Optimization of Different Acid-Catalyzed Pretreatments on Co-Production of Xylooligosaccharides and Glucose from Sorghum Stalk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Evaluation of Acid Pretreatment
2.3. Enzymatic Hydrolysis
2.4. Analytical Methods
3. Results and Discussion
3.1. XOS Yield by Four Kinds of Acid Pretreatments of Sorghum Stalk
3.2. Influences of the Process Temperature and Time
3.3. Enzymatic Hydrolysis of Sorghum Stalks for Fermentable Sugar Production
3.4. Mass Balance for Production of XOS and Glucose
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abuhay, A.; Mengie, W.; Tesfaye, T.; Gebino, G.; Ayele, M.; Haile, A.; Yillie, D. Opportunities for new biorefinery products from Ethiopian ginning industry by-products: Current status and prospects. J. Bioresour. Bioprod. 2021, 6, 195–214. [Google Scholar] [CrossRef]
- Chen, Z.; Gao, H.; Li, W.; Li, S.; Liu, S.; Li, J. Research progress of biomass-based optical materials. J. For. Eng. 2020, 5, 1–12. [Google Scholar]
- Yang, J.; Si, C.; Liu, K.; Liu, H.; Li, X.; Liang, M. Production of levulinic acid from lignocellulosic biomass and application. J. For. Eng. 2020, 5, 21–27. [Google Scholar]
- Linan, L.Z.; Cidreira, A.C.M.; da Rocha, C.Q.; de Menezes, F.F.; de Moraes Rocha, G.J.; Paiva, A.E.M. Utilization of acai berry residual biomass for extraction of lignocellulosic byproducts. J. Bioresour. Bioprod. 2021, 6, 323–337. [Google Scholar] [CrossRef]
- Cao, R.; Xu, Y. Efficient preparation of xylonic acid from xylonate fermentation broth by bipolar membrane electrodialysis. Appl. Biochem. Biotechnol. 2019, 187, 396–406. [Google Scholar] [CrossRef]
- Huang, C.; Ragauskas, A.J.; Wu, X.; Huang, Y.; Zhou, X.; He, J.; Huang, C.; Lai, C.; Li, X.; Yong, Q. Co-production of bio-ethanol, xylonic acid and slow-release nitrogen fertilizer from low-cost straw pulping solid residue. Bioresour. Technol. 2018, 250, 365–373. [Google Scholar] [CrossRef]
- Spinace, M.A.; Lambert, C.S.; Fermoselli, K.K.; De Paoli, M.A. Characterization of lignocellulosic curaua fibres. Carbohydr. Polym. 2009, 77, 47–53. [Google Scholar] [CrossRef]
- Patel, A.; Shah, A.R. Integrated lignocellulosic biorefinery: Gateway for production of second generation ethanol and value added products. J. Bioresour. Bioprod. 2021, 6, 108–128. [Google Scholar] [CrossRef]
- Manmai, N.; Unpaprom, Y.; Ponnusamy, V.K.; Ramaraj, R. Bioethanol production from the comparison between optimization of sorghum stalk and sugarcane leaf for sugar production by chemical pretreatment and enzymatic degradation. Fuel 2020, 278, 118262. [Google Scholar] [CrossRef]
- Quiñones, T.S.; Retter, A.; Hobbs, P.J.; Budde, J.; Heiermann, M.; Plöchl, M.; Ravella, S.R. Production of xylooligosaccharides from renewable agricultural lignocellulose biomass. Biofuels 2015, 6, 147–155. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, Y. Integrative process for sugarcane bagasse biorefinery to co-produce xylooligosaccharides and gluconic acid. Bioresour. Technol. 2019, 282, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.Y.; Li, Q.; Chen, W.Q.; Zhao, L.G. Alkali extraction of xylan from poplar sawdust and preparation of xylooligosaccharide by enzymatic hydrolysis. J. For. Eng. 2020, 5, 61–68. [Google Scholar]
