Overview of the Important Factors Influencing the Performance of Eco-Friendly Brake Pads
Abstract
:1. Introduction
2. Factors Affecting the Performance of Brake Pad
2.1. Composition of Eco-Friendly Materials
2.2. The Particle Size of Eco-Friendly Materials
2.3. Types of the Binder for Brake Pad
3. Discussion
4. Conclusions
- Various agricultural wastes were researched and employed as asbestos substitutes in brake pads in this research. Thus, it was found that the brake pads developed with agricultural waste perform almost the same as the brake pads developed with asbestos. Furthermore, the use of agricultural waste on brake pads can reduce environmental pollution and health risks. The use of agricultural waste or natural fiber to make asbestos-free brake pads affects the wear rate and friction coefficient significantly. This is because varying the amount and composition of agricultural waste can result in a similar wear rate and friction coefficient as asbestos brake pads.
- Brake pads made from agricultural waste need to pay attention to the type, amount, and particle size of the agricultural waste used to have better physical and mechanical properties. In addition, the type and amount of resin also have a decisive effect on the quality of the brake pads. The amount and type of reinforcement are important in changing the performance characteristics required for brake pad friction materials. According to the results of this review, an increase in the percentage or amount of agricultural waste results in a decrease in the breaking, compressive, hardness, and impact strength of the brake pads.
- The large particle size of filler or reinforcement creates an open bond structure that allows the particles to easily disengage from the bond when force or pressure is applied to the brake pads. The small particle size of the reinforcement creates stronger structural bonds and allows the particles to withstand more force or pressure before breaking. The hardness, compressive strength, porosity, and density of the resulting sample decreased with the increasing sieve size used. Meanwhile, brake pads produced with large particle sizes will result in a higher percentage of oil and water absorption, wear, and burnt parts.
- The use of phenolic resins for brake pads based on agricultural waste has improved physical, mechanical, and tribological properties over polyester resins. This is because the decomposition temperature of phenolic resin is higher than that of polyester resin. A high decomposition temperature will result in better wear and fade resistance, thereby increasing the lifetime of the brake pads. In addition, brake pads with modified phenolic resin will give better results. The heat resistance of the resin has been improved by the modification process by adding additives to the phenol resin. This raises the temperature of the decomposition and will produce a higher and more stable coefficient of friction.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adekunle, K.F. Surface Treatments of Natural Fibres—A Review: Part 1. Open J. Polym. Chem. 2015, 5, 41–46. [Google Scholar] [CrossRef] [Green Version]
- AL-Oqla, F.M.; Salit, M.S. 2—Natural fiber composites. In Materials Selection for Natural Fiber Composites; Woodhead Publishing: Cambridge, UK, 2017; pp. 23–48. ISBN 9781482239010. [Google Scholar]
- Kılınç, A.Ç.; Durmuşkahya, C.; Seydibeyoğlu, M.Ö. 10—Natural fibers. In Fiber Technology for Fiber-Reinforced Composites; Seydibeyoğlu, M.O., Mohanty, A.K., Misra, M., Eds.; Woodhead Publishing Series in Composites Science and Engineering: Cambridge, UK, 2017; pp. 209–235. [Google Scholar] [CrossRef]
- Jawaid, M.; Awad, S.A.; Asim, M.; Fouad, H.; Alothman, O.Y.; Santulli, C. A comparative evaluation of chemical, mechanical, and thermal properties of oil palm fiber/pineapple fiber reinforced phenolic hybrid composites. Polym. Compos. 2021, 42, 6383–6393. [Google Scholar] [CrossRef]
- Wang, B.; Huang, S.; Yan, L. Natural/Synthetic Fiber-Reinforced Bioepoxy Composites. In Bio-Based Epoxy Polymers, Blends and Composites; Wiley: Hoboken, NJ, USA, 2021; pp. 73–116. [Google Scholar]
