Polypyrrole-Modified Nanocellulose Exhibits Superior Performance for Hg(II) Adsorption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Fabrication of CSC
2.3. Fabrication of CNC and CNC@PPy
2.4. Characterization
2.5. Adsorption Measurement
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tanpichai, S.; Boonmahitthisud, A.; Soykeabkaew, N.; Ongthip, L. Review of the Recent Developments in all-Cellulose NanoComposites: Properties and Applications. Carbohydr. Polym. 2022, 286, 119192. [Google Scholar] [CrossRef]
- Rol, F.; Belgacem, M.N.; Gandini, A.; Bras, J. Recent Advances in Surface-Modified Cellulose Nanofibrils. Prog. Polym. Sci. 2019, 88, 241–264. [Google Scholar] [CrossRef]
- Yang, G.; Kong, H.; Chen, Y.; Liu, B.; Zhu, D.; Gao, L.; Wei, G. Recent Advances in the Hybridization of Cellulose and Carbon Nanomaterials: Interactions, Structural Design, Functional Tailoring, and Applications. Carbohydr. Polym. 2022, 279, 118947. [Google Scholar] [CrossRef] [PubMed]
- Hokkanen, S.; Bhatnagar, A.; Sillanpaa, M. A Review on Modification Methods to Cellulose-based Adsorbents to Improve Adsorption Capacity. Water Res. 2016, 91, 156–173. [Google Scholar] [CrossRef] [PubMed]
- Fakhre, N.A.; Ibrahim, B.M. The use of New Chemically Modified Cellulose for Heavy Metal ion Adsorption. J. Hazard. Mater. 2018, 343, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Wohlhauser, S.; Delepierre, G.; Labet, M.; Morandi, G.; Thielemans, W.; Weder, C.; Zoppe, J.O. Grafting Polymers from Cellulose Nanocrystals: Synthesis, Properties, and Applications. Macromolecules 2018, 51, 6157–6189. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.; Yuan, Y.; Li, H.; Li, X.; Zhang, C.; Guo, F.; Liu, X.; Wang, K.; Zhao, X.S. Waste-cellulose-derived porous Carbon Adsorbents for Methyl Orange Removal. Chem. Eng. J. 2019, 371, 55–63. [Google Scholar] [CrossRef]
- Aoudi, B.; Boluk, Y.; Gamal El-Din, M. Recent Advances and Future Perspective on Nanocellulose-based Materials in Diverse Water Treatment Applications. Sci. Total Environ. 2022, 843, 156903. [Google Scholar] [CrossRef]
- Kargarzadeh, H.; Mariano, M.; Gopakumar, D.; Ahmad, I.; Thomas, S.; Dufresne, A.; Huang, J.; Lin, N. Advances in Cellulose Nanomaterials. Cellulose 2018, 25, 2151–2189. [Google Scholar] [CrossRef]
- Ding, Q.; Li, C.; Wang, H.; Xu, C.; Kuang, H. Electrochemical Detection of Heavy Metal Ions in Water. Chem. Commun. 2021, 57, 7215–7231. [Google Scholar] [CrossRef]
- Ge, Y.; Li, Z. Application of Lignin and its Derivatives in Adsorption of Heavy Metal Ions in Water: A Review. ACS. Sustain. Chem. Eng. 2018, 6, 7181–7192. [Google Scholar] [CrossRef]
- Sarma, G.K.; Sen Gupta, S.; Bhattacharyya, K.G. Nanomaterials as Versatile Adsorbents for Heavy Metal Ions in Water: A review. Environ. Sci. Pollut. Res. 2019, 26, 6245–6278. [Google Scholar] [CrossRef]
- Geng, Z.; Zhang, H.; Xiong, Q.; Zhang, Y.; Zhao, H.; Wang, G. A fluorescent Chitosan Hydrogel Detection Platform for the Sensitive and Selective Determination of Trace Mercury(II) in Water. J. Mater. Chem. A 2015, 3, 19455–19460. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Wang, L.; Xie, Y.; Tao, M.; Zhang, W. Highly Selective and Efficient Adsorption of Hg2+ by a Recyclable Aminophosphonic acid Functionalized Polyacrylonitrile Fiber. J. Hazard. Mater. 2018, 344, 679–688. [Google Scholar] [CrossRef]
