Lignocellulosic Based Biochar Adsorbents for the Removal of Fluoride and Arsenic from Aqueous Solution: Isotherm and Kinetic Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Biochars
2.2. Characterization of Biopolymer Containing Biochar
2.3. Chemicals and Reagents
2.4. Analysis
2.4.1. Batch Experiments for Fluoride and Arsenic Adsorption
2.4.2. Statistical Analysis
3. Results
3.1. Characterization
3.1.1. Brunauer Emmet–Teller (BET)
3.1.2. Scanning Electron Microscope Analysis (SEM)
3.1.3. FTIR
3.1.4. Zeta Potential
3.2. Batch Adsorption of F- Fluoride and As-Arsenic
3.2.1. Effect of Contact Time
3.2.2. Effect of pH
3.2.3. Effect of Initial Concentration
3.3. Adsorption Isotherms
3.3.1. Isotherms and Kinetic Studies for Fluoride Removal
3.3.2. Isotherms and Kinetic Studies for Arsenic Removal
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tahir, M.; Rasheed, H. Fluoride in the drinking water of pakistan and the possible risk of crippling fluorosis. Drink. Water Eng. Sci. 2013, 6, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Haroon, H.; Shah, J.A.; Khan, M.S.; Alam, T.; Khan, R.; Asad, S.A.; Ali, M.A.; Farooq, G.; Iqbal, M.; Bilal, M. Activated carbon from a specific plant precursor biomass for hazardous cr (vi) adsorption and recovery studies in batch and column reactors: Isotherm and kinetic modeling. J. Water Process Eng. 2020, 38, 101577. [Google Scholar]
- Arshad, N.; Imran, S. Assessment of arsenic, fluoride, bacteria, and other contaminants in drinking water sources for rural communities of kasur and other districts in punjab, pakistan. Environ. Sci. Pollut. Res. 2017, 24, 2449–2463. [Google Scholar] [CrossRef] [PubMed]
- Smedley, P.L.; Kinniburgh, D.G. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar]
- Rieuwerts, J. The Elements of Environmental Pollution; Routledge: London, UK, 2017. [Google Scholar]
- Roy, P.; Saha, A. Metabolism and toxicity of arsenic: A human carcinogen. Curr. Sci. 2002, 82, 38–45. [Google Scholar]
- Van Halem, D.; Bakker, S.; Amy, G.; Van Dijk, J. Arsenic in drinking water: A worldwide water quality concern for water supply companies. Drink. Water Eng. Sci. 2009, 2, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Mondal, N.K.; Bhaumik, R.; Datta, J.K. Removal of fluoride by aluminum impregnated coconut fiber from synthetic fluoride solution and natural water. Alex. Eng. J. 2015, 54, 1273–1284. [Google Scholar] [CrossRef] [Green Version]
- Chubar, N. New inorganic (an) ion exchangers based on mg–al hydrous oxides:(alkoxide-free) sol–gel synthesis and characterisation. J. Colloid Interface Sci. 2011, 357, 198–209. [Google Scholar] [CrossRef]
- Behbahani, M.; Moghaddam, M.A.; Arami, M. Techno-economical evaluation of fluoride removal by electrocoagulation process: Optimization through response surface methodology. Desalination 2011, 271, 209–218. [Google Scholar] [CrossRef]
- Richards, L.A.; Vuachère, M.; Schäfer, A.I. Impact of ph on the removal of fluoride, nitrate and boron by nanofiltration/reverse osmosis. Desalination 2010, 261, 331–337. [Google Scholar] [CrossRef]
- Shrivastava, B.K.; Vani, A. Comparative study of defluoridation technologies in india. Asian J. Exp. Sci 2009, 23, 269–274. [Google Scholar]
- Zhang, A.; Li, X.; Xing, J.; Xu, G. Adsorption of potentially toxic elements in water by modified biochar: A review. J. Environ. Chem. Eng. 2020, 8, 104196. [Google Scholar] [CrossRef]
- Elazhar, F.; Tahaikt, M.; Achatei, A.; Elmidaoui, F.; Taky, M.; El Hannouni, F.; Laaziz, I.; Jariri, S.; El Amrani, M.; Elmidaoui, A. Economical evaluation of the fluoride removal by nanofiltration. Desalination 2009, 249, 154–157. [Google Scholar] [CrossRef]