- Kim, Y.K. 8—Natural fibre composites (NFCs) for construction and automotive industries. In Handbook of Natural Fibres; Kozłowski, R.M., Ed.; Woodhead Publishing: Cambridge, UK, 2012; Volume 2, pp. 254–279. ISBN 978-1-84569-698-6. [Google Scholar]
- Kapoor, S.; Sanjeev, M. A Paper Review on Scope of Non Asbestos and Natural Wastes Material. Int. J. Adv. Eng. Res. Sci. 2016, 3, 107–112. [Google Scholar]
- Achebe, C.H.; Chukwuneke, J.L.; Anene, F.A.; Ewulonu, C.M. A retrofit for asbestos-based brake pad employing palm kernel fiber as the base filler material. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2019, 233, 1906–1913. [Google Scholar] [CrossRef]
- Yanar, H.; Purcek, G.; Demirtas, M.; Ayar, H.H. Effect of hexagonal boron nitride (h-BN) addition on friction behavior of low-steel composite brake pad material for railway applications. Tribol. Int. 2022, 165, 107274. [Google Scholar] [CrossRef]
- Singh, T. Optimum design based on fabricated natural fiber reinforced automotive brake friction composites using hybrid CRITIC-MEW approach. J. Mater. Res. Technol. 2021, 14, 81–92. [Google Scholar] [CrossRef]
- Abu, S.; Albatlan, A. Study Effect of Pads shapes on Temperature Distribution for Disc Brake Contact Surface. Int. J. Eng. Res. 2013, 8, 62–67. [Google Scholar]
- Singaravelu, D.L.; Vijay, R.; Filip, P. Influence of various cashew friction dust on the fade and recovery characteristics of non-asbestos copper free brake friction composites. Wear 2019, 426, 1129–1141. [Google Scholar] [CrossRef]
- Podoprigora, N.; Dobromirov, V.; Pushkarev, A.; Lozhkin, V. Methods of Assessing the Influence of Operational Factors on Brake System Efficiency in Investigating Traffic Accidents. Transp. Res. Procedia 2017, 20, 516–522. [Google Scholar] [CrossRef]
- Aulia, F.; Ranto, R.; Budi, H. Experimental Study of Performance of Braking Natural Fiber Brake Camping With Fiber Film in Wet Condition as an Alternative Material of Motor Brake Campas. J. Mech. Eng. Vocat. Educ. 2019, 2, 69–75. [Google Scholar]
- Amirjan, M. Microstructure, wear and friction behavior of nanocomposite materials with natural ingredients. Tribol. Int. 2019, 131, 184–190. [Google Scholar] [CrossRef]
- Arman, M.; Singhal, S.; Chopra, P.; Sarkar, M. A review on material and wear analysis of automotive Brake Pads. Mater. Today Proc. 2018, 5, 28305–28312. [Google Scholar] [CrossRef]
- Chand, N.; Fahim, M. 1—Natural fibers and their composites. In Tribology of Natural Fiber Polymer Composites; Woodhead Publishing Series in Composites Science and Engineering; Chand, N., Fahim, M., Eds.; Woodhead Publishing: Cambridge, UK, 2008; pp. 1–58. ISBN 978-1-84569-393-0. [Google Scholar]
- Darius, G.S.; Berhan, M.N.; David, N.V.; Shahrul, A.A.; Zaki, M.B. Characterization of brake pad friction materials. Comput. Methods Exp. Mater. Charact. II 2005, 51, 43–50. [Google Scholar]
- Lawal, S.S.; Ademoh, N.A.; Bala, K.C.; Abdulrahman, A.S. A Review of the Compositions, Processing, Materials and Properties of Brake Pad Production. J. Phys. Conf. Ser. 2019, 1378, 032103. [Google Scholar] [CrossRef]
- Nguyen, H.; Zatar, W.; Mutsuyoshi, H. 4—Mechanical properties of hybrid polymer composite. In Hybrid Polymer Composite Materials Properties and Characterisation; Thakur, V.K., Thakur, M.K., Pappu, A., Eds.; Woodhead Publishing: Cambridge, UK, 2017; pp. 83–113. ISBN 978-0-08-100787-7. [Google Scholar]
- Ogah, A.O.; James, T.U. Mechanical Behavior of Agricultural Waste Fibers Reinforced Vinyl Ester Bio-composites. Asian J. Phys. Chem. Sci. 2018, 5, 1–10. [Google Scholar] [CrossRef]
- Rashid, B.; Leman, Z.; Jawaid, M.; Ishak, M.R.; Al-Oqla, F.M. Eco-Friendly Composites for Brake Pads From Agro Waste: A Review. Encycl. Mater. Compos. 2017, 3, 209–228. [Google Scholar] [CrossRef]
- Asim, M.; Abdan, K.; Jawaid, M.; Nasir, M.; Dashtizadeh, Z.; Ishak, M.R.; Hoque, M.E. A Review on Pineapple Leaves Fibre and Its Composites. Int. J. Polym. Sci. 2015, 2015, 950567. [Google Scholar] [CrossRef] [Green Version]