- Bethke, K.; Palantöken, S.; Andrei, V.; Roß, M.; Raghuwanshi, V.S.; Kettemann, F.; Greis, K.; Ingber, T.T.K.; Stückrath, J.B.; Valiyaveettil, S.; et al. Functionalized Cellulose for Water Purification, Antimicrobial Applications, and Sensors. Adv. Funct. Mater. 2018, 28, 1800409. [Google Scholar] [CrossRef]
- Carpenter, A.W.; de Lannoy, C.F.; Wiesner, M.R. Cellulose Nanomaterials in Water Treatment Technologies. Environ. Sci. Technol. 2015, 49, 5277–5287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arsenie, T.; Cara, I.G.; Popescu, M.C.; Motresu, I.; Bulgariu, L. Evaluation of the Adsorptive Performances of Rapeseed Waste in the Removal of Toxic Metal Ions in Aqueous Media. Water 2022, 14, 4108. [Google Scholar] [CrossRef]
- Xu, G.; Zhao, Y.; Hou, L.; Cao, J.; Tao, M.; Zhang, W. A Recyclable Phosphinic Acid Functionalized Polyacrylonitrile Fiber for Selective and Efficient Removal of Hg2+. Chem. Eng. J. 2017, 325, 533–543. [Google Scholar] [CrossRef]
- Zhou, R.; Xu, W.; Liu, P.; Zhao, S.; Xu, G.; Xiong, Q.; Zhang, W.; Zhang, C.; Ye, X. Synthesis of FeOOH-Loaded Aminated Polyacrylonitrile Fiber for Simultaneous Removal of Phenylphosphonic Acid and Phosphate from Aqueous Solution. Polymers 2023, 15, 1918. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, N.; Grishkewich, N.; Tam, K.C. Cellulose Nanomaterials: Promising Sustainable Nanomaterials for AppliCation in Water/wastewater Treatment Processes. Environ. Sci. Nano 2018, 5, 623–658. [Google Scholar] [CrossRef]
- Bulgariu, D.; Nemeş, L.; Ahmad, I.; Bulgariu, L. Isotherm and Kinetic Study of Metal Ions Sorption on Mustard Waste Biomass Functionalized with Polymeric Thiocarbamate. Polymers 2023, 15, 2301. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, J.; Cohen, Y. Fouling Resistant and Performance Tunable Ultrafiltration Membranes via Surface Graft Polymerization Induced by Atmospheric Pressure Air Plasma. Sep. Purif. Technol. 2022, 286, 120490. [Google Scholar] [CrossRef]
- Hwang, I.-T.; Han, D.-S.; Sohn, J.-Y.; Shin, J.; Choi, J.-H.; Jung, C.-H. Preparation and Cesium Adsorption Behavior of Prussian blue-based Polypropylene Nonwoven Fabric by Surfactant-assisted Aqueous Preirradiation Graft Polymerization. Radiat. Phys. Chem. 2022, 199, 110356. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, H.; Chen, Z.; He, J.; Shi, W.; Liu, D.; Chi, H.; Cui, F.; Wang, W. Microstructured Macroporous Adsorbent Composed of Polypyrrole Modified Natural Corncob-core Sponge for Cr(vi) Removal. RSC Adv. 2016, 6, 59292–59298. [Google Scholar] [CrossRef]
- Zhang, L.; Niu, W.; Sun, J.; Zhou, Q. Efficient removal of Cr (VI) from water by the uniform fiber ball loaded with polypyrrole: Static adsorption, dynamic adsorption and mechanism studies. Chemosphere 2020, 248, 126102. [Google Scholar] [CrossRef] [PubMed]
- Rong, Y.; Yan, W.; Wang, Z.; Hao, X.; Guan, G. An Electroactive Montmorillonite/polypyrrole Ion Exchange film: Ultrahigh Uptake Capacity and Ion Selectivity for Rapid Removal of Lead Ions. J. Hazard. Mater. 2022, 437, 129366. [Google Scholar] [CrossRef]
- Du, L.; Gao, P.; Meng, Y.; Liu, Y.; Le, S.; Yu, C. Highly Efficient Removal of Cr(VI) from Aqueous Solutions by Polypyrrole/Monodisperse Latex Spheres. ACS Omega 2020, 5, 6651–6660. [Google Scholar] [CrossRef] [Green Version]