- Abdel-Fattah, T.M.; Mahmoud, M.E.; Ahmed, S.B.; Huff, M.D.; Lee, J.W.; Kumar, S. Biochar from woody biomass for removing metal contaminants and carbon sequestration. J. Ind. Eng. Chem. 2015, 22, 103–109. [Google Scholar] [CrossRef]
- Usman, A.R.; Sallam, A.S.; Al-Omran, A.; El-Naggar, A.H.; Alenazi, K.K.; Nadeem, M.; Al-Wabel, M.I. Chemically modified biochar produced from conocarpus wastes: An efficient sorbent for fe (ii) removal from acidic aqueous solutions. Adsorpt. Sci. Technol. 2013, 31, 625–640. [Google Scholar] [CrossRef]
- Bautista-Toledo, M.I.; Rivera-Utrilla, J.; Ocampo-Pérez, R.; Carrasco-Marin, F.; Sanchez-Polo, M. Cooperative adsorption of bisphenol-a and chromium (iii) ions from water on activated carbons prepared from olive-mill waste. Carbon 2014, 73, 338–350. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, C.; Guo, X.; Chen, J.P. Modification of carbon derived from sargassum sp. By lanthanum for enhanced adsorption of fluoride. J. Colloid Interface Sci. 2015, 441, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Zhang, W.; Yang, Y.; Huang, X.; Wang, S.; Qiu, R. Relative distribution of pb2+ sorption mechanisms by sludge-derived biochar. Water Res. 2012, 46, 854–862. [Google Scholar] [CrossRef]
- Li, D.; Zhao, R.; Peng, X.; Ma, Z.; Zhao, Y.; Gong, T.; Sun, M.; Jiao, Y.; Yang, T.; Xi, B. Biochar-related studies from 1999 to 2018: A bibliometrics-based review. Environ. Sci. Pollut. Res. 2020, 27, 2898–2908. [Google Scholar] [CrossRef]
- Yao, C.; Pan, Y.; Lu, H.; Wu, P.; Meng, Y.; Cao, X.; Xue, S. Utilization of recovered nitrogen from hydrothermal carbonization process by arthrospira platensis. Bioresour. Technol. 2016, 212, 26–34. [Google Scholar] [CrossRef]
- Halder, G.; Khan, A.A.; Dhawane, S. Fluoride sorption onto a steam-activated biochar derived from cocos nucifera shell. CLEAN–Soil Air Water 2016, 44, 124–133. [Google Scholar] [CrossRef]
- Mohan, D.; Kumar, S.; Srivastava, A. Fluoride removal from ground water using magnetic and nonmagnetic corn stover biochars. Ecol. Eng. 2014, 73, 798–808. [Google Scholar] [CrossRef]
- Sawood, G.M.; Mishra, A.; Gupta, S. Optimization of arsenate adsorption over aluminum-impregnated tea waste biochar using rsm–central composite design and adsorption mechanism. J. Hazard. Toxic Radioact. Waste 2021, 25, 04020075. [Google Scholar] [CrossRef]
- Patnukao, P.; Pavasant, P. Activated carbon from eucalyptus camaldulensis dehn bark using phosphoric acid activation. Bioresour. Technol. 2008, 99, 8540–8543. [Google Scholar] [CrossRef]
- Deal, C.; Brewer, C.E.; Brown, R.C.; Okure, M.A.; Amoding, A. Comparison of kiln-derived and gasifier-derived biochars as soil amendments in the humid tropics. Biomass Bioenergy 2012, 37, 161–168. [Google Scholar] [CrossRef]
- Zhang, H.; Pu, W.-X.; Ha, S.; Li, Y.; Sun, M. The influence of included minerals on the intrinsic reactivity of chars prepared at 900 c in a drop tube furnace and a muffle furnace. Fuel 2009, 88, 2303–2310. [Google Scholar] [CrossRef]
- Hosseini, S.S.; Mahvi, A.H.; Tsunodac, M. Fluoride content of coconut water and its risk assessment. Fluoride 2019, 52, 553–561. [Google Scholar]
- Gómez-Ariza, J.L.; Sánchez-Rodas, D.; Giráldez, I.; Morales, E. A comparison between icp-ms and afs detection for arsenic speciation in environmental samples. Talanta 2000, 51, 257–268. [Google Scholar] [CrossRef]
- Alagumuthu, G.; Rajan, M. Equilibrium and kinetics of adsorption of fluoride onto zirconium impregnated cashew nut shell carbon. Chem. Eng. J. 2010, 158, 451–457. [Google Scholar] [CrossRef]
- Chen, G.-J.; Peng, C.-Y.; Fang, J.-Y.; Dong, Y.-Y.; Zhu, X.-H.; Cai, H.-M. Biosorption of fluoride from drinking water using spent mushroom compost biochar coated with aluminum hydroxide. Desalination Water Treat. 2016, 57, 12385–12395. [Google Scholar] [CrossRef]