- Suriani, M.J.; Rapi, H.Z.; Ilyas, R.A.; Petr, M.; Sapuan, S.M. Delamination and Manufacturing Defects in Natural Fiber-Reinforced Hybrid Composite: A Review. Polymers 2021, 13, 1323. [Google Scholar] [CrossRef]
- Minchenkov, K.; Vedernikov, A.; Safonov, A.; Akhatov, I. Thermoplastic pultrusion: A review. Polymers 2021, 13, 180. [Google Scholar] [CrossRef]
- Zwawi, M. A Review on Natural Fiber Bio-Composites, Surface Modifications and Applications. Molecules 2021, 26, 404. [Google Scholar] [CrossRef]
- Yanti, R.N.; Hambali, E.; Pari, G.; Suryani, A. The characteristics of palm oil plantation solid biomass wastes as raw material for bio oil. IOP Conf. Ser. Earth Environ. Sci. 2018, 141, 012038. [Google Scholar] [CrossRef]
- Ichetaonye, S.I.; Ajekwene, K.K.; Ulaeto, S.B.; Yibowei, M.E.; Alosaimi, A.M.; Hussein, M.A.; Khan, A. Sustainable Alternative Ceiling Boards Using Palm Kernel Shell (PKS) and Balanite Shell (BS). J. Polym. Environ. 2021, 29, 3878–3886. [Google Scholar] [CrossRef]
- Lyu, Y.; Ma, J.; Hedlund-Åström, A.; Wahlström, J.; Olofsson, U. Recycling of worn out brake pads -impact on tribology and environment. Sci. Rep. 2020, 10, 8369. [Google Scholar] [CrossRef] [PubMed]
- Borawski, A. Conventional and unconventional materials used in the production of brake pads—Review. Sci. Eng. Compos. Mater. 2020, 27, 374–396. [Google Scholar] [CrossRef]
- Rajaei, H.; Griso, M.; Menapace, C.; Dorigato, A.; Perricone, G.; Gialanella, S. Investigation on the recyclability potential of vehicular brake pads. Results Mater. 2020, 8, 100161. [Google Scholar] [CrossRef]
- Daud, M.A.M.; Bayanuddin, N.F.; Selamat, M.Z. Effect of coconut shell powder in brake friction materials. Adv. Mater. Mech. Eng. Res. 2021, 1–2. [Google Scholar]
- Shinde, D.; Bulsara, M.; Patil, J. Wear analysis of eco-friendly non-asbestos friction-lining material applied in an automotive drum brake: Experimental and finite-element analysis. Proc. Inst. Mech. Eng. Part J. J. Eng. Tribol. 2021, 236, 552–562. [Google Scholar] [CrossRef]
- Abutu, J.; Lawal, S.A.; Ndaliman, M.B.; Lafia-Araga, R.A.; Adedipe, O.; Choudhury, I.A. Production and characterization of brake pad developed from coconut shell reinforcement material using central composite design. SN Appl. Sci. 2019, 1, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Bashar, D.A.; Madakson, P.B.; Manji, J. Material Selection and Production of a Cold-Worked Composite Brake Pad. World J. Eng. Pure Appl. Sci. 2012, 2, 92–97. [Google Scholar]
- Egeonu, D.; Oluah, C.; Okolo, P.N. Production of Eco-Friendly Brake Pad Using Raw Materials Sourced Locally In Production of Eco-Friendly Brake Pad Using Raw Materials Sourced Locally In Nsukka. J. Energy Technol. Policy 2015, 5, 47–54. [Google Scholar]
- Juan, R.S.; Kurniawan, C.; Marbun, J.; Simamora, P. Mechanical properties of brake pad composite made from candlenut shell and coconut shell. J. Phys. Conf. Ser. 2020, 1428, 012018. [Google Scholar] [CrossRef] [Green Version]
- Kholil, A.; Dwiyati, S.T.; Siregar, J.P.; Sulaiman, J. Development brake pad from composites of coconut fiber, wood powder and cow bone for electric motorcycle. Int. J. Sci. Technol. Res. 2020, 9, 2938–2942. [Google Scholar]
- Ismail, R.; Fitriyana, D.F.; Santosa, Y.I.; Nugroho, S.; Hakim, A.J.; Al Mulqi, M.S.; Jamari, J.; Bayuseno, A.P. The potential use of green mussel (Perna Viridis) shells for synthetic calcium carbonate polymorphs in biomaterials. J. Cryst. Growth 2021, 572, 126282. [Google Scholar] [CrossRef]
- Fitriyana, D.F.; Ismail, R.; Santosa, Y.I.; Nugroho, S.; Hakim, A.J.; Syahreza Al Mulqi, M. Hydroxyapatite Synthesis from Clam Shell Using Hydrothermal Method: A Review. In Proceedings of the 2019 International Biomedical Instrumentation and Technology Conference, IBITeC 2019, Yogyakarta, Indonesia, 23−24 October 2019; pp. 7–11. [Google Scholar]
- Ismail, R.; Laroybafih, M.B.; Fitriyana, D.F.; Nugroho, S.; Santoso, Y.I.; Hakim, A.J.; Mulqi, M.S.; Bayuseno, A.P. The Effect of Hydrothermal Holding Time on The Characterization of Hydroxyapatite Synthesized from Green Mussel Shells. J. Adv. Res. Fluid Mech. Therm. Sci. 2021, 80, 84–93. [Google Scholar] [CrossRef]
