-Rakić, M.; Bajuk-Bogdanović, D. Spectral Evidence of Acetamiprid’s Thermal Degradation Products and Mechanism. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 301, 122987. [Google Scholar] [CrossRef]
- Popadić, D.; Gavrilov, N.; Ignjatović, L.; Krajišnik, D.; Mentus, S.; Milojević-Rakić, M.; Bajuk-Bogdanović, D. How to Obtain Maximum Environmental Applicability from Natural Silicates. Catalysts 2022, 12, 519. [Google Scholar] [CrossRef]
- Rupar, J.; Tekić, D.; Janošević Ležaić, A.; Upadhyay, K.K. ORR Catalysts Derived from Biopolymers. Catalysts 2022, 13, 80. [Google Scholar] [CrossRef]
- Wang, M.; Wang, S.; Yang, H.; Ku, W.; Yang, S.; Liu, Z.; Lu, G. Carbon-Based Electrocatalysts Derived from Biomass for Oxygen Reduction Reaction: A Minireview. Front. Chem. 2020, 8, 116. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Hwang, S.; Wang, M.; Feng, Z.; Karakalos, S.; Luo, L.; Qiao, Z.; Xie, X.; Wang, C.; Su, D.; et al. Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation. J. Am. Chem. Soc. 2017, 139, 14143–14149. [Google Scholar] [CrossRef] [PubMed]
- Niu, S.; Jiang, W.-J.; Wei, Z.; Tang, T.; Ma, J.; Hu, J.-S.; Wan, L.-J. Se-Doping Activates FeOOH for Cost-Effective and Efficient Electrochemical Water Oxidation. J. Am. Chem. Soc. 2019, 141, 7005–7013. [Google Scholar] [CrossRef]
- Chung, H.T.; Won, J.H.; Zelenay, P. Active and Stable Carbon Nanotube/Nanoparticle Composite Electrocatalyst for Oxygen Reduction. Nat. Commun. 2013, 4, 1922. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Cheng, H.; Qu, Z.; Yu, R.; Liu, F.; Ma, Q.; Zhao, S.; Hu, H.; Cheng, Y.; Yang, C.; et al. Recent Progress on the Synthesis and Oxygen Reduction Applications of Fe-Based Single-Atom and Double-Atom Catalysts. J. Mater. Chem. A 2021, 9, 19489–19507. [Google Scholar] [CrossRef]
- Xu, D.; Li, X.; Zheng, T.; Zhao, R.; Zhang, P.; Li, K.; Li, Z.; Zheng, L.; Zuo, X. The Performance of an Atomically Dispersed Oxygen Reduction Catalyst Prepared by γ-CD-MOF Integration with FePc. Nanoscale Adv. 2022, 4, 2171–2179. [Google Scholar] [CrossRef]
- Su, W.; Yan, N.; Liu, F.; Liu, Z.; Zhu, G.; Wang, S.; Liu, X.; Wang, W. Investigations on the ORR Catalytic Performance Attenuation of a 1D Fe Single-Atom Catalyst during the Discharge Process. J. Phys. Chem. C 2022, 126, 4826–4835. [Google Scholar] [CrossRef]
- Morozan, A.; Campidelli, S.; Filoramo, A.; Jousselme, B.; Palacin, S. Catalytic Activity of Cobalt and Iron Phthalocyanines or Porphyrins Supported on Different Carbon Nanotubes towards Oxygen Reduction Reaction. Carbon 2011, 49, 4839–4847. [Google Scholar] [CrossRef]
- Mi, X.; Gao, B.; Tan, X.; Xie, M.; Gao, C.; Liu, Y.; Gao, J. Preparation of Iron and Nitrogen Co-Doped Carbon Material Fe/N-CCM-T for Oxygen Reduction Reaction. Int. J. Hydrogen Energy 2021, 46, 5332–5344. [Google Scholar] [CrossRef]
- Sung, H.; Sharma, M.; Jang, J.; Lee, S.Y.; Choi, M.G.; Lee, K.; Jung, N. Boosting the Oxygen Reduction Activity of a Nano-Graphene Catalyst by Charge Redistribution at the Graphene-Metal Interface. Nanoscale 2019, 11, 5038–5047. [Google Scholar] [CrossRef] [PubMed]
- Mun, Y.; Lee, S.; Kim, K.; Kim, S.; Lee, S.; Han, J.W.; Lee, J. Versatile Strategy for Tuning ORR Activity of a Single Fe-N 4 Site by Controlling Electron-Withdrawing/Donating Properties of a Carbon Plane. J. Am. Chem. Soc. 2019, 141, 6254–6262. [Google Scholar] [CrossRef] [PubMed]