- Ibupoto, A.S.; Qureshi, U.A.; Ahmed, F.; Khatri, Z.; Khatri, M.; Maqsood, M.; Brohi, R.Z.; Kim, I.S. Reusable carbon nanofibers for efficient removal of methylene blue from aqueous solution. Chem. Eng. Res. Des. 2018, 136, 744–752. [Google Scholar] [CrossRef]
- Goswami, R.; Kumar, M. Removal of fluoride from aqueous solution using nanoscale rice husk biochar. Groundw. Sustain. Dev. 2018, 7, 446–451. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H. The use of low temperature van der waals adsorption isotherms in determining the surface areas of various adsorbents. J. Am. Chem. Soc. 1937, 59, 2682–2689. [Google Scholar] [CrossRef]
- Mishra, V.; Sureshkumar, M.; Gupta, N.; Kaushik, C. Study on sorption characteristics of uranium onto biochar derived from eucalyptus wood. Water Air Soil Pollut. 2017, 228, 1–14. [Google Scholar] [CrossRef]
- Han, Y.; Boateng, A.A.; Qi, P.X.; Lima, I.M.; Chang, J. Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlation with surface properties. J. Environ. Manag. 2013, 118, 196–204. [Google Scholar] [CrossRef]
- Papari, F.; Najafabadi, P.R.; Ramavandi, B. Fluoride ion removal from aqueous solution, groundwater, and seawater by granular and powdered conocarpus erectus biochar. Desal. Water Treat. 2017, 65, 375–386. [Google Scholar] [CrossRef]
- Oh, T.-K.; Choi, B.; Shinogi, Y.; Chikushi, J. Effect of ph conditions on actual and apparent fluoride adsorption by biochar in aqueous phase. Water Air Soil Pollut. 2012, 223, 3729–3738. [Google Scholar] [CrossRef]
- Haroon, H.; Ashfaq, T.; Gardazi, S.M.H.; Sherazi, T.A.; Ali, M.; Rashid, N.; Bilal, M. Equilibrium kinetic and thermodynamic studies of cr (vi) adsorption onto a novel adsorbent of eucalyptus camaldulensis waste: Batch and column reactors. Korean J. Chem. Eng. 2016, 33, 2898–2907. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Li, A. Eucalyptus sawdust derived biochar generated by combining the hydrothermal carbonization and low concentration koh modification for hexavalent chromium removal. J. Environ. Manag. 2018, 206, 989–998. [Google Scholar] [CrossRef]
- Kinney, T.; Masiello, C.; Dugan, B.; Hockaday, W.; Dean, M.; Zygourakis, K.; Barnes, R. Hydrologic properties of biochars produced at different temperatures. Biomass Bioenergy 2012, 41, 34–43. [Google Scholar] [CrossRef]
- Vaughn, S.F.; Kenar, J.A.; Thompson, A.R.; Peterson, S.C. Comparison of biochars derived from wood pellets and pelletized wheat straw as replacements for peat in potting substrates. Ind. Crops Prod. 2013, 51, 437–443. [Google Scholar] [CrossRef]
- Saikia, R.; Goswami, R.; Bordoloi, N.; Senapati, K.K.; Pant, K.K.; Kumar, M.; Kataki, R. Removal of arsenic and fluoride from aqueous solution by biomass based activated biochar: Optimization through response surface methodology. J. Environ. Chem. Eng. 2017, 5, 5528–5539. [Google Scholar] [CrossRef]
- Daifullah, A.; Yakout, S.; Elreefy, S. Adsorption of fluoride in aqueous solutions using kmno4-modified activated carbon derived from steam pyrolysis of rice straw. J. Hazard. Mater. 2007, 147, 633–643. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.A.; Shaikh, W.A.; Alam, M.O.; Bhattacharya, T.; Chakraborty, S.; Show, B.; Saha, I. Adsorption of as (iii) and as (v) from aqueous solution by modified cassia fistula (golden shower) biochar. Appl. Water Sci. 2018, 8, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Huang, L.; Nguyen, T.A.; Ok, Y.S.; Rudolph, V.; Yang, H.; Zhang, D. Copper and zinc adsorption by softwood and hardwood biochars under elevated sulphate-induced salinity and acidic ph conditions. Chemosphere 2016, 142, 64–71. [Google Scholar] [CrossRef]
- Alkurdi, S.S.; Herath, I.; Bundschuh, J.; Al-Juboori, R.A.; Vithanage, M.; Mohan, D. Biochar versus bone char for a sustainable inorganic arsenic mitigation in water: What needs to be done in future research? Environ. Int. 2019, 127, 52–69. [Google Scholar] [CrossRef]