- Fitriyana, D.F.; Nugraha, F.W.; Laroybafih, M.B.; Ismail, R.; Bayuseno, A.P.; Muhamadin, R.C.; Ramadan, M.B.; Qudus, A.R.A.; Siregar, J.P. The effect of hydroxyapatite concentration on the mechanical properties and degradation rate of biocomposite for biomedical applications. IOP Conf. Ser. Earth Environ. Sci. 2022, 969, 12045. [Google Scholar] [CrossRef]
- Rajmohan, B.; Arunachalam, K.; Sundarapandian, G. Predict the tribological properties on brake pad using coconut shell/sugarcane/sic powder hybrid composites. Int. J. Eng. Innov. Technol. 2017, 7, 43–49. [Google Scholar]
- Sutikno; Pramujati, B.; Safitri, S.D.; Razitania, A. Characteristics of natural fiber reinforced composite for brake pads material. AIP Conf. Proc. 2018, 1983, 050009. [Google Scholar] [CrossRef]
- Pujari, S.; Srikiran, S. Experimental investigations on wear properties of Palm kernel reinforced composites for brake pad applications. Def. Technol. 2019, 15, 295–299. [Google Scholar] [CrossRef]
- Madeswaran, A.; Natarajasundaram, B.; Ramamoorthy, B. Reformation of Eco-Friendly Automotive Brake Pad by Using Natural Fibre Composites. SAE Tech. Pap. 2016, 2016, 2688–3627. [Google Scholar] [CrossRef]
- Paramasivam, K.; Jayaraj, J.J.; Ramar, K. Evaluation of Natural Fibers for the Production of Automotive Brake Pads Replacement for Asbestos Brake Pad. AIP Conf. Proc. 2020, 2311, 040005. [Google Scholar]
- Ikpambese, K.K.; Gundu, D.T.; Tuleun, L.T. Evaluation of palm kernel fibers (PKFs) for production of asbestos-free automotive brake pads. J. King Saud Univ. Eng. Sci. 2016, 28, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Mittal, V.; Saini, R.; Sinha, S. Natural fiber-mediated epoxy composites—A review. Compos. Part B Eng. 2016, 99, 425–435. [Google Scholar] [CrossRef]
- Chandradass, J.; Amutha Surabhi, M.; Baskara Sethupathi, P.; Jawahar, P. Development of low cost brake pad material using asbestos free sugarcane bagasse ash hybrid composites. Mater. Today Proc. 2021, 45, 7050–7057. [Google Scholar] [CrossRef]
- Wu, S.; Zhao, J.; Guo, M.; Zhuang, J.; Wu, Q. Effect of Fiber Shape on the Tribological, Mechanical, and Morphological Behaviors of Sisal Fiber-Reinforced Resin-Based Friction Materials: Helical, Undulated, and Straight Shapes. Materials 2021, 14, 5410. [Google Scholar] [CrossRef]
- Anaidhuno, U.P.; Ologe, S.; Maduike, F.; Mgbemena, C.E. The Development of Vehicle Brake Pad Using Local Materials—(Palm Kernel, Coconut And Cashew Shells As Base Materials). IOSR J. Eng. 2017, 7, 61–67. [Google Scholar] [CrossRef]
- Stephen, J.T.; Oladokun, T.O.; Adebayo, A.; Adeyemi, G.J. Effect of Moulding Pressure on Brake Lining Produced from Industrial Waste Material: Sawdust. Eur. J. Eng. Res. Sci. 2019, 4, 62–68. [Google Scholar] [CrossRef] [Green Version]
- Elakhame, Z.U.; Alhassan, O.; Samuel, A. Development and Production of Brake Pads from Palm Kernel Shell Composites. Int. J. Sci. Eng. Res. 2014, 5, 735–744. [Google Scholar]
- Nandiyanto, A.B.D.; Hofifah, S.N.; Girsang, G.C.S.; Putri, S.R.; Budiman, B.A.; Triawan, F.; Al-Obaidi, A.S.M. The effects of rice husk particles size as a reinforcement component on resin-based brake pad performance: From literature review on the use of agricultural waste as a reinforcement material, chemical polymerization reaction of epoxy resin, to experiments. Automot. Exp. 2021, 4, 68–82. [Google Scholar] [CrossRef]
- Amaren, S.G.; Yawas, D.S.; Aku, S.Y. Effect of periwinkles shell particle size on the wear behavior of asbestos free brake pad. Results Phys. 2013, 3, 109–114. [Google Scholar] [CrossRef] [Green Version]
- Razzaq, A.M.; Majid, D.L.; Ishak, M.R.; Basheer, U.M. Effects of Solid Fly Ash on Wear Behaviour of AA6063 Aluminum Alloy. In Encyclopedia of Smart Materials; Olabi, A.-G., Ed.; Elsevier: Oxford, UK, 2019; pp. 503–508. ISBN 978-0-12-815733-6. [Google Scholar]
- Dagwa, I.; Ibhadode, A.O.A. Design and Manufacture of Automobile Disk Brake Pad Test Rig. Niger. J. Eng. Res. Dev. 2005, 4, 15–24. [Google Scholar]