- Malko, D.; Kucernak, A.; Lopes, T. In Situ Electrochemical Quantification of Active Sites in Fe–N/C Non-Precious Metal Catalysts. Nat. Commun. 2016, 7, 13285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, D.; He, T.; Albashir, A.I.M.; Tan, Y.; Ran, F. Iron-Doped Carbon Electrode Materials Derived from Polyethersulfone. J. Energy Storage 2021, 33, 102099. [Google Scholar] [CrossRef]
- Kumar, A.; Zhang, Y.; Liu, W.; Sun, X. The Chemistry, Recent Advancements and Activity Descriptors for Macrocycles Based Electrocatalysts in Oxygen Reduction Reaction. Coord. Chem. Rev. 2020, 402, 213047. [Google Scholar] [CrossRef]
- Hong, Y.; Li, L.; Huang, B.; Tang, X.; Zhai, W.; Hu, T.; Yuan, K.; Chen, Y. Molecular Control of Carbon-Based Oxygen Reduction Electrocatalysts through Metal Macrocyclic Complexes Functionalization. Adv. Energy Mater. 2021, 11, 2100866. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, H.; Hua, X.; Chen, S. Tailoring Molecular Architectures of Fe Phthalocyanine on Nanocarbon Supports for High Oxygen Reduction Performance. J. Mater. Chem. A 2015, 3, 10013–10019. [Google Scholar] [CrossRef]
- Das, S.; Ghosh, S.; Kuila, T.; Murmu, N.C.; Kundu, A. Biomass-Derived Advanced Carbon-Based Electrocatalysts for Oxygen Reduction Reaction. Biomass 2022, 2, 155–177. [Google Scholar] [CrossRef]
- Zhu, C.; Fu, S.; Shi, Q.; Du, D.; Lin, Y. Single-Atom Electrocatalysts. Angew. Chem. Int. Ed. 2017, 56, 13944–13960. [Google Scholar] [CrossRef]
- Yang, G.; Choi, W.; Pu, X.; Yu, C. Scalable Synthesis of Bi-Functional High-Performance Carbon Nanotube Sponge Catalysts and Electrodes with Optimum C–N–Fe Coordination for Oxygen Reduction Reaction. Energy Environ. Sci. 2015, 8, 1799–1807. [Google Scholar] [CrossRef]
- Da Silva, A.C.; Wang, J.; Minev, I.R. Electro-Assisted Printing of Soft Hydrogels via Controlled Electrochemical Reactions. Nat. Commun. 2022, 13, 1353. [Google Scholar] [CrossRef] [PubMed]
- Preuss, K.; Siwoniku, A.M.; Bucur, C.I.; Titirici, M. The Influence of Heteroatom Dopants Nitrogen, Boron, Sulfur, and Phosphorus on Carbon Electrocatalysts for the Oxygen Reduction Reaction. Chempluschem 2019, 84, 457–464. [Google Scholar] [CrossRef]
- Lv, Y.; Yang, L.; Cao, D. Sulfur, Nitrogen and Fluorine Triple-Doped Metal-Free Carbon Electrocatalysts for the Oxygen Reduction Reaction. ChemElectroChem 2019, 6, 741–747. [Google Scholar] [CrossRef]
- Rupar, J.; Bajuk-Bogdanović, D.; Milojević-Rakić, M.; Krstić, J.; Upadhyay, K.; Gavrilov, N.; Janošević Ležaić, A. Tailored Porosity Development in Carbons via Zn2+ Monodispersion: Fitting Supercapacitors. Microporous Mesoporous Mater. 2022, 335, 111790. [Google Scholar] [CrossRef]
- Hui, T.S.; Zaini, M.A.A. Potassium Hydroxide Activation of Activated Carbon: A Commentary. Carbon Lett. 2015, 16, 275–280. [Google Scholar] [CrossRef] [Green Version]
- Massana Roquero, D.; Othman, A.; Melman, A.; Katz, E. Iron(III)-Cross-Linked Alginate Hydrogels: A Critical Review. Mater. Adv. 2022, 3, 1849–1873. [Google Scholar] [CrossRef]
- Wu, X.-L.; Chen, L.-L.; Xin, S.; Yin, Y.-X.; Guo, Y.-G.; Kong, Q.-S.; Xia, Y.-Z. Preparation and Li Storage Properties of Hierarchical Porous Carbon Fibers Derived from Alginic Acid. ChemSusChem 2010, 3, 703–707. [Google Scholar] [CrossRef]
- Jia, N.; Li, D.; Huang, G.; Sun, J.; Lu, P.; Wan, L.; Hui, B.; She, X.; Zhao, X. Carbon Fibers-Coated Co@N-Doped Porous Carbon Derived from ZIF-67/Alginate Fibers for Efficient Oxygen Reduction Reaction. J. Photonics Energy 2020, 10, 023507. [Google Scholar] [CrossRef]