- Das, R.; Giri, S.; Muliwa, A.M.; Maity, A. High-Performance Hg(II) Removal Using Thiol-Functionalized Polypyrrole (PPy/MAA) Composite and Effective Catalytic Activity of Hg(II)-Adsorbed Waste Material. ACS Sustain. Chem. Eng. 2017, 5, 7524–7536. [Google Scholar] [CrossRef]
- Xiao, S.; Xiong, Q.; Zhou, H.; Zhang, Y.; Wang, G.; Zhang, H.; Zhao, H. Oxoacetohydrazide-Functionalized Cellulose with Enhanced Adsorption Performance. J. Appl. Polym. Sci. 2016, 133, 42950. [Google Scholar] [CrossRef]
- Rehman, N.; de Miranda, M.I.G.; Rosa, S.M.L.; Pimentel, D.M.; Nachtigall, S.M.B.; Bica, C.I.D. Cellulose and Nanocellulose from Maize Straw: An Insight on the Crystal Properties. J. Polym. Environ. 2014, 22, 252–259. [Google Scholar] [CrossRef]
- Moharrami, P.; Motamedi, E. Application of Cellulose Nanocrystals Prepared from Agricultural Wastes for Synthesis of Starch-based Hydrogel Nanocomposites: Efficient and Selective Nanoadsorbent for Removal of Cationic Dyes from Water. Bioresour. Technol. 2020, 313, 123661. [Google Scholar] [CrossRef]
- Saleh, T.A.; Tuzen, M.; Sarı, A.; Altunay, N. Factorial Design, Physical Studies and Rapid Arsenic Adsorption Using Newly Prepared Polymer Modified Perlite adsorbent. Chem. Eng. Res. Des. 2022, 183, 181. [Google Scholar] [CrossRef]
- González-Casamachin, D.A.; De la Rosa, J.R.; Lucio-Ortiz, C.J.; De Rio, D.A.D.H.; Martínez-Vargas, D.X.; Flores-Escamilla, G.A.; Guzman, N.E.D.; Ovando-Medina, V.M.; Moctezuma-Velazquez, E. Visible-light Photocatalytic Degradation of Acid Violet 7 Dye in a Continuous Annular Reactor Using ZnO/PPy Photocatalyst: Synthesis, Characterization, Mass Transfer Effect Evaluation and Kinetic Analysis. Chem. Eng. J. 2019, 373, 325. [Google Scholar] [CrossRef]
- Farid, S.; Qiu, W.; Zhao, J.; Song, X.; Mao, Q.; Ren, S.; Hao, C. Improved OER Performance of Co3O4/N-CNTs Derived from Newly Designed ZIF-67/PPy NTs Composite. J. Electroanal. Chem. 2020, 858, 113768. [Google Scholar] [CrossRef]
- Zhou, B.; Li, J.; Liu, W.; Jiang, H.; Li, S.; Tan, L.; Dong, L.; She, L.; Wei, Z. Functional-Group Modification of Kraft Lignin for Enhanced Supercapacitors. ChemSusChem 2020, 13, 2628. [Google Scholar] [CrossRef]
- Wang, R.-P.; Yang, B.; Fu, Q.; Zhang, Y.; Zhu, R.; Dong, X.-R.; Zhang, Y.; Wang, B.; Yang, J.-L.; Luo, Y.; et al. Raman Detection of Bond Breaking and Making of a Chemisorbed Up-Standing Single Molecule at Single-Bond Level. J. Phys. Chem. Lett. 2021, 12, 1961. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, Q.; Zhang, L.; Zhu, Z.; Xu, G.; Jing, J.; Zhang, W.; Zhang, C.; Ye, X. Polypyrrole-Modified Nanocellulose Exhibits Superior Performance for Hg(II) Adsorption. Polymers 2023, 15, 2735. https://doi.org/10.3390/polym15122735
Xiong Q, Zhang L, Zhu Z, Xu G, Jing J, Zhang W, Zhang C, Ye X. Polypyrrole-Modified Nanocellulose Exhibits Superior Performance for Hg(II) Adsorption. Polymers. 2023; 15(12):2735. https://doi.org/10.3390/polym15122735
Chicago/Turabian StyleXiong, Qizhong, Lei Zhang, Zijun Zhu, Gang Xu, Jianyuan Jing, Weifeng Zhang, Chaochun Zhang, and Xinxin Ye. 2023. "Polypyrrole-Modified Nanocellulose Exhibits Superior Performance for Hg(II) Adsorption" Polymers 15, no. 12: 2735. https://doi.org/10.3390/polym15122735
APA StyleXiong, Q., Zhang, L., Zhu, Z., Xu, G., Jing, J., Zhang, W., Zhang, C., & Ye, X. (2023). Polypyrrole-Modified Nanocellulose Exhibits Superior Performance for Hg(II) Adsorption. Polymers, 15(12), 2735. https://doi.org/10.3390/polym15122735