- Yawas, D.S.; Aku, S.Y.; Amaren, S.G. Morphology and properties of periwinkle shell asbestos-free brake pad. J. King Saud Univ. Eng. Sci. 2016, 28, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Ajibade, O.A.; Agunsoye, J.O.; Oke, S.A. A wear rate model incorporating inflationary cost of agro-waste filled composites for brake pad applications to lower composite cost. SN Appl. Sci. 2021, 3, 20. [Google Scholar] [CrossRef]
- Shinkai, K.; Taira, Y.; Suzuki, S.; Kawashima, S.; Suzuki, M. Effect of filler size and filler loading on wear of experimental flowable resin composites. J. Appl. Oral Sci. 2018, 26, e20160652. [Google Scholar] [CrossRef] [Green Version]
- Shinkai, K.; Taira, Y.; Suzuki, S.; Suzuki, M. In vitro wear of flowable resin composite for posterior restorations. Dent. Mater. J. 2016, 35, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Sumino, N.; Tsubota, K.; Takamizawa, T.; Shiratsuchi, K.; Miyazaki, M.; Latta, M.A. Comparison of the wear and flexural characteristics of flowable resin composites for posterior lesions. Acta Odontol. Scand. 2013, 71, 820–827. [Google Scholar] [CrossRef] [PubMed]
- Satapathy, B.K.; Bijwe, J. Composite friction materials based on organic fibres: Sensitivity of friction and wear to operating variables. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1557–1567. [Google Scholar] [CrossRef]
- Fono-Tamo, R.S.; Koya, O.A. Influence of Palm Kernel Shell Particle Size on Fade and Recovery Behaviour of Non-asbestos Organic Friction Material. Procedia Manuf. 2017, 7, 440–451. [Google Scholar] [CrossRef]
- Joo, B.S.; Chang, Y.H.; Seo, H.J.; Jang, H. Effects of binder resin on tribological properties and particle emission of brake linings. Wear 2019, 434, 202995. [Google Scholar] [CrossRef]
- Aleksendrić, D.; Carlone, P. 5—Composite materials—Modelling, prediction and optimization. In Soft Computing in the Design and Manufacturing of Composite Materials Applications to Brake Friction and Thermoset Matrix Composites; Aleksendrić, D., Pierpaolo, C., Eds.; Woodhead Publishing: Oxford, UK, 2015; pp. 61–289. ISBN 978-1-78242-179-5. [Google Scholar]
- Balachandran, S.; Balaji, S.; Kathar, S.; Pon, H. Influence of Binder on Thermomechanical and Tribological Performance in Brake Pad. Tribol. Ind. 2018, 40, 654–669. [Google Scholar] [CrossRef]
- Kandola, B.K.; Horrocks, A.R. 5—Composites. In Fire Retardant Materials; Horrocks, A.R., Price, D., Eds.; Woodhead Publishing: Cambridge, UK, 2001; pp. 182–203. ISBN 978-1-85573-419-7. [Google Scholar]
- Dixit, D.; Pal, R.; Kapoor, G.; Stabenau, M. 6—Lightweight composite materials processing. In Lightweight Ballistic Composites: Military and Law-Enforcement Applications, 2nd ed.; Woodhead Publishing Series in Composites Science and Engineering; Bhatnagar, A., Ed.; Woodhead Publishing: Cambridge, UK, 2016; pp. 157–216. ISBN 978-0-08-100406-7. [Google Scholar]
- Brydson, J.A. 23—Phenolic Resins. In Plastics Materials, 7th ed.; Brydson, J., Ed.; Butterworth-Heinemann: Oxford, UK, 1999; pp. 635–667. ISBN 978-0-7506-4132-6. [Google Scholar]
- Linganiso, L.Z.; Anandjiwala, R.D. 4—Fibre-reinforced laminates in aerospace engineering. In Advanced Composite Materials for Aerospace Engineering Processing, Properties and Applications; Rana, S., Fangueiro, R., Eds.; Woodhead Publishing: Cambridge, UK, 2016; pp. 101–127. ISBN 978-0-08-100939-0. [Google Scholar]
- Li, G. The Design of the Automobile Brake Cooling System. Open Access Libr. J. 2018, 5, 1–10. [Google Scholar] [CrossRef]
- Crăciun, A.L.; Pinca-Bretotean, C.; Birtok-Băneasă, C.; Josan, A. Composites materials for friction and braking application. IOP Conf. Ser. Mater. Sci. Eng 2017, 200, 12009. [Google Scholar] [CrossRef] [Green Version]
- Kabakov, D. Effects of Dispersion Techniques on Flammability and Mechanical Properties of Phenolic/E-Glass Nanocomposites; Texas State University: San Marcos, TX, USA, 2010. [Google Scholar]