- Yu, L.-Q.; Xia, W.-J.; Ma, W.-J.; Wen, T.-E.; Chen, S.-L.; Jin, F.; Huang, B.-C.; Jin, R.-C. Universal Method to Fabricate Transition Metal Single-Atom-Anchored Carbon with Excellent Oxygen Reduction Reaction Activity. ACS Appl. Mater. Interfaces 2021, 13, 13534–13540. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Lv, C.; Liu, L.; Xia, Y.; She, X.; Guo, S.; Yang, D. Egg-Box Structure in Cobalt Alginate: A New Approach to Multifunctional Hierarchical Mesoporous N-Doped Carbon Nanofibers for Efficient Catalysis and Energy Storage. ACS Cent. Sci. 2015, 1, 261–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; Yu, X.; Xin, S.; Chen, S.; Bao, C.; Xu, W.; Xue, J.; Hui, B.; Zhang, J.; She, X.; et al. Enhanced Oxygen Reduction Reaction for Zn-Air Battery at Defective Carbon Fibers Derived from Seaweed Polysaccharide. Appl. Catal. B Environ. 2022, 301, 120785. [Google Scholar] [CrossRef]
- Shu, J.; Niu, Q.; Wang, N.; Nie, J.; Ma, G. Alginate Derived Co/N Doped Hierarchical Porous Carbon Microspheres for Efficient Oxygen Reduction Reaction. Appl. Surf. Sci. 2019, 485, 520–528. [Google Scholar] [CrossRef]
- Ma, N.; Jia, Y. (Alec); Yang, X.; She, X.; Zhang, L.; Peng, Z.; Yao, X.; Yang, D. Seaweed Biomass Derived (Ni,Co)/CNT Nanoaerogels: Efficient Bifunctional Electrocatalysts for Oxygen Evolution and Reduction Reactions. J. Mater. Chem. A 2016, 4, 6376–6384. [Google Scholar] [CrossRef]
- Liu, L.; Yang, X.; Ma, N.; Liu, H.; Xia, Y.; Chen, C.; Yang, D.; Yao, X. Scalable and Cost-Effective Synthesis of Highly Efficient Fe 2 N-Based Oxygen Reduction Catalyst Derived from Seaweed Biomass. Small 2016, 12, 1295–1301. [Google Scholar] [CrossRef]
- Zhan, T.; Lu, S.; Liu, X.; Teng, H.; Hou, W. Alginate Derived Co3O4/Co Nanoparticles Decorated in N-Doped Porous Carbon as an Efficient Bifunctional Catalyst for Oxygen Evolution and Reduction Reactions. Electrochim. Acta 2018, 265, 681–689. [Google Scholar] [CrossRef]
- Bimendra Gunatilake, U.; Venkatesan, M.; Basabe-Desmonts, L.; Benito-Lopez, F. Ex Situ and in Situ Magnetic Phase Synthesised Magneto-Driven Alginate Beads. J. Colloid Interface Sci. 2022, 610, 741–750. [Google Scholar] [CrossRef]
- Li, M.; Han, K.; Teng, Z.; Li, J.; Wang, M.; Li, X. Comparison of Porous Carbons Derived from Sodium Alginate and Calcium Alginate and Their Electrochemical Properties. RSC Adv. 2020, 10, 2209–2215. [Google Scholar] [CrossRef]
- Katagiri, G.; Ishida, H.; Ishitani, A. Raman Spectra of Graphite Edge Planes. Carbon 1988, 26, 565–571. [Google Scholar] [CrossRef]
- Miller, F.A.; Wilkins, C.H. Infrared Spectra and Characteristic Frequencies of Inorganic Ions. Anal. Chem. 1952, 24, 1253–1294. [Google Scholar] [CrossRef]
- Fang, H.; Huang, T.; Mao, J.; Yao, S.; Dinesh, M.M.; Sun, Y.; Liang, D.; Qi, L.; Yu, J.; Jiang, Z. Investigation on the Catalytic Performance of Reduced-Graphene-Oxide-Interpolated FeS2 and FeS for Oxygen Reduction Reaction. ChemistrySelect 2018, 3, 10418–10427. [Google Scholar] [CrossRef] [Green Version]