- Samanta, A.K.; Jayapal, N.; Jayaram, C.; Roy, S.; Kolte, A.P.; Senani, S.; Sridhar, M. Xylooligosaccharides as prebiotics from agricultural by-products: Production and applications. Bioact. Carbohydr. Diet. Fibre 2015, 5, 62–71. [Google Scholar] [CrossRef]
- Ofori-Boateng, C.; Lee, K.T. Comparative thermodynamic sustainability assessment of lignocellulosic pretreatment methods for bioethanol production via exergy analysis. Chem. Eng. J. 2013, 228, 162–171. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, X.; Zhang, R.; Xiao, L.; Yuan, T.; Shi, Q.; Sun, R. Evaluation of xylooligosaccharide production from residual hemicelluloses of dissolving pulp by acid and enzymatic hydrolysis. RSC Adv. 2018, 8, 35211–35217. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Morikawa, Y.; Qi, F.; Zeng, J.; Liu, D. A novel kinetic model for polysaccharide dissolution during atmospheric acetic acid pretreatment of sugarcane bagasse. Bioresour. Technol. 2014, 151, 128–136. [Google Scholar] [CrossRef]
- Wang, J.Y.; Jia, L.L.; Xu, Y.; Zhang, J.H. Effect of acetic acid-sulfite two-step pretreatment on the adsorption of poplar lignin toward cellulase. J. For. Eng. 2021, 6, 111–119. [Google Scholar]
- Gao, Y.Q.; Li, Y.Y.; Ren, R.Q.; Chen, Y.; Gao, J.M. Effect of weak acid modification on the structure and properties of heat-treated Chinese fir. J. For. Eng. 2021, 6, 49–55. [Google Scholar]
- Zhang, H.; Xu, Y.; Yu, S. Co-production of functional xylooligosaccharides and fermentable sugars from corncob with effective acetic acid prehydrolysis. Bioresour. Technol. 2017, 234, 343–349. [Google Scholar] [CrossRef]
- Sheng, Y.; Tan, X.; Gu, Y.; Zhou, X.; Tu, M.; Xu, Y. Effect of ascorbic acid assisted dilute acid pretreatment on lignin removal and enzyme digestibility of agricultural residues. Renew. Energy 2021, 163, 732–739. [Google Scholar] [CrossRef]
- Lin, Q.; Li, H.; Ren, J.; Deng, A.; Li, W.; Liu, C.; Sun, R. Production of xylooligosaccharides by microwave-induced, organic acid-catalyzed hydrolysis of different xylan-type hemicelluloses: Optimization by response surface methodology. Carbohyd. Polym. 2017, 157, 214–225. [Google Scholar] [CrossRef] [PubMed]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D.L.A.P. Determination of structural carbohydrates and lignin in biomass. Lab. Anal. Proced. 2008, 1617, 1–16. [Google Scholar]
- Xu, Y.; Fan, L.; Wang, X.; Yong, Q.; Yu, S.Y. Simultaneous separation and quantification of linear xylo- and cello-oligosaccharides mixtures in lignocellulosics processing products on high-performance anion-exchange chromatography coupled with pulsed amperometric detection. Bioresources 2013, 8, 3247–3259. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhou, X.; Xu, Y.; Yu, S. Production of xylooligosaccharides from Waste Xylan, obtained from viscose fiber processing, by selective hydrolysis using concentrated acetic acid. J. Wood Chem. Technol. 2017, 37, 1–9. [Google Scholar] [CrossRef]