- Mohan, D.; Sharma, R.; Singh, V.K.; Steele, P.; Pittman Jr, C.U. Fluoride removal from water using bio-char, a green waste, low-cost adsorbent: Equilibrium uptake and sorption dynamics modeling. Ind. Eng. Chem. Res. 2012, 51, 900–914. [Google Scholar] [CrossRef]
- Niazi, N.K.; Bibi, I.; Shahid, M.; Ok, Y.S.; Burton, E.D.; Wang, H.; Shaheen, S.M.; Rinklebe, J.; Lüttge, A. Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: An integrated spectroscopic and microscopic examination. Environ. Pollut. 2018, 232, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Van Vinh, N.; Zafar, M.; Behera, S.; Park, H.-S. Arsenic (iii) removal from aqueous solution by raw and zinc-loaded pine cone biochar: Equilibrium, kinetics, and thermodynamics studies. Int. J. Environ. Sci. Technol. 2015, 12, 1283–1294. [Google Scholar] [CrossRef] [Green Version]
- Ogata, F.; Tominaga, H.; Yabutani, H.; Kawasaki, N. Removal of fluoride ions from water by adsorption onto carbonaceous materials produced from coffee grounds. J. Oleo Sci. 2011, 60, 619–625. [Google Scholar] [CrossRef] [Green Version]
Adsorbent | Surface Area (m2/g) |
---|---|
Laboratory Biochar (B1) | 0.885 |
Barrel Biochar (B2) | 99.449 |
Brick Biochar (B3) | 6.341 |
Biochar | Adsorbate | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|---|
R2 | Qmax | b | R2 | Kf | n | ||
B1 | Fluoride | 0.977 | 1.832 | 0.872 | 0.756 | 1.059 | 5 |
Arsenic | 0.839 | 0.1086 | 1.152 | 0.339 | 19.741 | 2.355 | |
B2 | Fluoride | 0.993 | 2.376 | 1.559 | 0.835 | 1.0128 | 3.593 |
Arsenic | 0.806 | 0.066 | 1.149 | 0.281 | 27.646 | 2.322 | |
B3 | Fluoride | 0.87 | 1.333 | 0.216 | 0.701 | 4.149 | 2.105 |
Arsenic | 0.776 | 0.079 | 1.096 | 0.284 | 23.660 | 2.3164 |
Biochar | Adsorbate | Pseudo 1st Order | Pseudo 2nd Order | ||||
---|---|---|---|---|---|---|---|
R2 | qe | K1 | R2 | Qe | K2 | ||
B1 | Fluoride | 0.1006 | 2.027898 | 0.0276 | 0.9088 | 0.123913 | 69.42557 |
Arsenic | 0.0469 | 2.228659 | 0.0107 | 0.9733 | 0.20094 | 24.70232 | |
B2 | Fluoride | 0.2866 | 1.60914 | 0.0086 | 0.9249 | 0.147406 | 39.30873 |
Arsenic | 0.0375 | 2.146632 | 0.0083 | 0.9641 | 0.169739 | 34.01136 | |
B3 | Fluoride | 0.1477 | 12.9656 | 0.0313 | 0.9862 | 0.125 | 20.20393 |
Arsenic | 0.0345 | 2.016776 | 0.0072 | 0.9516 | 0.149301 | 43.93484 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayaz, I.; Rizwan, M.; Ullman, J.L.; Haroon, H.; Qayyum, A.; Ahmed, N.; Elesawy, B.H.; Askary, A.E.; Gharib, A.F.; Ismail, K.A. Lignocellulosic Based Biochar Adsorbents for the Removal of Fluoride and Arsenic from Aqueous Solution: Isotherm and Kinetic Modeling. Polymers 2022, 14, 715. https://doi.org/10.3390/polym14040715
Ayaz I, Rizwan M, Ullman JL, Haroon H, Qayyum A, Ahmed N, Elesawy BH, Askary AE, Gharib AF, Ismail KA. Lignocellulosic Based Biochar Adsorbents for the Removal of Fluoride and Arsenic from Aqueous Solution: Isotherm and Kinetic Modeling. Polymers. 2022; 14(4):715. https://doi.org/10.3390/polym14040715
Chicago/Turabian StyleAyaz, Iram, Muhammad Rizwan, Jeffery Layton Ullman, Hajira Haroon, Abdul Qayyum, Naveed Ahmed, Basem H. Elesawy, Ahmad El Askary, Amal F. Gharib, and Khadiga Ahmed Ismail. 2022. "Lignocellulosic Based Biochar Adsorbents for the Removal of Fluoride and Arsenic from Aqueous Solution: Isotherm and Kinetic Modeling" Polymers 14, no. 4: 715. https://doi.org/10.3390/polym14040715
APA StyleAyaz, I., Rizwan, M., Ullman, J. L., Haroon, H., Qayyum, A., Ahmed, N., Elesawy, B. H., Askary, A. E., Gharib, A. F., & Ismail, K. A. (2022). Lignocellulosic Based Biochar Adsorbents for the Removal of Fluoride and Arsenic from Aqueous Solution: Isotherm and Kinetic Modeling. Polymers, 14(4), 715. https://doi.org/10.3390/polym14040715