- Banciu, C.; Bara, A.; Ioana, I.; Patroi, D.; Beatrice Gabriela, S. Structural and functional properties of porous carbon fibers composites. Optoelectron. Adv. Mater. Rapid Commun. 2010, 4, 1647–1650. [Google Scholar]
- Athijayamani, A.; Das, M.C.; Sekar, S.; Ramanathan, K. Mechanical Properties of Phenol Formaldehyde Hybrid Composites Reinforced with Natural Cellulose Fibers. BioResources 2017, 12, 1960–1967. [Google Scholar] [CrossRef] [Green Version]
- Knop, A.; Pilato, L.A. Degradation of Phenolic Resins by Heat, Oxygen and High-Energy Radiation. Phenolic Resins 1985, 140–146. [Google Scholar] [CrossRef]
- Zhao, Y.; Yan, N.; Feng, M.W. Thermal degradation characteristics of phenol-formaldehyde resins derived from beetle infested pine barks. Thermochim. Acta 2013, 555, 46–52. [Google Scholar] [CrossRef]
- Jang, H.; Lee, J.S.; Fash, J.W. Compositional effects of the brake friction material on creep groan phenomena. Wear 2001, 250, 1477–1483. [Google Scholar] [CrossRef]
- Kim, Y.C.; Cho, M.H.; Kim, S.J.; Jang, H. The effect of phenolic resin, potassium titanate, and CNSL on the tribological properties of brake friction materials. Wear 2008, 264, 204–210. [Google Scholar] [CrossRef]
- Dureja, N.; Bijwe, J.; Mazumdar, N. Influence of amount of resin on fade and recovery behaviour of non-asbestos organic (NAO) friction materials. Tribol. Lett. 2006, 23, 215–222. [Google Scholar] [CrossRef]
- Nawangsari, P.; Jamasri; Rochardjo, H.S.B. Effect of Phenolic Resin on Density, Porosity, Hardness, Thermal Stability, and Friction Performance as A Binder in Non-Asbestos Organic Brake Pad. IOP Conf. Ser. Mater. Sci. Eng. 2019, 547, 012012. [Google Scholar] [CrossRef]
- Binda, F.F.; De Alvarenga Oliveira, V.; Fortulan, C.A.; Palhares, L.B.; Dos Santos, C.G. Friction elements based on phenolic resin and slate powder. J. Mater. Res. Technol. 2020, 9, 3378–3383. [Google Scholar] [CrossRef]
- Yanar, H.; Ayar, H.H.; Demirtas, M.; Purcek, G. Effect of resin content on tribological behavior of brake pad composite material. Ind. Lubr. Tribol. 2020, 72, 195–202. [Google Scholar] [CrossRef]
- Subagia, A.; Atmika, K.T.A.; Setiadi, W.N.; Parwata, M.D. Wear Behavior of Basalt Powder Reinforced Phenolic Resin Matrix Composites Brake Lining Pads. Int. Conf. Mech. Mater. Struct. Eng. 2016, 29, 20–25. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, P.; Naskar, K.; Das, N.C. Influence of synthetic graphite powder on tribological and thermo-mechanical properties of organic-inorganic hybrid fiber reinforced elastomer-modified phenolic resin friction composites. Compos. Part C Open Access 2020, 2, 100018. [Google Scholar] [CrossRef]
- Idris, U.D.; Aigbodion, V.S.; Abubakar, I.J.; Nwoye, C.I. Eco-friendly asbestos free brake-pad: Using banana peels. J. King Saud Univ. Eng. Sci. 2015, 27, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Kalel, N.; Bijwe, J.; Darpe, A. Influence of Amount of Phenolic Resin on the Tribological Performance of Environment-Friendly Friction Materials. SAE Tech. Pap. 2019, 1–12. [Google Scholar]
- Ghosh, P.; Naskar, K.; Das, N.C. Enhancement of tribological and thermo-mechanical properties of phenolic resin friction composites by improving interactions between elastomeric phase and matrix resin. SN Appl. Sci. 2020, 2, 1912. [Google Scholar] [CrossRef]
- Balaji, M.A.S.; Kalaichelvan, K. Thermal and Fade Aspects of a Non Asbestos Semi Metallic Disc Brake Pad Formulation with Two Different Resins. Adv. Mater. Res. 2013, 622–623, 1559–1563. [Google Scholar] [CrossRef]
- Öztürk, B.; Öztürk, S. Effects of resin type and fiber length on the mechanical and tribological properties of brake friction materials. Tribol. Lett. 2011, 42, 339–350. [Google Scholar] [CrossRef]
- Luo, Y.; Yang, Z. Effect of different-condition parameters on frictional properties of non-asbestos phenolic resin-based friction material. Adv. Mech. Eng. 2017, 9, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.J.; Jang, H. Friction and wear of friction materials containing two different phenolic resins reinforced with aramid pulp. Tribol. Int. 2000, 33, 477–484. [Google Scholar] [CrossRef]