- Ai, W.; Luo, Z.; Jiang, J.; Zhu, J.; Du, Z.; Fan, Z.; Xie, L.; Zhang, H.; Huang, W.; Yu, T. Nitrogen and Sulfur Codoped Graphene: Multifunctional Electrode Materials for High-Performance Li-Ion Batteries and Oxygen Reduction Reaction. Adv. Mater. 2014, 26, 6186–6192. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; More, K.L.; Johnston, C.M.; Zelenay, P. High-Performance Electrocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt. Science 2011, 332, 443–447. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Li, Z.; Deng, Y.; Zhao, Z.; Li, X.; Xia, Y. Facile Synthesis of Gold Nanoparticles with Alginate and Its Catalytic Activity for Reduction of 4-Nitrophenol and H2O2 Detection. Materials 2017, 10, 557. [Google Scholar] [CrossRef]
- Liu, H.; Qin, Y.; Li, H.; Gai, L.; An, Q.; Zhai, S.; Xiao, Z.; Cui, L. Promotional Effect of Embedded Ni NPs in Alginate-Based Carbon toward Pd NPs Efficiency for High-Concentration p-Nitrophenol Reduction. Int. J. Biol. Macromol. 2021, 173, 160–167. [Google Scholar] [CrossRef]
- Liu, B.; Wang, S.; Song, F.; Liu, Q. Boosting Oxygen Electrocatalysis by Combining Iron Nanoparticles with Single Atoms. Catalysts 2022, 12, 585. [Google Scholar] [CrossRef]
- Borghei, M.; Lehtonen, J.; Liu, L.; Rojas, O.J. Advanced Biomass-Derived Electrocatalysts for the Oxygen Reduction Reaction. Adv. Mater. 2018, 30, 1703691. [Google Scholar] [CrossRef]
- Talukder, N.; Wang, Y.; Nunna, B.B.; Lee, E.S. An In-Depth Exploration of the Electrochemical Oxygen Reduction Reaction (ORR) Phenomenon on Carbon-Based Catalysts in Alkaline and Acidic Mediums. Catalysts 2022, 12, 791. [Google Scholar] [CrossRef]
- Kim, H.W.; Bukas, V.J.; Park, H.; Park, S.; Diederichsen, K.M.; Lim, J.; Cho, Y.H.; Kim, J.; Kim, W.; Han, T.H.; et al. Mechanisms of Two-Electron and Four-Electron Electrochemical Oxygen Reduction Reactions at Nitrogen-Doped Reduced Graphene Oxide. ACS Catal. 2020, 10, 852–863. [Google Scholar] [CrossRef]
- Pegis, M.L.; Wise, C.F.; Martin, D.J.; Mayer, J.M. Oxygen Reduction by Homogeneous Molecular Catalysts and Electrocatalysts. Chem. Rev. 2018, 118, 2340–2391. [Google Scholar] [CrossRef] [PubMed]
Element | C/Fe | C/Fe.N | C/Fe.S | C/Fe.S.N | ||||
---|---|---|---|---|---|---|---|---|
C | 65.7 | 44.0 | 65.8 | 43.0 | 31.9 | 22.0 | 30.6 | 20.0 |
O | 21.3 | 19.0 | 17.6 | 15.0 | 42.6 | 39.0 | 40.9 | 36.0 |
Fe | 11.1 | 35.0 | 12.8 | 38.0 | 1.4 | 4.0 | 2.7 | 8.0 |
S | 0.4 | 0.3 | 6.0 | 11.0 | 7.5 | 13.0 | ||
N | 2.3 | 2.0 | 3.9 | 3.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rupar, J.; Hrnjić, A.; Uskoković-Marković, S.; Bajuk-Bogdanović, D.; Milojević-Rakić, M.; Gavrilov, N.; Janošević Ležaić, A. Electrochemical Crosslinking of Alginate—Towards Doped Carbons for Oxygen Reduction. Polymers 2023, 15, 3169. https://doi.org/10.3390/polym15153169
Rupar J, Hrnjić A, Uskoković-Marković S, Bajuk-Bogdanović D, Milojević-Rakić M, Gavrilov N, Janošević Ležaić A. Electrochemical Crosslinking of Alginate—Towards Doped Carbons for Oxygen Reduction. Polymers. 2023; 15(15):3169. https://doi.org/10.3390/polym15153169
Chicago/Turabian StyleRupar, Jelena, Armin Hrnjić, Snežana Uskoković-Marković, Danica Bajuk-Bogdanović, Maja Milojević-Rakić, Nemanja Gavrilov, and Aleksandra Janošević Ležaić. 2023. "Electrochemical Crosslinking of Alginate—Towards Doped Carbons for Oxygen Reduction" Polymers 15, no. 15: 3169. https://doi.org/10.3390/polym15153169
APA StyleRupar, J., Hrnjić, A., Uskoković-Marković, S., Bajuk-Bogdanović, D., Milojević-Rakić, M., Gavrilov, N., & Janošević Ležaić, A. (2023). Electrochemical Crosslinking of Alginate—Towards Doped Carbons for Oxygen Reduction. Polymers, 15(15), 3169. https://doi.org/10.3390/polym15153169