- Noureddini, H.; Byun, J. Dilute-acid pretreatment of distillers’ grains and corn fiber. Bioresour. Technol. 2010, 101, 1060–1067. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Cao, R.; Zhou, X.; Xu, Y. An integrated biorefinery process for adding values to corncob in co-production of xylooligosaccharides and glucose starting from pretreatment with gluconic acid. Bioresour. Technol. 2020, 307, 123200. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, M.; Xu, Q.; Ren, H.; Yin, J. Enhanced enzymatic hydrolysis of sorghum stalk by supercritical carbon dioxide and ultrasonic pretreatment. Appl. Biochem. Biotechnol. 2019, 188, 101–111. [Google Scholar] [CrossRef]
Reaction Acids/pH (2.2) | Run | Variable | Response | |
---|---|---|---|---|
Temperature (°C) | Time (min) | XOS Yield (%) | ||
Acetic acid (AA) | 1 | 127.8 | 60 | 2.0 |
2 | 135 | 45 | 2.8 | |
3 | 135 | 75 | 13.0 | |
4 | 152.5 | 38.8 | 29.1 | |
5 | 152.5 | 45 | 33.2 | |
6 | 152.5 | 60 | 38.6 | |
7 | 152.5 | 81.2 | 29.7 | |
8 | 170 | 45 | 18.3 | |
9 | 170 | 75 | 2.2 | |
10 | 180 | 45 | 0.1 | |
Gluconic acid (GA) | 1 | 127.8 | 60 | 1.2 |
2 | 135 | 45 | 5.2 | |
3 | 135 | 75 | 10.3 | |
4 | 152.5 | 38.8 | 23.4 | |
5 | 152.5 | 45 | 26.2 | |
6 | 152.5 | 60 | 32.1 | |
7 | 152.5 | 81.2 | 30.7 | |
8 | 170 | 45 | 27.1 | |
9 | 170 | 75 | 7.7 | |
10 | 180 | 45 | 2.9 | |
Oxalic acid (OA) | 1 | 127.8 | 60 | 1.1 |
2 | 135 | 45 | 2.7 | |
3 | 135 | 75 | 2.9 | |
4 | 152.5 | 38.8 | 3.0 | |
5 | 152.5 | 45 | 7.6 | |
6 | 152.5 | 60 | 15.6 | |
7 | 152.5 | 81.2 | 20.6 | |
8 | 170 | 45 | 24.3 | |
9 | 170 | 75 | 27.5 | |
10 | 180 | 45 | 26.2 | |
Sulfuric acid (SA) | 1 | 127.8 | 60 | 0.2 |
2 | 135 | 45 | 0.4 | |
3 | 135 | 75 | 0.8 | |
4 | 152.5 | 38.8 | 1.5 | |
5 | 152.5 | 45 | 1.6 | |
6 | 152.5 | 60 | 5.3 | |
7 | 152.5 | 81.2 | 9.4 | |
8 | 170 | 45 | 11.5 | |
9 | 170 | 75 | 39.4 | |
10 | 180 | 45 | 25.8 |
Samples | Cellulose (wt%) | Xylan (wt%) | Araban (wt%) | Lignin (wt%) |
---|---|---|---|---|
SS | 33.6 | 27.4 | 2.7 | 23.5 |
AA | 44.4 | 15.6 | / | 25.2 |
GA | 37.4 | 12.3 | / | 25.4 |
OA | 43.3 | 14.5 | / | 24.9 |
SA | 43.3 | 15.2 | / | 24.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Liu, X.; Sheng, Y.; Yang, H.; Xu, X.; Tao, Y.; Zhang, M. Optimization of Different Acid-Catalyzed Pretreatments on Co-Production of Xylooligosaccharides and Glucose from Sorghum Stalk. Polymers 2022, 14, 830. https://doi.org/10.3390/polym14040830
Yang X, Liu X, Sheng Y, Yang H, Xu X, Tao Y, Zhang M. Optimization of Different Acid-Catalyzed Pretreatments on Co-Production of Xylooligosaccharides and Glucose from Sorghum Stalk. Polymers. 2022; 14(4):830. https://doi.org/10.3390/polym14040830
Chicago/Turabian StyleYang, Xiaocui, Xiaoliu Liu, Yequan Sheng, Hanzhou Yang, Xinshuai Xu, Yuheng Tao, and Minglong Zhang. 2022. "Optimization of Different Acid-Catalyzed Pretreatments on Co-Production of Xylooligosaccharides and Glucose from Sorghum Stalk" Polymers 14, no. 4: 830. https://doi.org/10.3390/polym14040830
APA StyleYang, X., Liu, X., Sheng, Y., Yang, H., Xu, X., Tao, Y., & Zhang, M. (2022). Optimization of Different Acid-Catalyzed Pretreatments on Co-Production of Xylooligosaccharides and Glucose from Sorghum Stalk. Polymers, 14(4), 830. https://doi.org/10.3390/polym14040830