- Elzayady, N.; Elsoeudy, R. Microstructure and wear mechanisms investigation on the brake pad. J. Mater. Res. Technol. 2021, 11, 2314–2335. [Google Scholar] [CrossRef]
- Laguna-Camacho, J.R.; Juárez-Morales, G.; Calderón-Ramón, C.; Velázquez-Martínez, V.; Hernández-Romero, I.; Méndez-Méndez, J.V.; Vite-Torres, M. A study of the wear mechanisms of disk and shoe brake pads. Eng. Fail. Anal. 2015, 56, 348–359. [Google Scholar] [CrossRef]
- Chandra Verma, P.; Menapace, L.; Bonfanti, A.; Ciudin, R.; Gialanella, S.; Straffelini, G. Braking pad-disc system: Wear mechanisms and formation of wear fragments. Wear 2015, 322–323, 251–258. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, D.; Jain, J. A study on mechanical and tribological behavior of brake pad materials. Key Eng. Mater. 2017, 737, 162–167. [Google Scholar] [CrossRef]
- Verma, P.C. Automotive Brake Materials: Characterization of Wear Products and Relevant Mechanisms at High Temperature; University of Trento: Trento, Italy, 2016. [Google Scholar]
- Kalhapure, V.A.; Khairnar, H.P. Wear Mechanism and Modelling for Automotive Brakes with Influence of Pressure, Temperature and Sliding Velocity: A Review Article. J. Eur. 2018, 5, 333–343. [Google Scholar]
Chemical Properties | Physical and Mechanical Properties | |||||||
---|---|---|---|---|---|---|---|---|
Agricultural Waste Type | Cellulose (%) | Hemicellulose (%) | Lignin (%) | Wax (%) | Density (g/cm3) | Elongation (%) | Tensile Strength (MPa) | Young’s Modulus (GPa) |
Jute | 45–71 | 13.6–21 | 12–26 | 0.5–2 | 1.3–1.46 | 1.5–1.8 | 393–800 | 10–30 |
Ramie | 68.6–76.2 | 13.1–16.7 | 0.6–0.7 | - | 1.5 | 2.0–3.8 | 220–938 | 44–128 |
Sisal | 67–78 | 10–14.2 | 8.0–11 | - | 1.33–1.5 | 2.0–14 | 400–700 | 9.0–38.0 |
Kenaf | 31–39 | 21–21.5 | 15.9 | - | 1.2 | 2.7–6.9 | 295 | - |
Abaca | 60.8–64 | 17.5–21 | 12–15.1 | - | 1.5 | - | 980 | - |
Hemp | 57–77 | 14–22.4 | 3.7–13 | 0.8 | 1.48 | 1.6 | 550–900 | 70 |
Flax | 71 | 18.6–20.6 | 2.2 | - | 1.4–1.5 | 1.2–3.2 | 345–1500 | 27.6–80 |
Coconut (coir) | 36.62–43.21 | 0.15–0.25 | 41.23–45.33 | - | 0.67–1.15 | 27.21–32.32 | 173.5–175.0 | 4–6 |
Bamboo | 73 | 12 | 10 | - | 0.6–1.1 | 4–7 | 360.5–590.3 | 22.2–54.2 |
Sugarcane (Bagasse) | 55.60–57.40 | 23.90–24.50 | 24.35–26.30 | - | 0.31–1.25 | 6.20–8.2 | 257.3–290.5 | 15–18 |
Pineapple | 70.55–82.31 | 18.73–21.90 | 5.35–12.33 | - | 1.25–1.60 | 2.78–3.34 | 166–175 | 5.51–6.76 |
Palm kernel shell (PKS) | 31.33 | 17.94 | 48.83 | - | 0.93–2.3 | 2.13–5.00 | 227.5–278.4 | 2.7–3.2 |
Rice straw | 28.42–48.33 | 23.22–28.45 | 12.65–16.72 | - | 0.86–0.87 | 2.11–2.25 | 435–450 | 24.67–26.33 |
No. | Type of Reinforcement | Fabrication Method | Weight Fraction (wt.%) | Hardness | Density (g/cm3) | Wear Rate | Coefficient of Friction | Ref. |
---|---|---|---|---|---|---|---|---|
1 | Coconut shell powder | Hot Compression (80 °C, 100 KN/cm2, 5 min) | 2 wt. | 21 (Shore D) | 2.05 | [32] | ||
4 wt. | 70 (Shore D) | 2 | ||||||
6 wt. | 69.7 (Shore D) | 1.89 | ||||||
8 wt. | 68 (Shore D) | 1.7 | ||||||
10 wt. | 58 (Shore D) | 1.6 | ||||||
2 | Grounded coconut shell | Hand lay-up | 50 wt. | 30 (HRF) | 2.55 | 2.56 (10−6 g/min) | [35] | |
40 wt. | 39 (HRF) | 2.54 | 2.1 (10−6 g/min) | |||||
30 wt. | 40 (HRF) | 2.45 | 0.5 (10−6 g/min) | |||||
20 wt. | 58 (HRF) | 2.22 | 0.25 (10−6 g/min) | |||||
10 wt. | 60 (HRF) | 2.15 | 0.5 (10−6 g/min) | |||||
3 | Palm kernel shell + coconut shell | Compression (16.75 KN/m2, 6 h) | 25 wt. + 25 wt. | 3.3 (kgf/mm2) | 2.55 | 0.2193 (g/min) | 0.374 | [36] |
38 wt. + 13 wt. | 3.41 (kgf/mm2) | 2.6 | 0.2733 (g/min) | 0.383 | ||||
15 wt. + 36 wt. | 3 (kgf/mm2) | 2.78 | 0.2007 (g/min) | 0.362 | ||||
4 | Candlenut shell powder + coconut shell powder | Compression (15 KN/m2, 4 h) | 35 wt. + 25 wt. | 87 (HR) | 5.28 × 10−5 g/mm.s | [37] | ||
30 wt. + 20 wt. | 89 (HR) | 4.82 × 10−5 g/mm.s | ||||||
25 wt. + 15 wt. | 92 (HR) | 3.67 × 10−5 g/mm.s | ||||||
5 | Wood powder + coconut fiber + cow bone | Compression (2 tons, 1 h) | 0 wt. + 40 wt. + 10 wt. | 23.9 (HV) | 0.47 | [38] | ||
40 wt. + 0 wt. + 10 wt. | 35.4 (HV) | 0.41 | ||||||
20 wt. + 20 wt. + 10 wt. | 32.1 (HV) | 0.38 | ||||||
25 wt. + 25 wt. + 0 wt. | 26.5 (HV) | 0.44 | ||||||
6 | Coconut shell powder + sugarcane powder | Hand lay-up | 21 wt. + 7 wt. | 3.55 × 10−6 mg/m | 0.448 | [43] | ||
14 wt. + 14 wt. | 4.13 × 10−6 mg/m | 0.434 | ||||||
7 wt. + 21 wt. | 3.87 × 10−6 mg/m | 0.395 | ||||||
7 | Coconut fiber | Hot Compression (200 °C, 1000 kgf, 20 min) | 29 wt | 37.14 HRB | 0.323 mm3/N·mm | 0.454 | [44] | |
8 | Bamboo fiber | Hot Compression (200 °C, 1000 kgf, 20 min) | 20 wt | 44.10 HRB | 0.242 mm3/N·mm | 0.46 | ||
9 | Palm kernel fiber | Hand lay-up | 10 wt. | 2.11 HRC | 0.000197 mm3/N·m | [45] | ||
20 wt. | 2.75 HRC | 0.001970 mm3/N·m | ||||||
30 wt. | 2.84 HRC | 0.000390 mm3/N·m | ||||||
40 wt. | 2.92 HRC | 0.000197 mm3/N·m | ||||||
50 wt. | 2.98 HRC | 0.000098 mm3/N·m | ||||||
10 | Palm kernel fiber + wheat fiber + nile rose fiber | Hand lay-up | 5 wt. + 2 wt. + 3 wt. | 1.83 HRC | 0.00052 mm3/N·m | |||
10 wt. + 5 wt. + 5 wt. | 2.05 HRC | 0.00118 mm3/N·m | ||||||
15 wt. + 10 wt. + 5 wt. | 2.23 HRC | 0.00026 mm3/N·m | ||||||
20 wt. + 10 wt. + 10 wt. | 2.39 HRC | 0.00132 mm3/N·m | ||||||
25 wt. + 15 wt. + 10 wt. | 2.47 HRC | 0.00264 mm3/N·m | ||||||
11 | Kenaf fiber | Hot Compression (120 °C, 20 MPa, 30 min) | 25 wt. | 87 HRB | 1.429 | 3.48 mg/m | 0.43 | [46] |
20 wt. | 86 HRB | 1.513 | 3.89 mg/m | 0.41 | ||||
30 wt. | 84 HRB | 1.639 | 4.02 mg/m | 0.4 | ||||
35 wt. | 82 HRB | 1.712 | 4.33 mg/m | 0.39 | ||||
40 wt. | 88 HRB | 2.012 | 4.65 mg/m | 0.38 | ||||
15 wt. | 91 HRB | 2.392 | 4.71 mg/m | 0.38 | ||||
12 | Banana fiber + coconut coir + rice husk | Hand lay-up | 10 wt. + 5 wt. + 5 wt. | 45.6 (Shore D) | 0.6 | [47] |
Properties | Value |
---|---|
Specific gravity | 1.12–1.16 |
Flash point (℃) | 72.5 |
Boiling point (℃) | 181.8 |
Melting point (℃) | 100–115 |
Elongation at break (%) | 2 |
Density (g/cm3) | 1.2–1.4 |
No tamped volumetric weight (g/dm3) | 350–550 |
Tamped volumetric weigh (g/dm3) | 600–800 |
Solubility | acetone, ethyl alcohol, ethyl acetate |
pH | 7–8.5 |
Tensile strength (MPa) | 34.5–62.1 |
Tensile Modulus (GPa) | 2.76–4.8 |
Thermal-decomposition temperature (℃) | 300 (starting) |
Total weight losses (%) during the thermal degradation process (room temperature to 800 ℃) | 55.2 |
The Binder Resins | Thermal Decomposition Temperature (°C) |
---|---|
Aromatic Ring-Modified Phenolic Resin | 488.0 |
Straight Phenolic Resin | 418.5–550 |
Alkyl-Modified Phenolic Resin | 461.5 |
Silicon-Modified Phenolic Resin | 378.8 |
Acrylic 30%-Modified Phenolic Resin | 373.9 |
Cashew Nut Shell Liquid Modified Resin | 431 |
Melamine Resin | 408 |
Alkyl Benzene modified resin | 420 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irawan, A.P.; Fitriyana, D.F.; Tezara, C.; Siregar, J.P.; Laksmidewi, D.; Baskara, G.D.; Abdullah, M.Z.; Junid, R.; Hadi, A.E.; Hamdan, M.H.M.; et al. Overview of the Important Factors Influencing the Performance of Eco-Friendly Brake Pads. Polymers 2022, 14, 1180. https://doi.org/10.3390/polym14061180
Irawan AP, Fitriyana DF, Tezara C, Siregar JP, Laksmidewi D, Baskara GD, Abdullah MZ, Junid R, Hadi AE, Hamdan MHM, et al. Overview of the Important Factors Influencing the Performance of Eco-Friendly Brake Pads. Polymers. 2022; 14(6):1180. https://doi.org/10.3390/polym14061180
Chicago/Turabian StyleIrawan, Agustinus Purna, Deni Fajar Fitriyana, Cionita Tezara, Januar Parlaungan Siregar, Dwinita Laksmidewi, Gregorius Dimas Baskara, Mohd Zulkfly Abdullah, Ramli Junid, Agung Efriyo Hadi, Mohammad Hazim Mohamad Hamdan, and et al. 2022. "Overview of the Important Factors Influencing the Performance of Eco-Friendly Brake Pads" Polymers 14, no. 6: 1180. https://doi.org/10.3390/polym14061180
APA StyleIrawan, A. P., Fitriyana, D. F., Tezara, C., Siregar, J. P., Laksmidewi, D., Baskara, G. D., Abdullah, M. Z., Junid, R., Hadi, A. E., Hamdan, M. H. M., & Najid, N. (2022). Overview of the Important Factors Influencing the Performance of Eco-Friendly Brake Pads. Polymers, 14(6), 1180. https://doi.org/10.3390/polym14061180